
Security Smells Pervade Mobile App Servers
Pascal Gadient

Marc-Andrea Tarnutzer
Oscar Nierstrasz

Software Composition Group, University of Bern
Bern, Switzerland

Mohammad Ghafari
University of Auckland
Auckland, New Zealand
m.ghafari@auckland.ac.nz

ABSTRACT
[Background] Web communication is universal in cyberspace, and
security risks in this domain are devastating. [Aims] We analyzed
the prevalence of six security smells in mobile app servers, and
we investigated the consequence of these smells from a security
perspective. [Method] We used an existing dataset that includes
9 714 distinct URLs used in 3 376 Android mobile apps. We exercised
these URLs twice within 14 months and investigated the HTTP
headers and bodies. [Results]We found that more than 69% of tested
apps suffer from three kinds of security smells, and that unprotected
communication and misconfigurations are very common in servers.
Moreover, source-code and version leaks, or the lack of update
policies expose app servers to security risks. [Conclusions] Poor
app server maintenance greatly hampers security.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
security smells, web communication, mobile apps
ACM Reference Format:
Pascal Gadient, Marc-Andrea Tarnutzer, Oscar Nierstrasz, and Mohammad
Ghafari. 2021. Security Smells Pervade Mobile App Servers. In ACM / IEEE
International Symposium on Empirical Software Engineering and Measure-
ment (ESEM) (ESEM ’21), October 11–15, 2021, Bari, Italy. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3475716.3475780

1 INTRODUCTION
Globally accessible, reliable, and scalable web services are on the
rise, with more than 24 000 currently known public web APIs.1 Like-
wise, native apps are starting to decline while web apps arise that
depend on application servers.2 Additionally during the past years,
the complexity of developing a web-enabled app has massively
increased due to the growing number of involved application frame-
works, programming languages, and supported device categories,
e.g., desktops, notebooks, tablets, smartphones, and wearables.

Web communication has already received much attention in
the security community, leading to improved tool support. For ex-
ample, programs exist that can continuously monitor web APIs
to ensure that an app remains compliant with the API specifica-
tion [14], and tool support to mitigate insecure communication
1https://www.programmableweb.com/apis/directory
2https://www.forbes.com/sites/victoriacollins/2019/04/05/why-you-dont-need-to-
make-an-app-a-guide-for-startups-who-want-to-make-an-app/

ESEM ’21, October 11–15, 2021, Bari, Italy
2021. ACM ISBN 978-1-4503-8665-4/21/10. . . $15.00
https://doi.org/10.1145/3475716.3475780

channels has been built into recent releases of the Android ecosys-
tem.3 Generally speaking, the existing literature has covered the
transmitted payload by using client-side static [5] and dynamic
analysis techniques [12], server side analyses of web service source
code [9] as well as connection properties, e.g., the URL [16] or
two-factor authentication [13]. Another topic that has received
extensive attention is that of hard-coded credentials in apps that
may allow adversaries unrestricted access to the relevant infras-
tructure [11, 15].

Unfortunately, the server configurations of off-the-shelf applica-
tion servers have received much less attention. A recent work has
identified eight web API security smells, but did not assess their
prevalence [3]. These smells are symptoms in the code that signal
the prospect of a security vulnerability [4]. In this work we assess
app servers that are used for communicating with mobile apps. We
investigated the presence of six app server security smells, and the
corresponding server maintenance activity based on the dataset
that contains 9 714 distinct URLs that were used in 3 376 apps. We
address the following research questions:

RQ1:What is the prevalence of the server side security smells in
the web communication of mobile apps? We found 231 URLs from
44 apps that leak the source code of the web service implementa-
tion if processing errors occur. We can further confirm that most
app servers communicate with apps over insecure HTTP connec-
tions [10], and fail to enforce use of the HTTP strict transport
security policy. Finally, we found that on average almost every
second app server suffers from version information leaks.

RQ2: What is the relationship between security smells and app
server maintenance? In particular, we are interested in configura-
tion changes, because they provide insights into established main-
tenance processes of mobile app servers. Based on the collected
HTTP header information from two measurements over 14 months,
we evaluated what software changes are introduced by system ad-
ministrators. We observed that servers are usually set up once and
never touched again, yielding severe security risks. For instance,
criminals can attack outdated app servers by exploiting vulnerabil-
ities listed in public databases or illicit websites. On the positive
side, we noted that version upgrades are much more common than
version downgrades, and that developers occasionally use Cloud-
flare to protect their infrastructure against adversaries, especially
for non-JSON-based app servers.

In summary, this work reveals the prevalence of insecure app
server configurations accessed by Android mobile apps, and their
maintenance protocol. The list of apps that we analyzed in this study
is available online,4 and we share the aggregated data for research

3https://developer.android.com/training/articles/security-config
4https://doi.org/10.6084/m9.figshare.14981061

ar
X

iv
:2

10
8.

07
18

8v
1

 [
cs

.C
R

]
 1

6
A

ug
 2

02
1

https://doi.org/10.1145/3475716.3475780
https://www.programmableweb.com/apis/directory
https://www.forbes.com/sites/victoriacollins/2019/04/05/why-you-dont-need-to-make-an-app-a-guide-for-startups-who-want-to-make-an-app/
https://www.forbes.com/sites/victoriacollins/2019/04/05/why-you-dont-need-to-make-an-app-a-guide-for-startups-who-want-to-make-an-app/
https://doi.org/10.1145/3475716.3475780
https://developer.android.com/training/articles/security-config
https://doi.org/10.6084/m9.figshare.14981061

ESEM ’21, October 11–15, 2021, Bari, Italy Pascal Gadient, Marc-Andrea Tarnutzer, Oscar Nierstrasz, and Mohammad Ghafari

purposes on request due to the contained sensitive information
such as credentials, API keys, and email addresses.

The remainder of this paper is organized as follows. We report
on app server security smells relevant for this work in Section 2.
We describe the dataset used for our app server investigations in
Subsection 3.1. We provide the prevalence of app server security
smells in Subsection 3.2, and we shed light on server infrastructure
maintenance in Subsection 3.3. Finally, we recap the threats to
validity in Section 4, and we summarize related work in Section 5.
We conclude this paper in Section 6.

2 SECURITY SMELLS IN APP SERVERS
In this section, we briefly explain six of the eight security smells
that we identified in previous work [3]. The two remaining security
smells, i.e., Credential leak and Embedded languages are not within
the scope of this study, because they require a deep understanding
of the app and the context where they occur.

2.1 Insecure transport channel
Web communication relies on HTTP or HTTPS; both variants exist
in app server configurations. Issue: HTTP does not provide any
security; neither the address, nor the header information or the
payload are encrypted. Symptom: The URL begins with http://.

2.2 Disclosure of source code
Error messages leak valuable information regarding the implemen-
tation of a running system. Issue: Error messages that include the
relevant stack trace are transmitted as plain text in the server’s
message response body. Such a message reveals information like
the used method names, line numbers, and file paths disclosing
the internal file system structure and configuration of the server.
Symptom: The returned HTTP body contains a stack trace or a code
snippet that shows the problematic code. The structure of such
data depends on the used framework, however terms related to
application crashes are common, e.g., “stack,” “trace,” and “error.”

2.3 Disclosure of version information
Besides useful connection parameters, HTTP headers leak infor-
mation regarding the software architecture and configuration of a
running system. Issue: Outdated software suffers from severe secu-
rity vulnerabilities. For instance, a server that returns X-PoweredBy:
PHP/5.5.23 in the response header uses a PHP version that is at
the time of writing more than 6 years old, and a quick search in the
Common Vulnerabilities and Exposures (CVE) database shows that
this framework suffers from 65 known security vulnerabilities, six
of which received the most severe impact score of 10.5 Symptom:
One of the following keys exists in the response header: engine,
server, x-aspnet-version, or x-powered-by.

2.4 Lack of access control
Authentication by a user name and a password provides tailored
experiences to end users, e.g., individual chat logs or friend lists,
and at the same time enables access control to separate and protect

5https://www.cvedetails.com/vulnerability-list/vendor_id-74/product_id-
128/version_id-183021/PHP-PHP-5.5.23.html

sensitive user data. Issue: The access to sensitive data or actions is
not restricted by a sane authentication mechanism such as a user
name and password pair, instead, easy-to-forge identifiers or no
identification data at all are used to secure the access. Symptom:
A server does not respond with the status code 401 Unauthorized
or 403 Forbidden. In other words, the server successfully responds
without asking for any credentials.

2.5 Missing HTTPS redirects
We found servers that do not redirect clients to encrypted connec-
tions although they would have been supported. Issue: App servers
do not redirect incoming HTTP connections to HTTPS when legacy
apps try to connect. Symptom: For an HTTP request, a server does
not deliver an HTTP 3xx redirect message which points to the
corresponding HTTPS implementation of the web application. For
an HTTPS request, a server delivers a HTTP redirect message.

2.6 Missing HSTS
HTTP header information is used to properly set up the connec-
tion by specifying various communication parameters, e.g., the
acceptable languages, the used compression, or the enforcement of
HTTPS for future connection attempts, a feature which is called
HTTP Strict Transport Security (HSTS). HSTS provides protection
against HTTPS to HTTP downgrading attacks, i.e., when a user
once accessed a web resource in a secure environment (at home
or work), the client knows that the resource needs to be accessed
only through HTTPS. If this is not possible, e.g., at an airport at
which an attacker tries to perform MITM attacks, the client will
display a connection error. Hence, HSTS should be used in combi-
nation with HTTP to HTTPS redirects, because the HSTS header
is only considered to be valid when sent over HTTPS connections.
Issue: Servers either do not leverage the HSTS feature, or they
do not use the recommended parameters. Symptom: A server does
not deliver the HTTP HSTS header Strict-Transport-Security:
max-age=31536000; includeSubDomains for an HTTPS request.

3 EMPIRICAL STUDY
For this empirical study we evaluated all URLs from the dataset
according to the security smell symptoms described in the previ-
ous section. We collected the data twice: the initial download of
HTTP headers and bodies was performed in June-2019 whereas
additional data, i.e., the authorization errors and up-to-dateness,
was retrieved in August-2020. The duration of 14 months is arbi-
trary but long enough to ensure developers have to update their
software infrastructure.

3.1 Dataset
We build on our previous work and dataset [3] in which we man-
ually inspected Android apps to identify which APIs developers
use to call web services, and how they are used. We then took
advantage of this information to develop a tool to automatically
extract and reconstruct string variables and the assigned values,
the server URLs and their corresponding HTTP request headers
statically from the apps. Using this information, we analyzed the
reconstructed app server data and tried to establish connections

https://www.cvedetails.com/vulnerability-list/vendor_id-74/product_id-128/version_id-183021/PHP-PHP-5.5.23.html
https://www.cvedetails.com/vulnerability-list/vendor_id-74/product_id-128/version_id-183021/PHP-PHP-5.5.23.html

Security Smells Pervade Mobile App Servers ESEM ’21, October 11–15, 2021, Bari, Italy

0

100

200

300

400

500

600

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

2
.0

2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

2
.8

2
.9

3
.0

3
.1

3
.2

3
.3

3
.4

3
.5

3
.6

3
.7

3
.8

3
.9

4
.0

4
.1

4
.2

4
.3

4
.4

4
.5

4
.6

4
.7

4
.8

4
.9

5
.0

#
 a

p
p

s

star rating of apps

Figure 1: Star ratings for the Google Play apps in the dataset

to the corresponding servers from which they gathered additional
information for analysis, i.e., from HTTP response headers.

The apps from the dataset are randomly collected from those
that use Android’s internet permission. For closed-source apps we
mined the free apps on the Google Play store, and for the open-
source apps we relied on the F-Droid software repository.6 For each
app, we removed the duplicates, i.e., apps with the same package
identifier, but different version numbers, and kept only the most
recent version of the app. We also included the partial results of the
apps whose analysis was incomplete and could not finish in time,
ultimately resulting in an analysis result for 303 open-source, and
3 073 closed-source apps in the dataset.

The apps in the dataset come from 48 different Google Play
store categories. Most of them belong to EDUCATION (317 apps) and
TOOLS (292 apps), however, a majority (574) have a GAMES-related
tag. Interestingly, work-related apps are common in the dataset
(335 apps). The top five categories whose apps contain the largest
number of distinct URLs are EDUCATION (1 555 URLs), LIFESTYLE
(1 027 URLs), BUSINESS (995 URLs), ENTERTAINMENT (704 URLs),
and PRODUCTIVITY (619 URLs). As shown in Figure 1, almost 94%
of the apps received a star rating of 3.0 or higher. Surprisingly, apps
with a five star rating are more prevalent than apps in any other
category. The apps have an average star rating of 4.2 stars and a
median rating of 4.3 stars. Figure 2 presents the number of app
downloads and the timeliness of app updates. The y-axis denotes
the number of apps in each category. In contrast, the primary x-
axis with the bars indicates the app downloads, and the secondary
x-axis with the line indicates the time of the last app update. We
can see that most apps achieved between 100 and 1 000 downloads,
and barely any app was downloaded more than 1 million times.
Regarding the app updates, most of the apps received an update in
2018. Therefore, we see that most vendors update their apps only a

6https://f-droid.org

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

0

200

400

600

800

1000

0 1 5

1
0

5
0

1
0

0

5
0

0

1
k

5
k

1
0

k

5
0

k

1
0

0
k

5
0

0
k

1
m

5
m

>
=

 1
0

m

year of last app update

#
 a

p
p

s

downloads

downloads year of last app update

Figure 2: The popularity and developer support for the
Google Play apps in the dataset

few times a year, because we collected the statistics separately in
2019.

We then exercised every URL in the dataset and collected the
HTTP header and body of each server response. Eventually, we
processed 1 230 open-source URLs and 8 486 closed-source URLs.
We realized that many app servers do not leverage JSON, but in-
stead they use, for example, XML or plain HTTP communication.
Because we were interested whether there exist any differences
for data-centric app servers, we split the results into four differ-
ent groups. We report our findings based on closed-source and
open-source apps, and we also separate between JSON and non-
JSON app servers. We favored the JSON data format, because it was
much more commonly used for communication than the others.
Therefore, we partitioned the open-source URLs into 1 171 non-
JSON URLs and 59 JSON URLs. Accordingly, we partitioned the
closed-source URLs into 7 997 non-JSON URLs and 489 JSON URLs.

We were particularly interested in information such as operating
system identifiers, used software modules, and version numbers.
Hence, we crafted a number of search queries to detect occurrences
of such features. The relevant features, i.e., security smells, and the
results are part of the discussion in the subsequent subsections.

3.2 Prevalence of Security Smells
This subsection answers RQ1:What is the prevalence of the server
side security smells in web communication? In Figure 3 and Figure 4
we report on the relative prevalence of app server security smells in
apps for JSON and non-JSON web services, respectively. In Figure 3,
the vertical axis indicates the percentage of apps that suffer from a
specific app server security smell. In the following, we discuss the
findings from different perspectives, i.e., security smell categories,
software development model, and technology.

https://f-droid.org

ESEM ’21, October 11–15, 2021, Bari, Italy Pascal Gadient, Marc-Andrea Tarnutzer, Oscar Nierstrasz, and Mohammad Ghafari

0

10

20

30

40

50

60

70

80

90

100

Insecure

transport

channel

Disclosure

of source

code

Disclosure

of version

information

Lack of

access

control

Missing

HTTPS

redirects

Missing

HSTS

af
fe

ct
ed

 a
p
p

s
in

 %

open-source apps closed-source apps

Figure 3: Prevalence of app server smells in apps considering
JSON communication

0

10

20

30

40

50

60

70

80

90

100

Insecure

transport

channel

Disclosure

of source

code

Disclosure

of version

information

Lack of

access

control

Missing

HTTPS

redirects

Missing

HSTS

af
fe

ct
ed

 a
p
p

s
in

 %

open-source apps closed-source apps

Figure 4: Prevalence of app server smells in apps considering
non-JSON communication

3.2.1 By Security Smell Category. We report findings and provide
actionable advice to mitigate the issue for each security smell.

Insecure transport channel. Communication through an insecure
transport channel is prone to data leaks and manipulation, e.g., an
adversary could alter conversations. Hence, practitioners should
avoid HTTP and instead focus on the secure HTTPS. Third-party
libraries that require HTTP should be replaced with ones that sup-
port secure communication.With respect to URLs from open-source

0

20

40

60

80

100

120

140

160

180

200

ASP(.net) Php CherryPy Java NodeJS

#
 a

ff
ec

te
d

 U
R

L
s

closed-source app URLs (non-JSON APIs)

closed-source app URLs (JSON APIs)

open-source app URLs (non-JSON APIs)

Figure 5: Frameworks that caused code leaks

apps, we found that 582 non-JSON app servers (50%) did not use
protected communication. Fortunately, this is not the case for JSON
app servers: only six JSON app servers (10%) used plain text commu-
nication. We found worse results in closed-source communication.
Secure communication was usually unavailable, i.e., 5 639 non-JSON
app servers (71%) used HTTP. A total of 245 JSON app servers were
not protected (50%).

Disclosure of source code. Leaked code is valuable for adversaries
to plot their attacks, or for competitors to glimpse into the source
code and the architecture. Therefore, administrators should disable
verbose error messages on production environments and review the
default settings. We could identify stack traces from five different
server frameworks, i.e., ASP(.net), CherryPy, Java, NodeJS, and Php.
As we can see in Figure 5, URLs from closed-source applications
suffer the most from code leaks, i.e., we found 225 instances (2.7%)
where 182 instances can be assigned to the ASP(.net) framework.
Considering URLs used in open-source software, we only found six
instances (0.5%) primarily caused by ASP(.net) and CherryPy.

Disclosure of version information. The knowledge of what exact
software runs on a server is crucial for successful attacks. Conse-
quently, administrators should disable the self-promotion of ser-
vices and review their default settings. In Figure 6, we present the
found operating system leaks in app servers, where the y-axis de-
notes the number of leaks we found. We found 1 155 operating
system leaks in our dataset. Ubuntu and Debian are the most preva-
lent operating systems for JSON app servers, and CentOS is rather
used for non-JSON app servers. Customized Linux distributions,
i.e., cPanel and Amazon, are less commonly used among web appli-
cation developers. In Figure 7, we present the found service leaks in
app servers, where the y-axis denotes the number of leaks we found.
We found 8 707 service leaks in our dataset, including servers that
pack up to three leaks into a single HTTP response. Open-source
and closed-source software behave similarly, i.e., Apache and Nginx

Security Smells Pervade Mobile App Servers ESEM ’21, October 11–15, 2021, Bari, Italy

0

50

100

150

200

250

300

350

Ubuntu CentOS Debian Fedora cPanel Amazon others

#
 o

p
er

at
in

g
 s

y
st

em
 l

ea
k
s

closed-source app URLs (non-JSON APIs)

closed-source app URLs (JSON APIs)

open-source app URLs (non-JSON APIs)

open-source app URLs (JSON APIs)

Figure 6: Disclosure of operating system information

0

500

1000

1500

2000

2500

#
 s

o
ft

w
ar

e
le

ak
s

closed-source app URLs (non-JSON APIs)

closed-source app URLs (JSON APIs)

open-source app URLs (non-JSON APIs)

open-source app URLs (JSON APIs)

Figure 7: Disclosure of service information

are among the top three web application gateway servers used,
but Microsoft services, i.e., Microsoft IIS and ASP(.net), remain a
preferred choice for closed-source developers. Interestingly, the
web security provider Cloudflare is used not only for numerous
closed-source apps, but also for open-source apps, as we expect, due
to their free plans. Furthermore, the service leaks indicate that most
of the app servers do not use the Google Cloud API (ESF) or storage
services such as Amazon S3. In Figure 8, we present the found ver-
sion leaks in app servers, where the y-axis denotes the number of
leaks we found. We found 3 992 closed-source and 359 open-source

0

500

1000

1500

2000

2500

#
 v

er
si

o
n

 l
ea

k
s

closed-source app URLs (non-JSON APIs)

closed-source app URLs (JSON APIs)

open-source app URLs (non-JSON APIs)

open-source app URLs (JSON APIs)

Figure 8: Disclosure of version information

software leaks in our dataset. Most version leaks occur for both
closed-source and open-source app servers in the HTTP header field
Server, followed by X-Powered-By, and X-AspNet-Version. The
leaks in HTTP bodies, i.e., Apache, Nginx, Apache H3, OpenResty,
and CherryPy are less prevalent than those found in the headers.

Lack of access control. Unprotected information can be accessed
by everyone on the internet. Since apps usually provide experiences
tailored to each user, their servers should use well known authenti-
cation schemes to prevent leaks of personal data. We encountered
53 HTTP authentication errors for closed-source non-JSON app
servers, and 28 errors for open-source non-JSON app servers. We
did not find any such errors for open-source or closed-source JSON
app servers. However, there exist JSON web applications that re-
turned arbitrary authorization errors in the JSON format, e.g., using
OAuth instead of the HTTP mechanism.

Missing HTTPS redirects.Missing redirects leave flawed or out-
dated clients vulnerable to eavesdropping. Redirects should always
be set in place, if a server has ever been accessible through the
insecure HTTP protocol. Redirects can be chained, but they should
be used sparingly. As shown in Figure 9, we found server responses
with missing HTTPS redirects in the URLs from 4 961 closed-source
apps and from 387 open-source apps. Fortunately, we did not find
any HTTPS to HTTP connection downgrades in JSON app servers,
but we found 48 for closed-source non-JSON app servers and 15
in open-source non-JSON app servers. Concerning forwarded re-
quests, closed-source app servers forwarded the requests on aver-
age 1.3 times, open-source non-JSON app servers 1.5 times, and
open-source JSON app servers once. We found two request loops,
i.e., infinite redirects from a destination to itself, in each open-
source and closed-source app servers. Without the request loops,
open-source app servers redirected a request up to three times, and
closed-source app servers up to seven times.

Missing HSTS. App servers without proper support for HSTS

ESEM ’21, October 11–15, 2021, Bari, Italy Pascal Gadient, Marc-Andrea Tarnutzer, Oscar Nierstrasz, and Mohammad Ghafari

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

missing HTTPS redirects connection downgrades

#
 o

cc
u

rr
en

ce
s

closed-source app URLs (non-JSON APIs)
closed-source app URLs (JSON APIs)
open-source app URLs (non-JSON APIs)
open-source app URLs (JSON APIs)

Figure 9: Missing HTTPS redirects in app servers

0

1000

2000

3000

4000

5000

6000

7000

8000

H
S

T
S

u
n

av
ai

la
b

le

H
S

T
S

en
ab

le
d

m
ax

-a
g
e

<
 1

 y
ea

r

m
ax

-a
g
e

>
=

 1
 y

ea
r

m
ax

-a
g
e

>
=

 2
 y

ea
r

su
b

d
o

m
ai

n
s

in
cl

u
d

ed

p
re

lo
ad

p
ro

v
id

ed

#
 o

cc
u
rr

en
ce

s

closed-source app URLs (non-JSON APIs)

closed-source app URLs (JSON APIs)

open-source app URLs (non-JSON APIs)

open-source app URLs (JSON APIs)

Figure 10: Missing HSTS protection for app servers

expose users to eavesdropping due to possible HTTPS to HTTP
connection downgrades. Therefore, servers should deploy this fea-
ture to every subdomain and request the client side caching of
this setting for at least one year. Ultimately, the protected URLs
should be added to the publicly available HSTS preload list that is in-
cluded in all major browsers. As shown in Figure 10, we found 7 494
closed-source app servers and 833 open-source app servers that
miss HSTS HTTP headers. Only a minority of the connections are
protected, that is 397 (34%) of all open-source app servers and 992
(12%) of all closed-source app servers. Contrary to recommended

practices,7 432 app servers use max-age values shorter than one
year, and 785 do not use the preload feature. In other words, 31% of
the app servers that support HSTS have not sufficiently configured
the protection for subdomains, and 57% lack the preload feature
that enforces security already for the first request.

3.2.2 By Software Development Model. We report findings for two
different software development models, i.e., the open-source and
the closed-source software development model. We can clearly see
in Figure 3 and Figure 4 that closed-source apps generally suffer
from more security smells than open-source apps. Especially Lack
of access control and Missing HSTS appear in the communication of
almost all closed-source apps. Moreover, the three smells Insecure
transport channel, Missing HTTPS redirects and Disclosure of version
information are less frequent, but exist still in more than 52% of
all closed-source apps and in more than 39% of all open-source
apps. Interestingly, Disclosure of source code only emerges in closed-
source app communication.

3.2.3 By Technology. We report our findings for two different tech-
nologies, i.e., the JSON and non-JSON-based web communication.
According to Figure 3, access control and unprotected HTTP com-
munication constitute major threats for apps that use JSON web
services. However, apps that do not rely on JSON communication
are apparently more robust against security smells: such apps are
on average about 19% less affected by them. Code leaks primarily
occurred in JSON communication. For instance, Disclosure of source
code only exists in less than 1% of the apps that use non-JSON
web services, whereas it is more than 8% for the apps that use reg-
ular JSON web services. We only found code leaks in JSON app
servers that use the Php or NodeJS framework, but in contrast, we
found code leaks in non-JSON servers from almost every major
framework.

3.2.4 Summary. App server security smells pose a severe threat.
Most security smells exist in more than 25% of all apps, regardless
whether the app is open-source or closed-source, and whether it
uses a JSON or non-JSON app server. Particularly alarming is the
finding that apps using JSON app servers suffer 1.5 times more
from app server security smells than non-JSON apps, and even
worse, closed-source applications suffer 1.6 times more compared
to open-source applications.

More than 50% of the servers accessed by mobile apps use un-
protected HTTP communication. Since smart devices are becoming
rather personal assistants, they carry much sensitive information
that needs adequate protection.

Misconfigured app servers cause code leaks. Although only little
code is revealed at a time, an attacker can replay requests and alter
parameters to reconstruct the architecture and logic behind the
service. Such information eases the search for bugs in the code.

The leaked information is devastating. Although intended for
publicity purposes, the currently leaked data reveals very often
not only the operating system running on the server, but also the
installed services and their version number. Such information can
be entered into vulnerability databases to find suitable security
issues that could be exploited.

7Google Chrome HSTS preload list submission form, https://hstspreload.org/

https://hstspreload.org/

Security Smells Pervade Mobile App Servers ESEM ’21, October 11–15, 2021, Bari, Italy

Based on our results, access control for JSON app servers is
currently not implemented with HTTP status codes, but instead
with arbitrary replies. A standardized approach would help in cre-
ating more service independent apps, and at the same time default
authorization templates could be used from back-end developers.

HTTPS redirects are usually inexistent for HTTP-based app
servers. Even worse, some downgrade a HTTPS connection to an
insecure HTTP connection. Moreover, redirect loops exist occasion-
ally, and few redirect implementations use more than five redirects
which is not recommended by RFC2068.8

Finally, HSTS is only set up for a minority of app servers, and
for those it is common to have weak configurations.

In conclusion, we see that security smells are very prevalent in
app servers. In fact, every app references on average more than
three servers that suffer from at least one of these smells.

3.3 Maintenance of Server Infrastructure
In order to answer RQ2:What is the relationship between security
smells and app server maintenance? , we investigate maintenance
operations performed on the servers used by mobile apps. In par-
ticular, we are interested whether app server administrators have
updated their infrastructure within the time period of 14 months,
and if we see a correlation between the number of identified security
smells and the quality of server maintenance. The selected dura-
tion of more than a year covers multiple bug fixes including major
releases of common server software, e.g., Apache, Microsoft IIS, or
PHP. We accessed the URLs by sending an HTTP GET request, and
stored their HTTP header responses twice, i.e., once in June-2019
and once in August-2020. We can only compare version numbers
between the two datasets if we received some version information
in the HTTP Server header. As a result, the data in this section
are based on fewer responses, i.e., from 309 open-source (JSON and
non-JSON) app server URLs (25%) and 3 006 closed-source (JSON
and non-JSON) app server URLs (35%).

During our manual analysis of the first 100 entries, we encoun-
tered eight different scenarios: i) no updates have been applied, i.e.,
the software name and version remains identical, ii) the version has
been downgraded, i.e., the software name remains identical, but
the version number decreased, iii) the version has been upgraded,
i.e., the software name remains, but the version number increased,
iv) the version leak has been closed, i.e., the software name remains,
but the version number is not anymore available, v) the environ-
ment has changed, i.e., the software has been replaced and it might
use a different versioning scheme, vi) Cloudflare protection has
been enabled, i.e., the server has moved behind a Cloudflare pro-
tection gateway and does not anymore leak version information,
vii) server spawned, i.e., we received no software name in the first
run, but we received one in the second run, viii) server shutdown,
i.e., we received a software name in the first run, but not anymore
in the second run. We could not gather security-related changes for
1 254 app server URLs for several reasons: i) new server instances
have been spawned without prior knowledge of software configura-
tions, ii) existing server instances have been shutdown without the
possibility to find any changes, or iii) the environment has changed
using a different versioning scheme.

8RFC2068,HTTP/1.1,https://tools.ietf.org/html/rfc2068#section-10.3

0

200

400

600

800

1000

1200

1400

#
 o

cc
u
rr

en
ce

s

closed-source app URLs (non-JSON APIs)
closed-source app URLs (JSON APIs)
open-source app URLs (non-JSON APIs)
open-source app URLs (JSON APIs)

Figure 11: Configuration changes of app servers after 14
months

3.3.1 Configuration Changes. In Figure 11, we show the results.
From the app servers that leaked versioning information, by far
most closed-source non-JSON app servers did not undergo any
changes to the server software. Closed-source JSON app server
infrastructure seems to be updated more frequently, however the
majority still do not provide any updates. The same is true for
open-source software although less evident. Version downgrades
occurred sparsely, i.e., four times, and not for JSON app servers.
Only a fraction of the leaking servers, i.e., 103 (4%), has been config-
ured to mitigate the leaks. Interestingly, environment changes occur
more frequently for open-source non-JSON app servers than no up-
dates at all. In other words, open-source developers seem to replace
app servers rather then updating them. Moreover, Cloudflare sup-
port has been enabled for 104 app servers, i.e., for 45 open-source
URLs and for 59 closed-source URLs. Finally, more servers are shut
down than spawned.

3.3.2 Correlation of Security Smells. Figure 12 shows the correla-
tion between app server security smells and administrative con-
figuration changes. For this figure, we consolidated all app server
categories, i.e., open-source, closed-source, JSON, non-JSON due to
the limited number of elements in some of them. The x-axis denotes
the number of security smells from which a particular app server
suffers, and the y-axis indicates how many such app servers exist
in each category. Based on the versioning information from 2 061
URLs, we can see that app servers suffering from three or more
smells are usually not well maintained, i.e., they are set up once
and then left alone. Although security improvements, i.e., version
upgrades, the removal of versioning information, and the migration
to Cloudflare appear more frequently in instances that suffer from
more than one smell, they only affect a minority. Security down-
grades, i.e., the change to a more dated version, appear only in app

RFC2068, HTTP/1.1, https://tools.ietf.org/html/rfc2068#section-10.3

ESEM ’21, October 11–15, 2021, Bari, Italy Pascal Gadient, Marc-Andrea Tarnutzer, Oscar Nierstrasz, and Mohammad Ghafari

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6

#
 U

R
L

s

security smells per app server URL

security improvement # no change # security reduction

Figure 12: Correlation between app server security smells
and configuration changes

servers that massively suffer from security smells, i.e., from three
or more smells.

3.3.3 Summary. According to our findings, app servers are usually
set up once and never touched again. This paradigm introduces
severe security risks due to outdated software running on publicly
accessible interfaces. Hence, sensitive user data could be exfiltrated
when adversaries apply suitable exploits to such systems. Luckily,
version upgrades are muchmore common than version downgrades,
although they cannot at all compensate for the lack of change.
We expect that downgrades were performed to circumvent new
bugs or compatibility issues, because all downgrades considered
only minor release changes, e.g., from nginx release 1.14.1 to 1.12.1.
Some developers shift to Cloudflare to protect their infrastructure
especially for non-JSON app servers.

We conclude that app server security smells seem to be a good
indicator for poor server maintenance. In fact, the more smells
an app server has the more likely it is that server maintenance
processes are broken.

4 THREATS TO VALIDITY
Completeness. A major threat to validity is the completeness of the
used dataset built from Android apps. Although state of the art
decompilation tools have been used, only about 37% of all closed-
source Android apps could be successfully decompiled for the sub-
sequent analysis. Of these decompiled apps, the analysis for 22%
could not finish in time and might have led to incomplete results.
Moreover, the analysis tool skipped the evaluation of bundled build
scripts and XML resources that could have pointers to additional
app servers. This threat cannot be mitigated entirely, however the
rather large and diverse set of included apps ensures that the results
can be generalized.

Accuracy. Another important threat represents the accuracy of
the used dataset. According to the authors, the tool that has been
used to build the dataset achieves a precision of 46% and a recall of
80%. However, this performance is the result of a manual analysis of
decompiled code performed by the authors which included only ten
open-source and ten closed-source apps that comprised 22 web API
URLs. In particular, it reported several URLs unrelated to web APIs
but to static HTML pages, and the tool occasionally reconstructed
invalid requests. In this work, we do not depend on accurate re-
quests, i.e., the investigated response headers are identical even
for malformed requests. In fact, most of the reconstructed requests
contained placeholders that we could leverage to see whether the
app servers leak sensitive information in case of errors.

Data collection. The collected data might contain duplicates or
suffer from temporal issues. Some requests we generated from the
URL might have reached identical servers which ultimately lead
to duplicated connection information in the result set. Another
problem is that of server side outages or configuration changes that
temporarily cause unexpected or erroneous results. To mitigate
these threats, we filtered the URL list for duplicates, and we used
rather long timeouts and a high retry count when we accessed the
servers.

Selection bias. The data used for the investigation of server main-
tenance represents only a subset of the original dataset. This is an
immediate result of the many servers that do not leak any data.
Even more, for the qualitative analysis we require two responses,
each containing versioning information. In order to reduce the im-
pact of these threats, we manually reviewed the first 100 server
responses to ensure that we do not miss any version information.
We then designed the value extraction process for the individual
version numbers based on the results of this initial exploration.

Recency. The data set contains apps that have been downloaded
in 2018, and the corresponding metadata has been collected in
2019. This might change the results due to improved development
processes and tools. However, recent works still identified a lack of
security in web communication [1, 6].

Security risks. The risks associated with the security smells are
not necessarily severe. We do not know what and how much data
the web services hoard, and many of the risks directly correlate
with the confidentiality of the data. Since we cannot easily obtain
this information, we follow a defensive strategy, i.e., we assume
that every server might host at least some sensitive data.

Construct validity. There is a threat to construct validity through
potential bias in our expectancy.

5 RELATEDWORK
Related work primarily pertains to app analyses that have been sum-
marized by the concept of security code smells, data transmissions
with a particular interest in web communication, and public service
audits that improve the app server security. We present relevant
literature in each of these three research areas in the remainder of
this section.

5.1 Security Code Smells
The research about security code smells investigates the metamor-
phosis from unfavorable code that could become a security threat.

Security Smells Pervade Mobile App Servers ESEM ’21, October 11–15, 2021, Bari, Italy

Ghafari et al. collected 46 000 closed-source apps from the offi-
cial Android market and investigated the nature and prevalence
of common mistakes developers suffered. For that purpose, they
introduced the notion of a security code smell and used it to identify
28 different security smells in five different categories [4]. They
found that XSS-like Code Injection, Dynamic Code Loading, and
Custom Scheme Channel are the most prevalent smells, many of
them leveraging inter-component communication features of the
Android operating system. As a result, Gadient et al. started to
study the prevalence of Inter-Component Communication (ICC)-
related security smells in more than 700 open-source apps, and
found that security code smells that involve web communication
prevail against others, and that such issues are often introduced
with new feature updates of apps [2]. Moreover, the manual in-
vestigation of 100 apps demonstrated the usefulness of their tool,
i.e., about 43% of the reported smells were in fact vulnerabilities.
Since many of the newly discovered smells relied on responses from
web applications, they consequently began to investigate the web
API communication of mobile apps [3]. The preliminary results
of their static analysis tool, which has been used to mine security
code smells were devastating: In 3 376 apps, they encountered cre-
dential leaks, excessive use of embedded languages such as SQL
and JavaScript, insecure web communication including source-code
and version information leaks to name a few. As a matter of fact,
they found that unprotected web communication is seven times
more prevalent in closed-source apps compared to open-source
apps, and that embedded code is used in web communication in
more than 500 different apps. Our work continues this research, i.e.,
we investigate the server side prevalence of the reported security
smells.

5.2 Web Communication
Web communication in apps is usually initiated by the client, i.e.,
the app that sends a request to a specific server. Therefore, apps
can reveal interesting features used to establish such a connection.
For example, Zuo et al. analyzed 5 000 top-ranked apps in Google
Play and identified 297 780 URLs that they fed to the VirusTotal
URL screening service [16]. The service identified 8 634 harmful
URLs of which the majority related to malware (43%), followed by
malicious sites (37%), and phishing (23%). Mendoza et al. investi-
gated the input validation constraints imposed by apps on outgoing
requests to web API services from 10 000 popular free apps from the
Google Play Store of which 46% suffered from inconsistencies that
could be exploited by attackers [9]. Such inconsistencies allowed
them to access app-related databases through various injection
attacks, e.g., they could misuse an app’s email address field for an
SQL injection attack, because its value did not receive additional
server side validation. We found many similarities in the results
of our work: advertisement services were omnipresent and proper
authentication measures were barely implemented. For instance,
access to personal information was protected by the sole use of a
single attribute, e.g., an email address or hardware-based identifier.

5.3 App Server Security
Finally, app server security focuses on server side problems, config-
uration or implementation. Zuo et al. found that 15 098 app servers

are subject to data leakage attacks [17]. In particular, they suffer
either from a broken key management, i.e., the developers became
confused about root and app keys, or from a broken permission
configuration, i.e., developers were overwhelmed when they had
to choose appropriate permissions for their data. They assume that
this is a direct consequence of the utterly complex interfaces to
configure such services designed for developers. That is, Google
even provides a language for developers to specify the desired
user permissions. With respect to web servers, Lavrenovs et al.
worked through responses of the top one million Alexa websites,
and collected security-related information such as HSTS support,
protection against cross site scripting, and other HTTP headers
that might impose a security risk [7]. They found that website
popularity is the major driver for security measures. In fact, the
implementation rates compared against the Alexa ranking reveal
an exponential decline pattern, i.e., all of their analysed security
headers started to be much more prevalent in the top 50 000 web-
sites, and that ratio steeply increased towards the top websites.
Moreover, Mendoza et al. found discrepancies between the use of
such features in the mobile and desktop version of websites that
enable various injection and spoofing attacks, although the affected
websites remain in the realm of a few percent [8]. Although we can
confirm these results, according to our study a lack of security is
much more prevalent in apps that use JSON app servers, especially
in closed-source apps that are 11% more susceptible to such issues
than their open-source counterparts.

6 CONCLUSION
We analyzed the prevalence of six security smells in app servers
and investigated the consequence of these smells from a security
perspective. We used an existing dataset that includes 9 714 distinct
URLs that were used in 3 376 Android mobile apps. We exercised
the URLs twice over 14 months, and stored the HTTP headers and
bodies. We realized that the top three smells exist in more than
69% of all tested apps, and that unprotected communication and
server misconfigurations are very common. Particularly alarming is
the finding that apps using JSON app servers suffer 1.5 times more
from app server security smells than non-JSON apps, and even
worse, closed-source applications suffer 1.6 times more compared
to open-source applications. Moreover, source-code and version
leaks, or the lack of update policies foster future attacks against
these data centric systems. We found that app server security smells
are omnipresent and they indicate poor app server maintenance.

ACKNOWLEDGMENTS
We gratefully acknowledge the financial support of the Swiss Na-
tional Science Foundation for the project “Agile SoftwareAssistance”
(SNSF project No. 200020-181973, Feb. 1, 2019 - April 30, 2022).

REFERENCES
[1] Eman SalemAlashwali, Pawel Szalachowski, and AndrewMartin. 2020. Exploring

HTTPS security inconsistencies: A cross-regional perspective. Computers &
Security 97 (2020), 101975.

[2] Pascal Gadient, Mohammad Ghafari, Patrick Frischknecht, and Oscar Nierstrasz.
2018. Security Code Smells in Android ICC. Empirical Software Engineering
Special Issue (2018). https://doi.org/10.1007/s10664-018-9673-y

[3] Pascal Gadient, Mohammad Ghafari, Marc-Andrea Tarnutzer, and Oscar Nier-
strasz. 2020. Web APIs in Android through the Lens of Security. In 2020 IEEE

https://doi.org/10.1007/s10664-018-9673-y

ESEM ’21, October 11–15, 2021, Bari, Italy Pascal Gadient, Marc-Andrea Tarnutzer, Oscar Nierstrasz, and Mohammad Ghafari

27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 13–22.

[4] M. Ghafari, P. Gadient, and O. Nierstrasz. 2017. Security Smells in Android. In
2017 IEEE 17th International Working Conference on Source Code Analysis and
Manipulation (SCAM). 121–130. https://doi.org/10.1109/SCAM.2017.24

[5] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information flow analysis of Android applications in
DroidSafe.. In NDSS, Vol. 15. 110.

[6] Qinwen Hu, Muhammad Rizwan Asghar, and Nevil Brownlee. 2021. A large-scale
analysis of HTTPS deployments: Challenges, solutions, and recommendations.
Journal of Computer Security Preprint (2021), 1–26.

[7] Arturs Lavrenovs and F. Jesús RubioMelón. 2018. HTTP security headers analysis
of top one million websites. In 2018 10th International Conference on Cyber Conflict
(CyCon). 345–370. https://doi.org/10.23919/CYCON.2018.8405025

[8] Abner Mendoza, Phakpoom Chinprutthiwong, and Guofei Gu. 2018. Uncovering
HTTP Header Inconsistencies and the Impact on Desktop/Mobile Websites. In
Proceedings of the 2018 World Wide Web Conference (Lyon, France) (WWW ’18).
International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, CHE, 247–256. https://doi.org/10.1145/3178876.3186091

[9] AbnerMendoza and Guofei Gu. 2018. Mobile application web API reconnaissance:
Web-to-mobile inconsistencies & vulnerabilities. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 756–769.

[10] Andrea Possemato and Yanick Fratantonio. 2020. Towards HTTPS Everywhere
on Android: We Are Not There Yet. In 29th USENIX Security Symposium (USENIX
Security 20). 343–360.

[11] Akond Rahman, Chris Parnin, and LaurieWilliams. 2019. The Seven Sins: Security
Smells in Infrastructure As Code Scripts. In Proceedings of the 41st International

Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE
Press, Piscataway, NJ, USA, 164–175. https://doi.org/10.1109/ICSE.2019.00033

[12] Marianna Rapoport, Philippe Suter, ErikWittern, Ondřej Lhótak, and Julian Dolby.
2017. Who You Gonna Call?: Analyzing Web Requests in Android Applications.
In Proceedings of the 14th International Conference on Mining Software Repositories
(Buenos Aires, Argentina) (MSR ’17). IEEE Press, Piscataway, NJ, USA, 80–90.
https://doi.org/10.1109/MSR.2017.11

[13] Longji Tang, Liubo Ouyang, and Wei-Tek Tsai. 2015. Multi-factor web API
security for securing Mobile Cloud. In 2015 12th International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD). 2163–2168. https://doi.org/10.
1109/FSKD.2015.7382287

[14] Erik Wittern, Annie T.T. Ying, Yunhui Zheng, Julian Dolby, and Jim A. Laredo.
2017. Statically Checking Web API Requests in JavaScript. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). 244–254. https:
//doi.org/10.1109/ICSE.2017.30

[15] Yajin Zhou, Lei Wu, Zhi Wang, and Xuxian Jiang. 2015. Harvesting developer
credentials in Android apps. In WISEC. 1–12.

[16] Chaoshun Zuo and Zhiqiang Lin. 2017. SMARTGEN: Exposing Server URLs
of Mobile Apps With Selective Symbolic Execution. In Proceedings of the 26th
International Conference on World Wide Web (Perth, Australia) (WWW ’17). Inter-
national WorldWideWeb Conferences Steering Committee, Republic and Canton
of Geneva, Switzerland, 867–876. https://doi.org/10.1145/3038912.3052609

[17] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. 2019. Why Does Your Data
Leak? Uncovering the Data Leakage in Cloud from Mobile Apps. In 2019 IEEE
Symposium on Security and Privacy (SP). 1296–1310. https://doi.org/10.1109/SP.
2019.00009

https://doi.org/10.1109/SCAM.2017.24
https://doi.org/10.23919/CYCON.2018.8405025
https://doi.org/10.1145/3178876.3186091
https://doi.org/10.1109/ICSE.2019.00033
https://doi.org/10.1109/MSR.2017.11
https://doi.org/10.1109/FSKD.2015.7382287
https://doi.org/10.1109/FSKD.2015.7382287
https://doi.org/10.1109/ICSE.2017.30
https://doi.org/10.1109/ICSE.2017.30
https://doi.org/10.1145/3038912.3052609
https://doi.org/10.1109/SP.2019.00009
https://doi.org/10.1109/SP.2019.00009

	Abstract
	1 Introduction
	2 Security Smells in App Servers
	2.1 Insecure transport channel
	2.2 Disclosure of source code
	2.3 Disclosure of version information
	2.4 Lack of access control
	2.5 Missing HTTPS redirects
	2.6 Missing HSTS

	3 Empirical Study
	3.1 Dataset
	3.2 Prevalence of Security Smells
	3.2.1 By Security Smell Category
	3.2.2 By Software Development Model
	3.2.3 By Technology
	3.2.4 Summary

	3.3 Maintenance of Server Infrastructure
	3.3.1 Configuration Changes
	3.3.2 Correlation of Security Smells
	3.3.3 Summary

	4 Threats to Validity
	5 Related Work
	5.1 Security Code Smells
	5.2 Web Communication
	5.3 App Server Security

	6 Conclusion
	Acknowledgments
	References

