

Edinburgh Research Explorer

Comprehending nulls

Citation for published version:
Cheney, J & Ricciotti, W 2021, Comprehending nulls. in Proceedings of the 18th International Symposium
on Database Programming Languages (DBPL 2021). ACM, pp. 3-6, 18th International Symposium on
Database Programming Languages, Copenhagen, Denmark, 16/08/21.
https://doi.org/10.1145/3475726.3475730

Digital Object Identifier (DOI):
10.1145/3475726.3475730

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 18th International Symposium on Database Programming Languages (DBPL 2021)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1145/3475726.3475730
https://doi.org/10.1145/3475726.3475730
https://www.research.ed.ac.uk/en/publications/2e9f1e50-36d6-4075-b0af-69e3e8a5ddf3

ar
X

iv
:2

10
7.

11
34

7v
1

 [
cs

.P
L

]
 2

3
Ju

l 2
02

1

Comprehending nulls

James Cheney
University of Edinburgh
jcheney@inf.ed.ac.uk

Wilmer Ricciotti
University of Edinburgh

research@wilmer-ricciotti.net

ABSTRACT

The Nested Relational Calculus (NRC) has been an influential high-

level query language, providing power and flexibility while still al-

lowing translation to standard SQL queries. It has also been used as

a basis for language-integrated query in programming languages

such as F#, Scala, and Links. However, SQL’s treatment of incom-

plete information, using nulls and three-valued logic, is not com-

patible with ‘standard’ NRC based on two-valued logic. Nulls are

widely used in practice for incomplete data, but the question of

how to accommodate SQL-style nulls and incomplete information

in NRC, or integrate such queries into a typed programming lan-

guage, appears not to have been studied thoroughly. In this paper

we consider two approaches: an explicit approach in which option

types are used to represent (possibly) nullable primitive types, and

an implicit approach in which types are treated as possibly-null

by default. We give translations relating the implicit and explicit

approaches, discuss handling nulls in language integration, and

sketch extensions of normalization and conservativity results.

1 INTRODUCTION

The Nested Relational Calculus (NRC) [2] is a high-level query lan-

guage providing operations for collections (sets, bags, lists, etc.), es-

pecially comprehensions. In contrast to standard query languages

such as SQL, NRC queries can be freely composed and can con-

struct values with nesting of record and collection types, making

it natural to use for database programming and query integration

in high-level functional languages [3, 8, 15, 20]. Despite this added

flexibility, NRC queries are no more expressive than flat relational

queries when transforming flat inputs to flat outputs [22]. This

property, called conservativity, is the basis for rewriting algorithms

that map NRC queries over flat data to SQL queries.

From the early years of the development of the relational data

model and associated query languages, the importance of support-

ing incomplete information has been clearly recognized. Codd [6]

made an early proposal allowing field values to be “null”, or ab-

sent/missing, extending primitive operations on these values to

propagate nulls, and extending predicates to have three-valued se-

mantics with a third truth value, “unknown”. Despite criticism [10],

this approach is standard and widely used in SQL, although these

features are also easily misunderstood and result in counterintu-

itive behavior that can lead to subtle bugs [11]. Nevertheless, al-

most all real databases and applications involve nulls, so it is impor-

tant for language-integrated query mechanisms to support them.

Most presentations of NRC and related languages eschew nulls:

base types include integers, booleans, strings, etc. as understood

in most typed programming languages, in which there is no spe-

cial null value indicating an absent piece of data. This makes NRC

a good fit for integrating database queries into an ambient typed

language, but a poor fit for interfacing with actual incomplete data.

Moreover, while SQL’s approach to nulls is imperfect, a language-

integrated query system should still be able deal with them.

In this short paper, we investigate the design issues that arise

when we add null values to NRC, highlight technical issues whose

solutions are straightforward or already known, and outline open

questions. In particular we consider the following issues:

(1) Should nulls be treated implicitly (like in SQL) or explicitly

(like option values in functional languages)?

(2) Should nulls be available at any type, or just at base types?

(3) Do classical results needed for translating NRC queries to

SQL continue to hold in the presence of nulls?

Design considerations. Our goal is to reconcile the implicit treat-

ment of nulls in a typical database query language (e.g. SQL) with a

typed, functional host language that lacks nulls. We first give a toy

example and discuss how it is handled currently in three settings:

Links [8], Scala’s Quill library [15], and in LINQ in F# [3, 20].

Suppose we have a table containing diseases, each with identi-

fier (integer), name (string), and type (integer). The identifier and

name are required (i.e. non-nullable) but the type is optional and

nullable (some new diseases might not yet have a known type). To

produce a web page showing information related to diseases with

a given name, we would execute a query such as

SELECT * FROM diseases WHERE name = 'covid-19'

In Links, until recently, attempting to execute queries that at-

tempted to read NULLs from the type field would simply fail, be-

cause the NULL value was not expected by the code that processes

query results. Currently, Links allows to set a single global default

value to use in place of NULL for integer fields.

In F#, in contrast, nullable fields in database tables or query re-

sults are given a different type: Nullable<T>. A value of type T can

be implicitly coerced to Nullable<T>, and this type also includes

a null value. Whether a Nullable<T> is null or not can be tested

by checking the Boolean field HasValue, and if present the value

can be extracted from the Value field. Requesting the value of a

null yields an exception. Primitive operators such as addition and

equality (+, =) are lifted to nullable versions (?+, ?=) that propagate

nulls like SQL does: if any input is null then the result is null.

In Quill, nullable fields are given option types, and Scala over-

loading and convenient operations on option types can be used to

make it easier to write queries involving such optional data.

Obviously, the Links solution is little better than a hack: if we

wanted to deal with nulls of other base types, we would have to

provide a default value, and it isn’t clear that using a single global

default in place of null values of each type is sensible. On the other

hand, the F# and Quill approaches appear to work reasonably well

in practice, but rely on implicit coercions and exceptions, and still

require programmers to be conscious of which fields are nullable.

If we look beyond the simple scenario above in which we are

just retrieving data (possibly including NULLs) from the database,

http://arxiv.org/abs/2107.11347v1

James Cheney and Wilmer Riccio�i

the situation becomes a bit more complicated. In SQL, as men-

tioned above, most primitive operations are defined so that the

result is null if any input is null; some operations such as logical

connectives and null tests depart from this pattern. Null boolean

values, also called unknowns, provide a third truth value, resulting

in behavior that can be counterintuitive. Moreover, it is not clear

that query rewriting laws that are valid in standard two-valued

logic still hold, calling into questionwhether the rewriting strategy

used in Links to normalize and generate SQL from NRC queries

is still viable. We should also note that neither F#’s handling of

nulls via nullable types nor Quill’s treatment using option types

is supported by any formal analysis like that for basic language-

integrated query [3], so it is unclear what formal guarantees these

approaches have.

A final consideration, which is not strictly necessary to deal

with the problem of incomplete data in SQL, but seems natural to

consider in a nested relational setting, is whether null values ought

to be considered only for base types (integers, strings etc.) or for

the composite NRC types including records and collection types.

The latter approach seems more uniform and more in the spirit

of NRC, but leads immediately to the question whether allowing

nulls at composite types increases expressiveness, or whether the

classical results on conservativity still hold.

Summing up, we would like to reconcile database queries in-

volving nulls with typed host languages so that:

(1) Null values are available at all types and query results in-

cluding nulls can be translated to host language values.

(2) Query expressions can be written as in SQL: e.g. primitive

operations apply uniformly to nullable and nonnullable fields

(3) Query expressions admit normalization rules similar to those

for plain NRC, enabling translation to SQL.

Moreover, we would like to accomplish these goals in a way that

makes programming as easy as possible in common cases, and that

avoids reliance on advanced programming language features as

much as possible. We note again that none of the approaches we

are aware of in Links, F# or Quill satisfy all three criteria.

2 BACKGROUND

We will employ the following syntax for NRC:

Types f, g ::= 1 | 〈
−−−→
ℓ : f〉 | {f}

Terms ", # ::= G | 2 | 5 (
−→
") | 〈

−−−−→
ℓ = "〉 | ".ℓ

| ∅ | {"} | " ∪ # |
⋃
{" |G ← # }

| empty(") | if" then #1 else #2

The base types 1 include integers, strings, booleans, floating-point

numbers, dates, etc. Constants 2 and primitive operations 5 oper-

ate on base types, and include Boolean constants and logical con-

nectives true, false,∧,∨,¬. Record types are written 〈
−−−→
ℓ : f〉 with

records constructed as 〈
−−−−→
ℓ = "〉 and field projection written ".ℓ .

We consider a single set collection type written {f}. The expres-

sions involving collections include the empty collection ∅, single-

ton {"}, union " ∪ # , and comprehension
⋃
{" |G ← # } where

" is evaluated repeatedlywithG bound to elements of# and the re-

sulting collections are unioned. Finally, the conditional if" then#1 else#2

has the standard behavior.

We write" where # to abbreviate if # then " else ∅, i.e. re-

turn" if # holds, otherwise ∅. A general comprehension (where

" may have any type) {" |G1 ← #1, . . . G: ← #: where %}, is syn-

tactic sugar for
⋃
{· · ·

⋃
{{"} where % |G: ← #: } · · · |G1 ← #1}. Such

comprehensions correspond to conjunctive SQL queries.

The (largely standard) type system and common rewriting rules

for evaluating and translating queries in this variant of NRC are

included in the appendix.

3 EXPLICIT NULLS

We extend the core NRC with explicit nulls, calling this calculus

NRCopt, as follows.

Types f, g ::= · · · | g?

Terms ", # ::= · · · | none | some(")

| case " of (none⇒ #1 | some(G) ⇒ #2)

We introduce a new type g? (pronounced “g option”) whose values

are none and some(+) where + is of type g . The elimination form

for g? is the case construct case " of (none ⇒ #1 | some(G) ⇒

#2) which inspects " , and returns #1 if " is none and #2 [+ /G]

if" is some(+). Intuitively, optional values correspond to nullable

values in SQL. Thus, given a table with some nullable fields, these

fields can be represented using option types, whereas non-nullable

fields are represented using an ordinary type.

The semantics of option types and expressions is standard:

case none of (none⇒ #1 | some(G) ⇒ #2) { #1

case some(") of (none⇒ #1 | some(G) ⇒ #2) { #2 ["/G]

Thus, NRCopt essentially models the Quill approach, but the ad-

vanced features of Scala that make it more palatable are absent.

4 IMPLICIT NULLS

The explicit calculusNRCopt provides a correct, and implementable,

strategy for handling incomplete information: we simply map nul-

lable types in database tables to option types, and require the query

to perform any case analysis. However, making nulls explicit using

option types is not cost-free: in the unfortunately all-too-common

case where the database schema does not specify fields as nonnull

(even if they are in practice never null), the programmer is forced to

program defensively by handling both the none and some() cases

for each field used by the query. This is especially painful when

performing primitive operations on multiple nullable values: for

example to simulate SQL’s behavior when adding two integers that

might be null, we need to perform case analysis on the first one,

then a sub-case analysis on the second one.

In this section we consider an alternative approach, NRCnull, in

which all base types are treated as including an extra value null.

The semantics of primitive operations is augmented to handle null

value inputs; in most cases, if any input value is null then the re-

sult is null. The exceptions are the logical connectives, which are

instead equippedwith three-valued semantics (e.g. false∧null =

false), and operations such as isNull(") that inspect a possibly-

null primitive value and test whether it is null.

Comprehending nulls

The syntax of NRCnull is NRC extended with a null constant and

with a nullness test, as follows. We assume the presence of primi-

tive operations including at least the logical connectives ∧,∨,¬.

Terms ",# ::= · · · | null | isNull(")

We do not allow nulls at record or collection types. For collection

types in particular, the expected behavior of nulls is unclear. The

semantics of logical connectives is three-valued, as in SQL. The se-

mantics of other primitive operations is strict: if any argument is

null then the result is too, otherwise the primitive operation is per-

formed on the non-null inputs. Finally, if the Boolean in a where

statement is null, then the statement evaluates to an empty collec-

tion (similarly to false and contrary to true). This behavior can

be specified by adding the following rewriting rules to the standard

NRC ones:

isNull(null) { true isNull(2) { false

5 (. . . null . . .) { null " where null { ∅

5 TRANSLATIONS

The implicit and explicit approaches have complementary advan-

tages. NRCopt is essentially a special case of the nested relational

calculus with binary sum types. However, if many fields are nul-

lable, writing queries in NRCopt is excruciating. On the other hand,

NRCnull seems easier to relate to plain SQL queries, and writing

queries that operate over possibly-null values is more straightfor-

ward (albeit with the same pitfalls as SQL), but normalization re-

sults for NRC with implicit nulls do not follow immediately from

prior work. We consider translations in each direction.

From NRCopt to NRCnull . The main issue arising in this transla-

tion is the fact that option types can be nested inside other type

constructors, including options: for example (int? × bool)? repre-

sents an optional pair the first element of which is also optional. To

deal with this generality, we translate options and cases as follows:

Jg?K = 〈isnull : bool, val : JgK〉
JnoneK = 〈isnull = true, val = 3JgK〉

Jsome(")K = 〈isnull = false, val = J"K〉u
v

case "

of (none⇒ #1

| some(G) ⇒ #2)

}
~ =

if".isnull

then J#1K
else J#2K[J"K.val/G]

where3g is a default value of type g . Note that nulls, isNull(−) and

other null-sensitive primitive operations are not needed to handle

options, assuming that there are constants of each base type in

NRCopt: this translation actually maps NRCopt to plain NRC.

From NRCnull to NRCopt. Types are translated as follows:

J1K = 1? J〈−−→ℓ : g〉K = 〈−−−−→ℓ : JgK〉 J{g}K = {JgK}
The most interesting cases of the term translation are:

J2K = some(2)

J5 ("1, . . . , "=)K = 5 ∗(J"1K, . . . , J"=K)
JnullK = none

JisNull(")K = J"K = none

Jif " then #1 else #2K = if isTrue(J"K) then J#1K else J#2K

Here 5 ∗ is the primitive operation 5 lifted to apply to options, i.e.

5 ∗ (some(E1), . . . , some(E=)) = some(5 (E1, . . . , E=)) and otherwise

5 ∗ (. . . none . . .) = none. These operations are definable in NRCopt,

as are the other null-sensitive operations such as equality and log-

ical connectives. Conditionals must be translated so that the then-

branch is executed only if the test is true, and the else-branch if the

test is false or null. To ensure this we use the auxiliary operation

isTrue(G) = case G of (none⇒ false | some(~) ⇒ ~).

6 HANDLING NULLS IN QUERY RESULTS

The translations above establish that NRCopt andNRCnull are equally

expressive (and equally expressive to NRC provided all base types

have default values). In principle one could allow programmers to

write queries in NRCnull , generate and evaluate the correspond-

ing SQL queries, and translate the results at the end to host lan-

guage values involving options. How can we make it easy to work

with these results in a host language where field types do not have

nulls?

Nullable type tracking. This idea is a slightly strengthened form

of F#’s approach. The type system could be extended to track nul-

lability information in queries, and using this information try to

minimize the amount of optional tagging that must be added. In

particular, this approach could cope with the overloaded behavior

of primitive operations on nulls, by giving them types that indicate

that the result may be null only if one of the inputs may be null; if

all inputs are nonnull then so is the result. This approach could be

encoded using a sufficiently rich type system, e.g. dependent types

or Haskell’s type families. However, if schemas lack accurate infor-

mation about nullability, any benefits may be limited.

Null handlers. This idea is loosely inspired by the common lan-

guage feature of exception handling, and by Quill’s pragmatic ap-

proach to dealingwith optional values inside queries. Given a query

returning flat records inNRCnull , we could consider a small domain-

specific language of null handlers that specify how to map the re-

sult to an NRCopt value. A null handler is a record of instructions

defining what to do with each possibly-null field:

(1) optional: return an option value

(2) required: skip this record if this field is null

(3) default E : return default value E if null

Syntactic sugar for declaring multiple fields optional or required

may also be useful. Of course, it is possible to provide any other

desired behavior by returning all nullable results as optional values.

If nulls are tracked by the type system, then fields that are certainly

nonnull do not need to be mentioned.

For example, the disease table query from Section 1 could have

(among others) two handlers:

〈id : required, name : required, type : default − 1〉

〈id : required, name : required, type : required〉

The first one will use −1, an invalid type value, if a type field is

null, while the second will skip any records that contain null type

fields. Nulls in the id and name fields could also lead to records be-

ing dropped, but should not occur according to the schema. These

handlers can be desugared to case analyses using isNull() (on

the database side) or case (in the host language). By desugaring

James Cheney and Wilmer Riccio�i

to database-side case analyses, the handling can be performed in

the database, possibly saving effort.

7 RELATED AND FUTURE WORK

Though nulls and incomplete information have been studied exten-

sively for traditional query languages over flat data (see Libkin [13]

for a recent overview), these features appear to have attracted lim-

ited interest in the setting of nested relational calculus or complex

object query languages. The only work in this direction we know

of is from the early years of ‘non-first-normal-form’ databases [12,

19]. Roth et al. [19] studied nested relations with several variants

of nulls, including no-information, does-not-exist, and unknown,

while Levene and Loizou [12] considered only a single ‘no-information’

null, however neither of these approaches corresponds exactly to

the treatment of nulls in SQL, as formalized recently by Guagliardo

and Libkin [11].

Sum types (of which g? is a special case) were studied in an NRC

setting by Wong [22]. Wong showed normalization and conserva-

tive extension properties hold in the presence of sums and later

Giorgidze et al. [9] showed that nonrecursive algebraic data types

(i.e. n-ary labeled sums) can be implemented in NRC by mapping

such datatypes to nested collections. However, for the purposes of

normalizing queries and generating SQL, the latter approach has

the disadvantage that query results would use nested collections to

represent options, requiring a further flattening or shredding step

possibly resulting in executing several SQL queries [4, 21], which

is not needed in our translation. General sum types can also be sim-

ulated using options, e.g. by representing g + f as 〈! : g?, ' : f?〉.

Implementing sum types using nulls is possible future work.

In this paper we have focused on nulls in a conventional NRC

with a single collection type, e.g. homogeneous sets ormultisets. In

SQL, which contains operators with both set and multiset seman-

tics, as well as grouping and aggregation, nulls interact with sev-

eral other features, such as multiset difference and aggregation, of-

ten in counterintuitive ways [1, 11]. Our focus has been on seman-

tics of NRC queries in the presence of nulls.We conjecture that nor-

malization and conservativity results hold for NRCnull and NRCopt

facilitating their translation to flat SQL queries. We are also inter-

ested in generalizing our treatment of nulls to queries over hetero-

geneous (set/bag) collections [16], higher-order functions [7, 17],

grouping and aggregation [14], and to shredding queries that pro-

duce nested results into multiple SQL queries [4, 18] and in ex-

tending NRCnull to allow nulls at record and collection types. Such

extensions seem possible but not necessarily straightforward. For

example, should a union of a null collection with another be null,

or should the result retain partial knowledge about the known el-

ements?

8 CONCLUSIONS

Incomplete information is needed in most real database situations.

While incomplete information has been studied extensively both in

theory (e.g. certain answer semantics [13]) and practice (e.g SQL’s

pragmatic, but complex treatment of nulls and three-valued logic [11]),

almost all such work has focused on conventional, flat relational

data and queries, not nested relations. This gap in the literature is

particularly noticeable where clean query languages such as NRC

are used to embed SQL queries safely into an ambient typed pro-

gramming language, as in Links, F#, or Quill. In this short paper,we

have outlined the main issues and design considerations we think

are important for a satisfactory solution to this problem. We have

also outlined some initial technical steps towards a solution.

ACKNOWLEDGMENTS

This work was supported by ERC Consolidator Grant Skye (grant

number ERC 682315), and by an ISCF Metrology Fellowship grant

provided by the UK government’s Department for Business, En-

ergy and Industrial Strategy (BEIS).

REFERENCES
[1] V. Benzaken and E. Contejean. A Coq mechanised formal semantics for realistic

SQL queries: formally reconciling SQL and bag relational algebra. In CPP, 2019.
[2] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of programming with

complex objects and collection types. Theor. Comput. Sci., 149(1), 1995.
[3] J. Cheney, S. Lindley, and P. Wadler. A practical theory of language-integrated

query. In ICFP, 2013.
[4] J. Cheney, S. Lindley, and P. Wadler. Query shredding: efficient relational evalu-

ation of queries over nested multisets. In SIGMOD. ACM, 2014.
[5] J. Cheney and W. Ricciotti. Comprehending nulls (extended version). Technical

report, arXiv, 2021.
[6] E. F. Codd. Extending the database relational model to capture more meaning.

ACM Trans. Database Syst., 4(4):397–434, 1979.
[7] E. Cooper. The script-writer’s dream: How to write great SQL in your own

language, and be sure it will succeed. In DBPL, 2009.
[8] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: web programming without

tiers. In FMCO, 2007.
[9] G. Giorgidze, T. Grust, A. Ulrich, and J. Weijers. Algebraic data types for

language-integrated queries. In DDFP, pages 5–10, 2013.
[10] J. Grant. Null values in SQL. SIGMOD Rec., 37(3):23–25, Sept. 2008.
[11] P. Guagliardo and L. Libkin. A formal semantics of SQL queries, its validation,

and applications. PVLDB, 2017.
[12] M. Levene and G. Loizou. Semantics for null extended nested relations. ACM

Trans. Database Syst., 18(3):414–459, 1993.
[13] L. Libkin. Incomplete data: what went wrong, and how to fix it. In PODS, pages

1–13, 2014.
[14] R. Okura and Y. Kameyama. Language-integrated query with nested data struc-

tures and grouping. In FLOPS, pages 139–158, 2020.
[15] Quill: Compile-time language integrated queries for Scala. Open source project.

https://github.com/getquill/quill.
[16] W. Ricciotti and J. Cheney. Mixing set and bag semantics. In DBPL, pages 70–73,

2019.
[17] W. Ricciotti and J. Cheney. Strongly normalizing higher-order relational queries.

In FSCD, pages 28:1–28:22, 2020.
[18] W. Ricciotti and J. Cheney. Query lifting - language-integrated query for hetero-

geneous nested collections. In ESOP, pages 579–606, 2021.
[19] M. A. Roth, H. F. Korth, and A. Silberschatz. Null values in nested relational

databases. Acta Informatica, 26(7):615–642, 1989.
[20] D. Syme. Leveraging .NET meta-programming components from F#: integrated

queries and interoperable heterogeneous execution. In ML Workshop, 2006.
[21] A. Ulrich. Query Flattening and the NestedData Parallelism Paradigm. PhD thesis,

University of Tübingen, Germany, 2019.
[22] L. Wong. Normal forms and conservative extension properties for query lan-

guages over collection types. J. Comput. Syst. Sci., 52(3), 1996.

Comprehending nulls

A TYPING RULES

A.1 Rules for NRC

G : g ∈ Γ

Γ ⊢ G : g

Σ(2) = 1

Γ ⊢ 2 : 1

Σ(5) =
−→
1= ⇒ 1′ (Γ ⊢ "8 : 18)8=1,...,=

Γ ⊢ 5 (
−−→
"=) : 1

′

(Γ ⊢ "8 : g8)8=1,...,=

Γ ⊢ 〈
−−−−−−→
ℓ= = "=〉 : 〈

−−−−→
ℓ= : g=〉

Γ ⊢ " : 〈
−−−−→
ℓ= : g=〉 8 ∈ {1, . . . , =}

Γ ⊢ ".ℓ8 : g8

Γ ⊢ ∅ : {g}

Γ ⊢ " : g

Γ ⊢ {"} : {g}

Γ ⊢ " : {g} Γ ⊢ # : {g}

Γ ⊢ " ∪ # : {g}

Γ, G : f ⊢ " : {g} Γ ⊢ # : {f}

Γ ⊢
⋃
{" |G ← # } : {g}

Γ ⊢ " : {g}

Γ ⊢ empty(") : bool

Γ ⊢ " : bool Γ ⊢ #1 : g Γ ⊢ #2 : g

Γ ⊢ if" then #1 else #2 : g

A.2 Additional rules for NRCopt

For NRCopt the following typing rules are added to those of NRC:

Γ ⊢ none : g?

Γ ⊢ " : g

Γ ⊢ some(") : g?

Γ ⊢ " : g? Γ ⊢ #1 : f Γ, G : g ⊢ #2 : f

Γ ⊢ case " of (none⇒ #1 | some(G) ⇒ #2) : f

A.3 Additional rules for NRCnull

For NRCnull the following typing rules are added to those of NRC:

Γ ⊢ null : 1

Γ ⊢ " : 1

Γ ⊢ isNull(") : bool

B REWRITE RULES

B.1 Common rules

〈. . . , ℓ = ", . . .〉.ℓ { " 5 (
−→
+) { J5 K (−→+)

⋃
{∅|G ← "} { ∅

⋃
{" |G ← ∅} { ∅

⋃
{" |G ← {# }} { " [# /G]

⋃
{" ∪ # |G ← '} {

⋃
{" |G ← '} ∪

⋃
{# |G ← '}

⋃
{" |G ← # ∪ '} {

⋃
{" |G ← # } ∪

⋃
{" |G ← '}

⋃
{" |~←

⋃
{' |G ← # }}

{

⋃
{
⋃
{" |~ ← '}|G ← # } (if G ∉ FV("))

⋃
{" |G ← # where !} {

⋃
{" |G ← # } where !

" where true { " " where false { ∅

∅ where ! { ∅

(" ∪ #) where ! { (" where !) ∪ (# where !)

⋃
{" |G ← # } where !

{

⋃
{" where ! |G ← # } (if G ∉ FV(!))

(" where !1) where !2 { " where (!1 ∧ !2)

empty" { empty (
⋃
{〈〉|G ← "}) (if " is not relation-typed)

if ! then " else # { 〈
−−−−−−−−−−−−−−−−−−−−−−−−−−→
ℓ = if ! then ".ℓ else # .ℓ〉

(if", # have type 〈
−−−→
ℓ : f〉)

B.2 Additional rule for NRC

For NRC, the following rewrite rule is added to the common rules:

if ! then " else # { (" where !) ∪ (# where ¬!)

(if", # have type {f} and # ≠ ∅)

B.3 Additional rules for NRCopt

For NRCopt, the following rewrite rules are added to those of NRC:

case none of (none⇒ #1 | some(G) ⇒ #2) { #1

case some(") of (none⇒ #1 | some(G) ⇒ #2) { #2 ["/G]

We believe that the case analysis rules, being a special case of

sum types, are well behaved and preserve the strong normalization

property.

James Cheney and Wilmer Riccio�i

B.4 Additional rules for NRCnull

For NRCnull, the following rewrite rules are added to the common

rules:

" where null { ∅

if ! then " else #

{ (" where !) ∪ (# where (isNull(!) ∨ ¬!))

(if ",# have type {f} and # ≠ ∅)

isNull(null) { true isNull(2) { false

5 (. . . null . . .) { null (" where null) { ∅

Notice that the if-splitting rule is refined to account for the

case where the condition is null; this additional check preserves

Girard-Tait reducibility and we thus believe the rewrite system to

be strongly normalizing.

	Abstract
	1 Introduction
	2 Background
	3 Explicit nulls
	4 Implicit nulls
	5 Translations
	6 Handling nulls in query results
	7 Related and future work
	8 Conclusions
	Acknowledgments
	References
	A Typing rules
	A.1 Rules for NRC
	A.2 Additional rules for NRCopt
	A.3 Additional rules for NRCnull

	B Rewrite rules
	B.1 Common rules
	B.2 Additional rule for NRC
	B.3 Additional rules for NRCopt
	B.4 Additional rules for NRCnull

