
ar
X

iv
:2

10
7.

07
48

2v
1

 [
cs

.S
E

]
 1

5
Ju

l 2
02

1

Characteristics and Challenges of Low-Code Development: The
Practitioners’ Perspective

Yajing Luo1, Peng Liang1∗, Chong Wang1, Mojtaba Shahin2, Jing Zhan3
1School of Computer Science, Wuhan University, Wuhan, China

2Faculty of Information Technology, Monash University, Melbourne, Australia
3Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, United States

{luoyajing, liangp, cwang}@whu.edu.cn, mojtaba.shahin@monash.edu, jingz15@illinois.edu

ABSTRACT

Background: In recent years, Low-code development (LCD) is
growing rapidly, and Gartner and Forrester have predicted that the
use of LCD is very promising. Giant companies, such as Microsoft,
Mendix, and Outsystems have also launched their LCD platforms.
Aim: In this work, we explored two popular online developer
communities, Stack Overflow (SO) and Reddit, to provide insights
on the characteristics and challenges of LCD from a practitioners’
perspective. Method: We used two LCD related terms to search
the relevant posts in SO and extracted 73 posts. Meanwhile, we
explored three LCD related subreddits from Reddit and collected
228 posts. We extracted data from these posts and applied the Con-
stant Comparisonmethod to analyze the descriptions, benefits, and
limitations and challenges of LCD. For platforms and programming
languages used in LCD, implementation units in LCD, supporting
technologies of LCD, types of applications developed by LCD, and
domains that use LCD, we used descriptive statistics to analyze
and present the results. Results: Our findings show that: (1) LCD
may provide a graphical user interface for users to drag and drop
with little or even no code; (2) the equipment of out-of-the-box
units (e.g., APIs and components) in LCD platforms makes them
easy to learn and use as well as speeds up the development; (3)
LCD is particularly favored in the domains that have the need for
automated processes and workflows; and (4) practitioners have
conflicting views on the advantages and disadvantages of LCD.
Conclusions:Our findings suggest that researchers should clearly
define the terms when they refer to LCD, and developers should
consider whether the characteristics of LCD are appropriate for
their projects.

CCS CONCEPTS

• Software and its engineering → Software development

techniques.

KEYWORDS

Low-Code Development, Stack Overflow, Reddit, Empirical Study

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACMmust be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ESEM ’21, October 11–15, 2021, Bari, Italy

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8665-4/21/10. . . $15.00
https://doi.org/10.1145/3475716.3475782

ACM Reference Format:

Yajing Luo1 , Peng Liang1∗ , Chong Wang1 , Mojtaba Shahin2, Jing Zhan3.
2021. Characteristics and Challenges of Low-Code Development: The Prac-
titioners’ Perspective. In ACM / IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM) (ESEM ’21), October 11–15,

2021, Bari, Italy.ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3475716.3475782

1 INTRODUCTION

With the growth of the Internet and the wave of digitalization,
there is a growing need for enterprises to make quick and resilient
responses to changing market requirements [15]. According to the
research company Gartner, by 2021, the demand for information
systems will increase five times faster than the ability to provide
them by IT departments, because number of employees is not
growing at a sufficient pace [18]. Furthermore, recruiting software
engineers has become increasingly difficult as demand is high and
supply is low [17]. In order to solve the problems above and adapt
to this rapidly evolving world, companies are looking for quicker
and cheaper ways to meet their software needs [7]. In response,
low-code development (LCD) platforms have emerged with the
promise that organizations can hire business professionals with
no coding experience to build applications [7].

The term “low-code” was first introduced to the public by
Forrester Research in 2014 [13], which states that firms prefer to
choose low-code alternatives for fast, continuous, and test-and-
learn delivery. The survey performed by Forrester [12] also shows
that LCD platforms can accelerate development by 5 to 10 times.
Moreover, these platforms also offer enterprises amore economical
way to fulfil the market and/or enterprises internal requirements
[15]. Although LCD is booming in industry, there is no clear
understanding of LCD as well as its practices. To this end, we
plan to explore the characteristics and challenges of LCD from the
perspective of practitioners.

To get practitioners’ opinions, we have looked into online de-
veloper communities. As one of the online software development
communities, Stack Overflow has been the most popular and
widely used questions and answers (Q&A) platform for developers
to ask and answer questions since 2008 [9]. There are millions
of software practitioners at SO who exchange knowledge, share
experience, discuss problems they encountered during software
development activities. Besides, Reddit is a network of subreddits
based on people’s interests, andmembers can submit content to the
site, such as links, text posts, images, and videos, which are then
voted up or down by other members. Furthermore, the posts are
organized by subject into user-created boards called “subreddits”,
which cover a variety of topics including software development.

http://arxiv.org/abs/2107.07482v1
https://doi.org/10.1145/3475716.3475782
https://doi.org/10.1145/3475716.3475782

ESEM ’21, October 11–15, 2021, Bari, Italy Y. Luo et al.

In short, we collected data from both SO and Reddit, then we
extracted the data items from the selected posts and analyzed them
using the Constant Comparison method and descriptive statistic
method.

The contributions of this work: (1) we explored how prac-
titioners describe LCD based on their understanding; (2) we cat-
egorized and analyzed the features of LCD, including platforms,
programming languages, implementation units, supporting tech-
nologies, application types, and domains of LCD; and (3) we also
collected developers’ views on the strengths and weaknesses of
LCD.

The paper is structured as follows: Related work is presented in
Section 2. Research questions and study design are then explained
in Section 3. The study results are provided in Section 4, followed
by a discussion of the results in Section 5. The potential threats
to the validity of the results are covered in Section 6, before
concluding this work with future work directions in Section 7.

2 RELATED WORK

2.1 Low-Code Development

Several studies have focused on the topic of LCD. Waszkowski
[18] described the use of Aurea BPM low-code platform for au-
tomating business processes in manufacturing. Sahay et al. [14]
presented a technical survey of different LCD platforms based on
a proposed conceptual comparative framework. Alamin et al. [2]
also conducted an empirical study of developer discussions on
the challenges of LCD, but the research questions between our
study and Alamin et al.’s work are totally different. Compared to
Alamin et al.’s research questions [2] that focus on which LCD
related topics are discussed in SO, how are these topics distributed
across the LCD life cycle stages, and what LCD topics are the most
difficult to answer, our study paid more attention to providing
insights on the descriptions and characteristics of LCD, as well as
the pros and cons brought by using LCD. Also, instead of obtaining
data from one data source SO in Alamin et al.’s work [2], we
collected the data from both SO and Reddit to improve the external
validity of the study results. Besides, Alamin et al. [2] used LCD
platform names as tags (e.g., “appmaker” for Google Appmaker)
to conduct a tag-based search in SO and collect the search results
as their dataset. But we only conducted a keyword-based search in
SO, as we thought that the posts collectedwith these LCD platform
tags may be biased to specific LCD platforms which will threaten
the generalizability of the results.

To the best of our knowledge, there are no studies that explore
the understanding and description of LCD in practice. In our study,
we came up with nine research questions that intend to provide a
comprehensive overview of the characteristics of LCD, including
its descriptions, platforms, programming languages, implementa-
tion units, supporting technologies, application types, domains,
and benefits, as well as its challenges.

2.2 Using Online Developer Communities in
Software Engineering

In recent years, millions of software developers are active in online
developer communities to solve problems and share opinions,

turning out to be great sources for researchers to study specific
topics in software engineering.

For example, Stack Overflow has become the most popular
professional Q&A website to gain answers and opinions from
researchers and practitioners. Abdellatif et al. [1] investigated the
chatbot-related posts on Stack Overflow to pinpoint the major
topics surrounding the discussions on the chatbot development.
Chatterjee et al. [5] focused on Stack Overflow from the per-
spective of an individual seeking help with programming errors.
Cummaudo et al. [6] used Stack Overflow to mine indications
of the frustrations that developers appear to face when using
computer vision services, while Zahedi et al. [21] explored various
aspects of continuous software engineering by mining related
posts from Stack Overflow. In addition, other popular online de-
veloper communities are also used for researches in software
engineering. For instance, Li et al. [10] selected Reddit as one of
the data sources for collecting discussions related to architecture
erosion to look into the notion, causes, consequences, detection,
and control of architecture erosion.

Given SO and Reddit contain a big volume of data based on the
Q&Amechanism that captures practitioners’ opinions, we decided
to use these two online developer communities as our data sources
to conduct the research on LCD.

3 METHODOLOGY

We set the goal of this study based on the Goal-Question-Metric
approach [3]: analyze the perception of LCD in industry for the

purpose of characterizing with respect to various aspects of
LCD from the point of view of practitioners in the context of

posts concerned with LCD from SO and Reddit. In the following
subsections, we explain the Research Questions (RQs), their ratio-
nale, and the research process (see Figure 1) used to answer the
RQs.

3.1 Research Questions

RQ1: What is the understanding of LCD?

Rationale: Practitioners have different understandings about LCD
according to their experience and expectations, and also use dif-
ferent synonyms to refer to LCD in practices, such as “no-code
development” and “zero-code development”. This RQ aims to get
an understanding of LCD from practitioners.
RQ2: What platforms are used in LCD?

Rationale: LCD platforms provide an integrated development en-
vironment dedicated to LCD. There exist many platforms which
offer various features to LCD. This RQ intends to identify popular
LCD platforms along with their features.
RQ3: What programming languages are used in LCD?

Rationale: LCD helps practitioners write less code while the de-
velopers sometimes still need to do some hand-coding. This RQ
explores the programming languages that have been used for
various purposes (e.g., customizing features) in LCD.
RQ4: What are the major implementation units in LCD?

Rationale: This RQ intends to understand how low the code is
in LCD. In other words, what high level of implementation units

Characteristics and Challenges of Low-Code Development: The Practitioners’ Perspective ESEM ’21, October 11–15, 2021, Bari, Italy

Figure 1: Overview of the research process

(e.g., component-based unit and framework-based unit) the devel-
opment is based on.
RQ5: What are the supporting technologies used in LCD?

Rationale: To provide convenience with minimum hand-coding
and other advantages, LCD needs to employ certain technologies
running underneath. This RQ aims to identify the supporting
technologies used in LCD.
RQ6: What types of applications are developed by LCD?

Rationale:Many LCD platforms have been available on the market
and used in industry. These platforms might be appropriate for
developing different types of applications (e.g., mobile applications,
desktop applications, and web applications). This RQ intends to get
an overview of the application types that are developed by LCD.
RQ7: What are the domains that use LCD?

Rationale: LCD has been used to develop applications from various
domains (e.g., finance, telecommunication). This RQ intends to in-
vestigate the domains of these applications, which are appropriate
to be developed using LCD.
RQ8: What are the benefits of LCD?

Rationale: LCD as an emerging software development paradigm
can lead to many benefits (e.g., decreased time and cost). We ask
this question with the purpose of collecting the benefits brought
to the system development by applying LCD.
RQ9: What are the limitations and challenges of LCD?

Rationale: LCD is still in its early stage of practices with many
limitations, and it also raises problems that are not encountered
during traditional development. The answer to this RQ will help
practitioners make informed decisions when deciding whether or
not to employ LCD in their projects.

3.2 Data Collection and Filtering

To answer the RQs, we need to collect the knowledge, opinions,
and experience from practitioners about LCD. As discussed in
Section 2.2, SO and Reddit contain a large amount of Q&A-based
data that captures the above aspects from practitioners, we decided
to choose the two websites as the data sources for our study and
conducted the data collection from January 2021 to April 2021.

3.2.1 Search and collect candidate posts. We started by searching
the existing literature about “low-code” on the Internet. We identi-
fied the synonyms (i.e., “low-code”, “zero-code”, and “no-code”) as
search terms.

For SO, during the pilot search process, we found that some
practitioners use LCD platform names as tags in SO, e.g., “outsys-
tems” for the OutSystems platform1. However, we thought that
the introduction of LCD platform names as search terms is biased
to specific LCD platforms and thus threatens the search results.
Therefore, we decided not to include these LCD platform names in
the search terms.

During the keyword-based search process at SO, as the effec-
tiveness of a keyword-based mining approach largely depends
on having a proper set of keywords, we applied the systematic
approach conducted by Bosu et al. [4] to identity the keywords
required in our study. The steps are the following (the NLTK
package2 was used in several steps below):

(1) We created an initial set of keywords (i.e., “low-code”, “zero-
code”, and “no-code”).

(2) We searched the SO community using the initial set of
keywords to build a corpus of documents, including posts
that contain at least one keyword.

(3) We converted all words to lowercase. Then we cleaned the
corpus by removing all the punctuation and digits. Next, we
deleted stopwords from the corpus using the NLTK library.
Finally, we created a list of tokens.

(4) We applied the Porter stemming algorithm [19] to obtain the
stem of each token (e.g., plays, played, playing all became
play).

(5) We created a Document-Term matrix [16] from the corpus.
(6) We determined whether any additional words that co-occur

frequently with each of our initial keywords. If the co-
occurrence probability is higher than 0.05, it can be consid-
ered for inclusion in the keywords set.

(7) We manually analyzed the list of frequently co-occurring
additional words to identify whether to include any of them
in the final keywords set.

After performing the steps above, we did not find any additional
keywords that co-occur with each of our initial keywords. So we
considered our original keyword set to be adequate and compre-
hensive.

Next, to make the results obtained from the search more precise,
we refined and narrowed the search terms. As SO provides the
tip that we can enter the keywords in quotes to search a specific
phrase, we initially quoted the search terms during the search.
After a cursory reading of the search results, we found that
some irrelevant results were included. Hence, we excluded the
irrelevant results by prefixing the according terms with “-” in our

1https://www.outsystems.com/
2http://www.nltk.org/

ESEM ’21, October 11–15, 2021, Bari, Italy Y. Luo et al.

search query. For example, we discovered a number of “low code
coverage” related posts in the “low code” search results that were
not relevant to our topic. So, we changed the search string to “low
code”-“low code coverage”, which excluded “low code coverage”
related posts.

Then we conducted a pilot data extraction. The first author
randomly selected 10 posts from the search results of all search
terms. The purpose was to verify whether our selected search
terms were appropriate and whether the data items could be
extracted from the posts obtained from the search. Next, the first
author extracted data from these 10 posts and then discussed the
extraction results with the second author to see if the extraction
results were correct. Moreover, since we got 19,455 retrieved
results by the search term “no-code”, and we checked the first
500 retrieved posts and found only 6 LCD relevant posts (1.2%),
considering that SO ranks the search results according to their
relevance to the search term, we decided to remove the posts
obtained by the search term “no-code” in the data collection step
due to the low return on investment. The search terms used and
their numbers of retrieved posts from SO are listed in Table 1.

For Reddit, after exploring the subreddits on Reddit, we finally
found three subreddits named “Low Code”3, “No Code”4, and
“nocodelowcode”5, which contain questions and discussions about
LCD.We then chose all the posts in these three subreddits as part of
our data sources. The subreddits and their numbers of posts from
Reddit are listed in Table 2.

3.2.2 Filter candidates. The criteria for filtering posts are defined
as follows: (I1) If a post contains at least one data item to be
extracted as listed in Table 3, we include it. (E1) If the topic of a
post is related to LCD but does not draw any useful information,
we exclude it. (E2) If a post contains only videos or links and no
data items that can be extracted, we exclude it (we do not extract
data from the videos or links). This step was conducted by the
first author since LCD is a simple concept and these criteria are
easy to check, and only a few posts that the first author could not
decide were discussed with the second author to reach a decision.
After excluding the irrelevant posts in the search results, we finally
got 301 LCD related posts out of 1574 posts from SO and Reddit.
The details are shown in Table 1 and Table 2 for SO and Reddit,
respectively.

Table 1: Search terms used in Stack Overflow

Search Term
Number of

Retrieved Posts

Number of

Selected Posts

ST1 “low code”-“low code coverage” 127 46
ST2 “zero code”-“non zero code”- 402 27

“zero code coverage”-“zero code change”-
“zero code changes”-“zero code solution”

Total 529 73
1 Note that the hyphen “-” in the search terms has no effect on the search results at SO. For example, the search
terms “low-code” and “low code” get the same search results.

3https://www.reddit.com/r/lowcode/
4https://www.reddit.com/r/nocode/
5https://www.reddit.com/r/nocodelowcode/

Table 2: Subreddits used in Reddit

Subreddit Number of Posts Number of Selected Posts

SR1 Low Code 52 23
SR2 No Code 937 199
SR3 nocodelowcode 56 6

Total 1045 228

3.3 Data Extraction and Analysis

3.3.1 Extract data. To answer the RQs in Section 3.1, we extracted
the data items as listed in Table 3 from the selected posts. During
this process, the first and fifth authors conducted a pilot data
extraction with 10 posts independently, and any inconsistent ex-
traction results were discussed with the second author to get a
consensus. They further extracted data according to the data items
from the rest selected posts, marked the uncertain paragraphs, and
then discussed them with the second author. The first author re-
examined the extraction results of all the posts to make sure that
all the data were extracted correctly.

Table 3: Data items extracted and their corresponding RQs

Data item Description RQ

D1 Description of LCD
Descriptions of LCD by practitioners

based on their understanding
RQ1

D2 Platforms used in LCD The platforms that are used in LCD RQ2

D3
Programming languages
used in LCD

Programming languages that are

used in LCD
RQ3

D4
Implementation Unit in
LCD

The implementation units on which

LCD is based
RQ4

D5
Supporting technologies
of LCD

Supporting technologies behind

the LCD
RQ5

D6 Application Type
Types of applications developed

by LCD
RQ6

D7 Domain Domains that use LCD RQ7
D8 Benefits of LCD Benefits brought by LCD RQ8

D9
Limitations and
challenges of LCD

Existing shortcomings and future

challenges of LCD
RQ9

3.3.2 Analyze data. For RQ1, RQ8, and RQ9, we applied the Con-
stant Comparison method [8] for qualitative data analysis. Our
analysis process involved the following steps: (1) The first author
collected data from the selected posts (including titles, questions,
comments, and all the answers) through data crawling. (2) The first
author labeled these posts with codes that succinctly summarize
the data items (for answering RQs). (3) The first author grouped
all the codes into higher-level concepts and turned them into
categories, and then the second author checked the coding results,
and any divergence in the coding and categorization results were
further discussed until the two authors reached an agreement. To
effectively code and categorize data, we used the qualitative data
analysis tool MAXQDA6. For the other RQs, we used descriptive
statistics to analyze and present the results. The data analysis
methods used for the data items and their corresponding RQs are
listed in Table 4. All the data and coding results of this study have
been provided online for replication purpose [11].

6https://www.maxqda.com/

Characteristics and Challenges of Low-Code Development: The Practitioners’ Perspective ESEM ’21, October 11–15, 2021, Bari, Italy

Table 4: Data items and their analysis methods for

answering the RQs

Data item Data analysis method RQ
D1 Description of LCD Constant comparison RQ1
D2 Platform used in LCD Descriptive statistics RQ2

D3
Programming language used in
LCD

Descriptive statistics RQ3

D4 Implementation unit in LCD Descriptive statistics RQ4
D5 Supporting technology of LCD Descriptive statistics RQ5
D6 Application Type Descriptive statistics RQ6
D7 Domain Descriptive statistics RQ7
D8 Benefit of LCD Constant comparison RQ8

D9
Limitation and challenge of
LCD

Constant comparison RQ9

4 RESULTS

In this section, we present the results of the nine RQs. For each
RQ, we first explain the analysis approach that was employed to
answer the question, then we present the results.

RQ1: What is the understanding of LCD?

To answer RQ1, we applied the Constant Comparison method to
analyze the extracted data. We finally extracted 106 instances that
practitioners use to describe LCD according to their understanding
and categorized them into 11 types as listed in Table 5.

We found that most practitioners tend to use low-code (e.g., “The
coding effort is low”) to describe LCD. In other words, they think
that the coding effort is low in LCD. The term drag and drop comes
second, followed closely by visual programming. Some practition-
ers also use pre-designed templates, non-professional programmers

friendly, what you see is what you get (WYSIWYG), and business

process to demonstrate their understanding and perception of LCD.
A few others consider that LCD utilizes a graphical user interface
to develop programs, and one use case is build automation to
“automate unattended operations with minimal human involvement

”. They also think that LCD brings convenience to database oper-

ations. For example, one practitioner mentioned that “It provides
some cool tools for generating CRUD entities by scaffolding”. Only
one developer commented in the post that LCD “combines visual

and code workflows to facilitate collaboration in the same environ-

ment”.

RQ2: What platforms are used in LCD?

To answer RQ2, we manually identified platforms used in LCD
from all the posts, then we analyzed them. During the identifi-
cation process, if one platform was mentioned multiple times in
the same post, it is only counted once. We counted the number of
times that different platforms were mentioned in the posts, listed
the companies that develop them, and explored whether they are
open-source or commercial. The platforms that appear 10 times
or more are presented in Table 6. We also classified the platforms
according to the parts of applications developed by LCD as shown
in Table 7.

Regarding Table 6, of the 21 LCD platforms we listed (men-
tioned more than 10 times), 14 of them are commercial while 7
are open-source. Regarding Table 7, we identified 137 platforms

Table 5: Terms that practitioners use to describe LCD

Term Example Count

Low-code
You need less programming skills and

you are able to realize your processes

without the need of coding
24

Drag and drop
can probably do everything through

drag-and-drop
23

Visual programming
low-code is a visual approach to

software development
16

Pre-designed
templates

gives everyone from business users to

advanced developers the right automation

canvas to build great software robots
10

Non-professional
programmers friendly

This is especially useful for people with

limited coding skills or devs that want to

automate something quickly while not having

to think about all aspects of development,

such as deployment, security, ...

9

What you see is
what you get

meant for WYSIWYG app maker 7

Business process especially designed for process owners 6
Graphical user
interface

They provide you with a graphical wizard 5

Build automation
automate unattended operations with minimal

human involvement
3

Database operation
It provides some cool tools for generating

CRUD entities by scaffolding
2

Collaboration in the
same environment

combines visual and code workflows allowing

designers, developers, and low-code users

to work together in a single environment
1

(mentioned at least once), which are categorized into seven parts
of applications developed by LCD with Not mentioned and Others.
Not mentioned means that we did not find the answers from those
platforms’ official websites or developers’ descriptions. Others
means that those platforms do not belong to any of the above
classifications. Note that one platform can be used to develop
multiple parts with LCD and therefore can be classified into
multiple categories (e.g., Airtable, Bubble.io, andWebflow), and the
total number of counts (218) is more than the number of platforms
(137).

Table 6: Platforms used in LCD, their companies,

open-source or commercial, and counts

Platform name Company name Open-source or commercial Count

Bubble.io Bubble Commercial 96
Webflow Webflow Inc. Commercial 63
Adalo Adalo Commercial 50
Airtable Airtable Commercial 45
Appgyver Appgyver Open-source 38
Glide Glide Open-source 27
Wix (Editor X) Wix.com Inc. Commercial 19
Power Apps Microsoft Commercial 18
Zapier Zapier Commercial 17
DronaHQ Deltecs InfoTech Pvt. Ltd. Commercial 17
WordPress WordPress Foundation Open-source 16
Softr.io Softr Commercial 16
Backendless Backendless Open-source 16
Appsheet Google Commercial 16
Outsystems Outsystems Commercial 12
Thunkable Thunkable Commercial 11
Draftbit Draftbit Open-source 11
Xano Xano Inc. Commercial 10
Wappler.io Wappler Open-source 10
Shopify Shopify Commercial 10
Integromat Celonis GmbH Open-source 10

ESEM ’21, October 11–15, 2021, Bari, Italy Y. Luo et al.

Table 7: Platforms classified by the parts of applications

developed by LCD

The part of

applications

developed by LCD

Platform name Count

Frontend

Adalo, Alpha Software, Andromo, Anvil, App maker,

Appgyver, Appian, Apprat, Appsheet, AppyPie,

Backendless, BettyBlocks, Bildr, Bravo Studio, Bubble.io,

CalcuBuilder, Carrd, Caspio, Draftbit, DrapCode, Dribble,

DronaHQ, Elementor, Expression Blend, Figma, Fliplet,

FlutterFlow, Kony Visualizer, Mendix, Noloco,

Outsystems, PixelCraft, Pory.io, Power Apps, pxCode,

Reach.at, Retool, Softr.io, Stacker, Storyboard,

Tadabase, Thunkable, UI Bakery, Undaku, Unqork, V One,

Verastream Host Integrator, Wappler.io, WaveMaker,

Webase, Webflow, Weflow, WeWeb, Wix, WordPress, Zyro

56

Workflow

Activiti, Airtable, Amazon Honeycode, Appian,

Automate.io, AwareIM, Azure Logic Apps, Bonitasoft,

Boomi Flow, Bubble.io, Budibase, Camunda, DronaHQ,

Drupal, Google Tables,Parabola, Intalio, Integromat,

jBPM, Joget, Knack, MakerPad, Mendix, N8n, Node-RED,

Outsystems, Pega, Pory.io, Power Apps, Power Automate,

Quickbase, Salesforce, ServiceNow, Slingr, Stackby,

Tadabase, TrackVia, Twilio Studio, UiPath Apps,

Undaku, UnifiedAI, Unqork, Webflow, Zapier, Zoho

44

Integration

Adalo, Airtable, Alpha Software, Appgyver, Appian,

AppMaker, Appsheet, AppyPie, AwareIM, Backendless,

BettyBlocks, Bildr, Bravo Studio, Bubble.io, Caspio,

Draftbit, DronaHQ, FlutterFlow, Knack, Memberstack,

Mendix, NocodeAPI, Parabola, Pory.io, Power Apps,

PrestoAPI, Quickbase, Retool, Slingr, Stacker,

Syndesis, Tadabase, TrackVia, UI Bakery, Unqork,

V One, WaveMaker, WeWeb, WordPress, Zyro

40

Backend

8base, Adalo, Alpha Software, Andromo, App maker,

Appgyver, Apprat, Appsheet, AppyPie, Backendless,

Bravo Studio, Bubble.io, Byteline, Caspio, Draftbit,

DrapCode, DronaHQ, Easy Tables, Firebase, flutterflow,

Kelp, Kinvey, Linx, Mendix, Noloco, Outsystems,

Power Apps, PrestoAPI, Thunkable, WaveMaker, Webase,

Webflow, WordPress, Xano, Zyro

35

Framework
Appsmith, Bildr, funkLang, Glide, Lowdefy, Orientation

Aware Control, Picocli, QTKit, Remake, Sonata Admin,

Substack, Wappler.io, WordPress

13

Database operations
8base, Alfresco, AwareIM, JayStack, Jhipster, Loopback,

Sonata Admin, Stackby, Tadabase , TeamDesk, Webase,

Zenbase
12

Data visualization Google Data Studio, Kelp, Qlik, Tableau 4

Not mentioned
Brizy.cloud, Internal.io, Open Lowcode, Sharetribe,

Skyve, Squarespace
6

Others
Boundless (Labs), Dialogflow, Godot engine, REI3,

Shopify, Unity, Unreal Engine, WooCommerce
8

RQ3: What programming languages are used in LCD?

To answer RQ3, we extracted the data “programming languages
used in LCD” from the related posts and counted them by descrip-
tive statistics. Figure 2 shows the statistical result.

In total, we found 21 posts that mention the programming
languages developers use for LCD. Five developers mentioned that
they practiced LCD with Java, as one post said “I’m working with

an enterprise ‘low-code’-tool to build applications for our company.

Some parts can be written in Java and other languages”, while
another five practitioners said that they used Javascript for LCD.
There are also three developers used C# and Python in LCD,
respectively. Two developers commented that they used LCD with
the combination of HTML and CSS, for example, one developer
stated that “My recommendation would be to use webflow - it’s

simple to use for HTML and CSS”. Objective C, PHP, and C++ are
each mentioned in one post as being used for LCD.

Figure 2: Programming languages used in LCD

RQ4: What are the major implementation units in LCD?

To answer RQ4, we explored the implementation units that the
LCD platforms collected in RQ2 are based on and counted these
units by descriptive statistics. Figure 3 presents the statistical
result.

We extracted 137 instances from all the posts, 47 of which
are API-based, as one post stated “What the app does is to call

different Salesforce (low-code platform) APIs, both REST and SOAP,

based on the input parameters AND based on the responses of some

of the previous calls”, while 34 are template-based. There are 25
LCD platforms that are component-based. Among the remaining
31 platforms mentioned, 15 LCD platforms are based on services, 8
are based on frameworks, 7 are based onwidgets, and the rest one is
based on SDK. As an example of framework-based LCD platforms,
one post said that “Loopback is an awesome framework that offers a

full REST API to all CRUD available operations with zero code.”

Figure 3: Implementation units in LCD

RQ5: What are the supporting technologies used in LCD?

To answer RQ5, we finally got 7 posts out of 301 posts containing
supporting techniques behind LCD.

Two posts mention that LCD is based on “React Native” as
one post said that “Draftbit exports code using Expo which is an

SDK based on React Native”, and the other post commented that

Characteristics and Challenges of Low-Code Development: The Practitioners’ Perspective ESEM ’21, October 11–15, 2021, Bari, Italy

“open source nocode platform with drag and drop interface, built

on top of nodejs”. A post specified that LCD platform “runs spark
underneath”, while another posted highlighted that LCD “contains
some advanced server-side scripting techniques”. There is also a
post stating that the LCD platform “offers a SOAP connector for

consuming SOAP web services”, while another post claimed that
“they use JSONata to translate data schemas between platforms”.

RQ6: What types of applications are developed by LCD?

To answer RQ6, we identified the application types that appear in
the posts to get an overview of types of applications developed
by LCD. we ended up with 70 posts mentioning the types of
applications that they were developing or had developed.

As shown in Figure 4, 31mobile applications, 28web applications,
and 1 integration application were developed through LCD. There
are 10 applications that are classified as Others, because the posts
only mentioned “application” without further information, and
they cannot be explicitly classified as one of the above types.

Figure 4: Application types developed by LCD

RQ7: What are the domains that use LCD?

To answer RQ7, we counted the domains that use LCD and got the
result as shown in Figure 5. 36 instances covering nine domains
have been extracted.

The result shows that the domain where LCD is most used is
E-commerce including business-to-business (B2B) and business-to-
consumer (B2C), and it was mentioned 9 times. Business Process
Management (BPM) and Social Mediawere mentioned 7 times each,
with SocialMedia specifically containing partying, chatting, dating,
and blogging applications, etc. Customer Relationship Management

(CRM) was talked about 4 times, followed by Content Management

System (CMS) being discussed 3 times. Extract-Transform-Load

(ETL) and Entertainment were presented 2 times, respectively. In
the entertainment domain, there are posts concerning the use of
low-code game engines to develop games. At last, Robotic Process
Automation (RPA) and Medical were mentioned once each.

RQ8: What are the benefits of LCD?

To answer RQ8, we used the Constant Comparison method to
identify the benefits of LCD from the practitioners’ perspective.
We finally got 16 advantages of using LCD refined from 210
instances as listed in Table 8.

Figure 5: Application domains that use LCD

Most of the developers remarked that LCD allows for faster

development, thus rapidly brings applications to market. They also
commented that LCD’s ease of study and use with lower IT costs

compared to employing developers to code the applications makes
it great. Equipped with rich and ready-to-use units, some develop-
ers reviewed that LCD is newbie friendly as it “helps non technical

people to create software in an easy and familiar way”. Others
hold the views that LCD builds applications with improved system

quality, has strong integration and expansion capability, requires
minimal effort, and has better customization. A few practitioners
thought that LCD is perceptually intuitive, has superior usability
to be “completely flexible and capable of doing almost anything”,
and always provides “a friendly interface” and “amazing UI” giving
better user experience. Moreover, several posts commented that
LCD can deploy the app easily, and it is quite cost-effective with
improved IT governance compared to programming. One developer
considered that LCD suits team development.

RQ9: What are the limitations and challenges of LCD?

To answer RQ9, we collected the existing shortcomings and future
challenges of LCD from the selected posts and obtained 15 limita-
tions and challenges as presented in Table 9.

Most practitioners reflected that although using LCD is easier
and faster than coding, it still has a steep learning curve to some
degree. Some LCD platforms’ high pricing makes the cost of LCD
expensive, especially if you have a large number of users. Due
to restrictive customization, practitioners thought that LCD plat-
forms lack of customization. In addition, developers complained
about slow loading and publishing of some LCD platforms. Also,
practitioners felt LCD less powerful than programming with high

complexity to some extent. Several developers pointed out the
shortcomings of LCD that complex issues still need coding, no
access of source code, not really ease of use as well as limitation

to experienced developers . Vendor lock-in, difficulty of maintenance

and debugging, difficulty of integration are also the weaknesses
of LCD. Two developers stated that they had unfriendly user

experiencewith LCD, and two others strengthened the need of basic
programming knowledge since “most of them do require code at some

point”.

ESEM ’21, October 11–15, 2021, Bari, Italy Y. Luo et al.

Table 8: Benefits of LCD with their examples and counts

Benefit Example Count

Faster development rapidly bring apps to market 65

Ease of study and use
the learning curve is very low and you can

start modelling very fast
52

Lower IT costs

as the Open Edition is free, you can

evaluate the service or run your open-

source app without any financial

investments

18

Rich and ready-to-use
units

tons of modules and easy installation 14

Newbie friendly
helps non technical people to create

software in an easy and familiar way
10

Improved system quality
yields high-quality, secure, scalable and

maintainable applications
7

Strong integration and
expansion capability

completely integrated with Drools and

Drools fusion, allowing you to model and

execute complex business scenarios
7

Minimal effort
saves you tons of efforts by avoiding you

writing boilerplate code
7

Better customization
can be customized and scaled effortlessly

based on customer requirements
6

Perceptual intuition pretty responsive out of the box 5

Superior usability
It aims to be completely flexible and

capable of doing almost anything
5

Better user experience

provides an easy to use graphical tool

inside the designer that provides the ability

to easily transform data, create messages,

variables, conditions, etc

4

Easy deployment
makes it easier to deploy the app in mobile

devices (iOS / Android)
4

Cost-effectiveness
cost-effective way of developing

applications
3

Improved IT governance
Business experts not having to rely 100%

on software devs makes things different
2

Improved team development It suits team development well 1

5 DISCUSSION

5.1 Interpretation of Results

RQ1: Terms that practitioners use to describe LCD
The result of RQ1 (see Table 5) shows that most practitioners

tend to use the term low-code to describe what is LCD. Low-code
here means creating software with radically small amounts of code,
or even without hand-coding. There are some other practitioners
who use terms, such as drag and drop, visual programming, and
graphical user interface when referring to LCD. This indicates
that LCD probably provides users with a GUI to point and click,
the frontend layout, the backend logic, or even the connection
to the third party APIs. Moreover, some others define LCD as
the equipment of pre-designed templates, which is a higher-level
implementation unit than code and is easier to learn and use. On
account of LCD to save code effort, WYSIWYG to build everything
visually, and plenty of well-built templates to develop applications
with, we can explain why practitioners also hold the point of view
that LCD is non-professional programmers friendly.
RQ2: Platforms that are used in LCD

For RQ2, we listed the platforms that were mentioned at least
10 times in the 301 posts in Table 6. We found that some of these
platforms are commercial, while others are open-source. On the
one hand, given that developers are concerned about the problems
of vendor lock-in and no access of source code, they would better
choose open-source platforms to own the code that they have

Table 9: Limitations and challenges of LCD with their

examples and counts

Limitations and challenges

of LCD
Example Count

High learning curve
you need to learn a lot about how this tool

works to do the thing you’re trying to do
21

High pricing
These larger vendors can get expensive,

because they charge you for every user and you

have to buy packages of 50 or 100 users

13

Lack of customization
Restrictive customisation on design and

layouts
11

Slow loading and publishing Loading speeds can be slow 9

Less powerful than
programming

A full-fledged programming language will

always have more power than a "no-

code/low-code" solution such as PowerApps
6

High complexity they’re often too convoluted to use 6

Complex issues still need
coding

If you go further and having a complex issue

that can only be solved with invoking code or

creating custom activities, you really need to

code

5

No access of source code
Therefore you cannot take the code and use it

elsewhere
4

Not really ease of use
No code is great, but not as easy as picking

an app that’s already written
4

Limitation to experienced
developers

Most no-code tools are designed more like a

prototyping tool and also targeted for non-

developers which makes it very difficult for

someone with development background to use

4

Vendor lock-in

Then there’s the issue of vendor lock in. If

you build using a nocode tool and they host

etc. then if they raise their prices or shut

down, that’s going to a huge cost in

downtime or rebuild and possibly lost data

3

Difficulty of maintenance
and debugging

An additional risk is the continued support

and maintenance of the low-code platform
3

Difficulty of integration
it looks to be a hard problem to make the UI,

data store and calculations work together
3

Unfriendly user experience
it has a steeper and at times user unfriendly

UX
2

Need of basic programming
knowledge

most of them do require code at some point 2

control and do not need to worry about that vendors may raise
their prices or shut down the platforms one day. On the other hand,
commercial software may offer more advanced and convenient
functions, while open source software may require less financial
support and is suitable when there is a tight budget. We also
categorized all the LCD platforms appeared in the posts according
to the parts of applications developed by LCD as shown in Table
7. The result shows that the same platform may support the
development of various parts of an application, which potentially
extends LCD platforms to an integration platform, for example,
from frontend, workflow to integration.
RQ3: Programming languages that are used in LCD

The result of RQ3, to some degree, depends on the supporting
technologies behind LCD, which are largely specific to the LCD
platform chosen. Figure 2 shows that Java and JavaScript are
both popular programming languages used for LCD, which is
reasonable in that they are also popular languages in software
development.
RQ4: Implementation units which LCD is based on

LCD is called “low-code” since low-code development is based
on higher level implementation units than code. These out-of-the-
box units equipped in LCD platforms play an important role in
making platforms easy to use and speeding up the development.
The major implementation units an LCD platform uses usually

Characteristics and Challenges of Low-Code Development: The Practitioners’ Perspective ESEM ’21, October 11–15, 2021, Bari, Italy

depend on the parts of applications developed by LCD. Figure
3 shows that most of the LCD platforms use APIs. After further
checking the data extracted, we found that the implementation
units APIs and services are usually used to develop the backend

of applications, while the implementation units components and
widgets are used to develop the frontend of applications. The im-
plementation units templates and frameworks are often employed
for developing both the frontend and backend of applications. The
implementation units are perceptually more intuitive than code,
thus users are not aware of the complexities with those well-
encapsulated units. We believe that these basic implementation
units of LCD can definitely make development more agile and the
LCD platforms easier to use.
RQ5: Supporting technologies behind LCD

For those supporting technologies behind LCD, React Native is
an open-source mobile application framework, and it serves as a
concrete implementation unit in several LCD platforms. Node.js
is a free, open-sourced, cross-platform JavaScript run-time envi-
ronment that allows developers to write command line tools and
server-side scripts outside of a browser, and the post implies that
it may support drag and drop interfaces of LCD platforms. Apache
Spark is a unified analytics engine for large-scale data processing,
and it makes LCD capable of data processing and analysis. For
example, Mapping data flows in Azure Data Factory run Apache
Spark underneath to allow data engineers to develop data trans-
formation logic without writing code. Server-side scripting is a
technique used in web development which involves employing
scripts on a web server and produces a response customized for
each user’s request to the website, and it is a kind of technology
used behind drag and drop website builder allowing users to
create a website with zero code. SOAP (i.e., Simple Object Access
Protocol) is a messaging protocol specification for exchanging
structured information in the implementation of web services.
The LCD platform Bonita offers a SOAP connector for consuming
SOAP web services. JSONata is a declarative open-source query
and transformation language for JSON data, and it powers the
magic behind nearly all LCD platforms to translate data schemas
between platforms. The supporting technologies behind LCD are
diverse without the dominant, which shows that LCD is not
constrained to specific technologies.
RQ6: Types of applications developed by LCD

Many posts state the types of applications which developers
created or were creating using LCD. From the result, the demand
for developing mobile applications with low code is the highest
among the types of applications, which is reasonable since mobile
applications normally have a short delivery time and their develop-
ment can be sped up by employing LCD. Different LCD platforms
support the development of different types of applications. For in-
stance, Bubble introduces a way to build web applications without
code, Storyboard is used to create interfaces for iOS apps with zero
code, and Syndesis is an open source integration platform that can
connect to any services and provides a rich set of connectors out of
the box. Therefore, before development, it is necessary to choose
appropriate LCD platforms for the projects according to the needs
of the type of applications developed.
RQ7: Domains that use LCD

The result of the domains that use LCD is presented in Fig-
ure 5. Applications belonging to BPM, CRM, CMS, and RPA are
often software systems for workflow management or business
process automation. Furthermore, Table 7 shows that 44 of the
137 platforms supportworkflow development, andmany platforms
have mature implementation units to build automation. Besides,
most developers were concerned about whether they can build
E-commerce applications through LCD, which are also process
intensive.
RQ8 and RQ9: Benefits brought by LCD and limita-
tions and challenges of LCD

LCD does allow users to build applications faster with minimal
effort. It makes development more agile as LCD platforms are
equipped with rich and ready-to-use implementation units, but
this also leads to the slowness of loading and publishing. Besides,
the downsides of LCD include no access of source code and
vendor lock-in. However, we found that many benefits contradict
its limitations and challenges from the practitioners’ perspective:
(1) Many developers think that LCD platforms are easy to study

and use compared to programming languages, however, some
developers also argue that they are not really ease of use with
high learning curve. LCD is indeed easier than programming,
but the use of LCD platforms also has a certain learning cost,
especially some LCD platforms provide complex functions, which
take time to learn. (2) Some practitioners also consider lower IT
costs than traditional development as a benefit brought by LCD,
but others hold the opposite view that using LCD is expensive. On
the one hand, LCD reduces the time required for development
and allows non-professional to implement their ideas without
having to hire developers; on the other hand, some commercial
LCD platforms also require a high price to provide a complete
service, and some of the platforms charge for every user, which
means that they can get very expensive as you scale your team.
(3) LCD is newbie-friendly in some developers’ point of view while
limiting experienced developers to others, as some LCD platforms
are designed more like a prototyping tool and also target for non-
developers which makes it very difficult for experienced developers
to use. (4) In some practitioners’ perspective, LCD yields high-

quality, secure, scalable, and maintainable applications based on
out-of-the-box implementation units; in contrast, a few believes
that LCD solutions are hard to modify, maintain, and debug. The
potential reason could be that it is difficult to verify whether the
implementation units provided by LCD platforms have defects
due to no access of code, and different LCD platforms may bring
different experiences to developers. (5) Some LCD platforms are
considered to have perfect customization while others complain
about the lack of customization. An LCD platform with limited
flexibility in functionality and design may result in spending
more time to add custom code unless it gives the users enough
feature set to customize. (6) LCD seems intuitive if the users only
build applications with drag and drop operations. Once they find
it limited and inflexible and have to add custom code at some
point, LCD may bring complexities, compromises, and frustrations.
Furthermore, if complex functions still need coding to achieve, it
means that LCD is less powerful than programming.

ESEM ’21, October 11–15, 2021, Bari, Italy Y. Luo et al.

5.2 Implications

Definition of LCD: Although the term “low-code” was first
coined in 2014 [13], to date, there is no clear definition of “low-
code” in either academia or industry. Practitioners use a variety
of terms to describe low-code related practices, and we suggest
that researchers refine and summarize these descriptions to reach a
level of consensus in order to reduce misunderstandings and ambi-
guities. We also hope that practitioners will gradually deepen their
understanding of LCD along with the practice in development, and
make the concept and scope of LCD clear.
Choice of platforms in LCD: When developers seek help on
SO and Reddit, some tend to ask questions like “Suggest a BPM

like tool to automate unattended operations with minimal human

involvement” or “Can you use Microsoft Power Automate to develop

a company wide workflow solution?”, suggesting these developers
are unaware of which LCD platform is appropriate for their needs.
Once a decision has been made to build an application in a low-
code way, the developers should choose a suitable platform, taking
into account the characteristics of the platforms and their own
needs. From the perspective of platform features, developers need
to consider whether they want to have access to the source code
and deploy the code on their own servers. They should also take
the budgets into account to choose a platform with reasonable
pricing. Furthermore, developers may choose an LCD platform
that supports the programming language they are good at. Finally,
it is of vital importance to know whether the platform they choose
provides enough implementation units to support the parts of
applications, e.g., frontend UI, backend logic, and data store, to be
developed using LCD. From the perspective of user requirements,
developers should choose the right platform based on the type and
domain of the application they want to develop.
Adoption of LCD in projects: LCD proposes a new program-
ming paradigm, and from the interpretation of the results of
RQ8 and RQ9, we can see that it cannot replace the traditional
development approaches. Developers should consider the esti-
mated time of development cycle, learning cost, the budget, the
extent of customization provided, and some other aspects carefully,
to decide whether they are supposed to use the LCD approach
with an appropriate LCD platform chosen or adopt a traditional
development approach with hand-coding and maximal human
involvement. In short, LCD is like a double-edged sword. If the
features of LCD are well used to meet the requirements of develop-
ment, they will certainly accelerate the development process. Oth-
erwise, they will increase the degree of difficulty and complexity of
development, making non-professional developers feel frustrated
and professional developers feel constrained.

6 THREATS TO VALIDITY

We discuss the potential threats to the validity of our results below
by following the guideline in [20]. Internal validity is not discussed,
since we did not investigate any causal relationships.
Construct validity denotes whether the theoretical and con-

ceptual constructs are correctly measured and interpreted. In our
study, there are three threats to this validity: (1) One threat stems
from the selection of data sources. Since many LCD platforms have
their own forums, it it possible that some LCD platforms may not

have much relevant discussion in SO and Reddit, which might
bring bias in dataset. (2) Another threat is related to the search
terms we used to collect posts from SO. Our selected search terms
may not provide a comprehensive coverage of all posts related
to LCD. To mitigate this threat, we have reviewed the relevant
literature and searched the synonyms of LCD on the Internet. (3)
The last threat comes from manual extraction and analysis of data.
To mitigate the impact of this threat, we randomly selected posts
from the dataset and did a pilot data extraction and analysis. In the
formal data extraction and analysis process, any uncertainty was
discussed by the first, second, and fifth authors until an agreement
was reached to eliminate personal bias.

External validity concerns the extent to which the results of
a study can be generalized to and across other situations, people,
settings, and measures. A relevant threat concerns the selection
of online developer communities. To reduce this threat, in our
study, we collected data from two data sources Stack Overflow
and Reddit, and both are popular online development communities,
which partially mitigates this threat.

Reliability: refers to the replicability of a study for arriving
at same or similar results. To alleviate this threat, we defined
a research protocol with detailed procedure which can be used
to reproduce our work and it was discussed and confirmed by
all the authors; our research process is explicitly shown in the
Methodology section (Section 3), and the dataset and coding results
from the study have been made available online [11]. Furthermore,
before the formal data extraction, we conducted a pilot data extrac-
tion between the first, second, and fifth authors until reaching a
consistent understanding about the extraction results. With these
measures, we are confident that the study results are relatively
reliable.

7 CONCLUSIONS

LCD is not a new concept in software development, but recently
is booming and gets much attention in industry that can help both
developers and users quickly deliver applications by writing a few
code. We conducted an empirical study to obtain the characteris-
tics as well as the challenges towards LCD from a practitioners’
perspective. We used LCD related terms to search and collect data
from SO and used LCD related subreddits from Reddit to collect
data for data extraction and analysis with 301 posts in total. The
main findings of this study are the following:

• Although there is no clear definition of LCD, practitioners
tend to use low-code and drag and drop to describe LCD
according to their understanding, showing that LCD may
provide a graphical user interface for users to drag and drop
with little or even no code.

• The equipment of out-of-the-box units in LCD platforms
makes them easy to learn and use as well as speeds up the
development.

• Different LCD platforms support the development of differ-
ent types (e.g., mobile and web applications) of applications
and different parts (e.g., frontend, workflow, and integra-
tion) of applications.

• LCD is particularly favored in the domains that have the
need for automated processes and workflows.

Characteristics and Challenges of Low-Code Development: The Practitioners’ Perspective ESEM ’21, October 11–15, 2021, Bari, Italy

• While LCD platforms can speed up software development
with minimal human involvement, they also suffer from no
access of source code and vendor lock-in for commercial
LCD platforms. Moreover, practitioners have conflicting
views on the advantages and disadvantages of LCD, imply-
ing that certain features of LCD are beneficial to develop-
ment if used appropriately, otherwise may become limita-
tions or challenges in LCD. Therefore, developers should
consider whether LCD is appropriate for their projects.

In the next step, we plan to extend this work on studying LCD in
a larger dataset frommultiple developer communities andmethods
(e.g., using questionnaire and interview). We also intend to take a
deeper look at various aspects of LCD, such as in which condition,
a benefit becomes a limitation in LCD, and how to prevent that.

ACKNOWLEDGMENTS

This work has been partially supported by the National Key R&D
Program of China with Grant No. 2018YFB1402800.

REFERENCES
[1] Ahmad Abdellatif, Diego Costa, Khaled Badran, Rabe Abdalkareem, and Emad

Shihab. 2020. Challenges in chatbot development: A study of Stack Overflow
posts. In Proceedings of the 17th International Conference on Mining Software
Repositories (MSR). ACM, 174–185.

[2] Md Abdullah Al Alamin, Sanjay Malakar, Gias Uddin, Sadia Afroz, Tameem Bin
Haider, and Anindya Iqbal. 2021. An empirical study of developer discussions
on low-code software development challenges. arXiv abs/2103.11429 (2021).

[3] V. Basili, G. Caldiera, and H. D. Rombach. 1994. The Goal Question Metric
Approach.

[4] Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek
Janni. 2014. Identifying the characteristics of vulnerable code changes:
An empirical study. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE). ACM, 257–268.

[5] Preetha Chatterjee, Minji Kong, and Lori Pollock. 2020. Finding help with
programming errors: An exploratory study of novice software engineers’ focus
in Stack Overflow posts. Journal of Systems and Software 159 (2020), 110454.

[6] Alex Cummaudo, Rajesh Vasa, Scott Barnett, John Grundy, and Mohamed
Abdelrazek. 2020. Interpreting cloud computer vision pain-points: A mining
study of Stack Overflow. In Proceedings of the 42nd ACM/IEEE International
Conference on Software Engineering (ICSE). ACM, 1584–1596.

[7] Meg Fryling. 2019. Low Code App Development. Journal of Computing Sciences
in Colleges 34, 6 (2019).

[8] Barney G. Glaser. 1965. The Constant Comparative Method of Qualitative
Analysis. Social Problems 12, 4 (1965), 436–445.

[9] Scott Grant and Buddy Betts. 2013. Encouraging user behaviour with
achievements: an empirical study. In Proceedings of the 10th Working Conference
on Mining Software Repositories (MSR). IEEE, 65–68.

[10] Ruiyin Li, Peng Liang, Mohamed Soliman, and Paris Avgeriou. 2021. Under-
standing architecture erosion: The practitioners’ perceptive. In Proceedings of
the 29th IEEE/ACM International Conference on Program Comprehension (ICPC).
ACM, 311–322.

[11] Yajing Luo, Peng Liang, Chong Wang, Mojtaba Shahin, and Jing
Zhan. 2021. Replication Package of the Paper “Characteristics and
Challenges of Low-Code Development: The Practitioners’ Perspective”.
https://doi.org/10.5281/zenodo.4772145

[12] Clay Richardson and John R Rymer. 2016. Vendor landscape: The fractured,
fertile terrain of low-code application platforms. Forrester (2016).

[13] ClayRichardson, JohnRRymer, ChristopherMines, AlexCullen, and Dominique
Whittaker. 2014. New development platforms emerge for customer-facing
applications. Forrester (2014).

[14] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio. 2020. Supporting
the understanding and comparison of low-code development platforms. In
Proceedings of the 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). 171–178.

[15] Raquel Sanchis, Óscar García-Perales, Francisco Fraile, and Raul Poler. 2020.
Low-Code as Enabler of Digital Transformation in Manufacturing Industry.
Applied Sciences 10, 1 (2020).

[16] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2005. Introduction to Data
Mining, (First Edition). Addison-Wesley Longman Publishing Co., Inc., USA.

[17] Craig Torres. 2018. Demand for programmers hits full boil as US job market
simmers. Bloomberg. Com (2018).

[18] Robert Waszkowski. 2019. Low-code platform for automating business
processes in manufacturing. IFAC-PapersOnLine 52, 10 (2019), 376–381.

[19] Peter Willett. 2006. The Porter stemming algorithm: Then and now. Program:
Electronic Library and Information Systems 40, 3 (2006), 219–223.

[20] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. 2012.
Experimentation in Software Engineering. Springer Science & Business Media.

[21] Mansooreh Zahedi, Roshan Namal Rajapakse, and Muhammad Ali Babar. 2020.
Mining questions asked about continuous software engineering: A case study of
Stack Overflow. In Proceedings of the 24th International Conference on Evaluation
and Assessment in Software Engineering (EASE). ACM, 41–50.

https://doi.org/10.5281/zenodo.4772145

	Abstract
	1 Introduction
	2 Related Work
	2.1 Low-Code Development
	2.2 Using Online Developer Communities in Software Engineering

	3 Methodology
	3.1 Research Questions
	3.2 Data Collection and Filtering
	3.3 Data Extraction and Analysis

	4 Results
	5 Discussion
	5.1 Interpretation of Results
	5.2 Implications

	6 Threats to Validity
	7 Conclusions
	Acknowledgments
	References

