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Abstract—Principal loading analysis is a dimension reduction method

that discards variables which have only a small distorting effect on

the covariance matrix. We complement principal loading analysis and

propose to rather use a mix of both, the correlation and covariance

matrix instead. Further, we suggest to use rescaled eigenvectors and

provide updated algorithms for all proposed changes.

Index Terms—Component Loading, Dimensionality Reduction, Matrix

Perturbation Theory, Principal Component Analysis, Principal Loading

Analysis

1 INTRODUCTION

Principal loading analysis (PLA) is a tool developed by [1]
to reduce dimensions. Their method chooses a subset of
observed variables by discarding the other variables based
on the impact of the eigenvectors on the covariance matrix.
While the method itself is new, some parts of PLA corre-
spond with principal component analysis (PCA) which is a
popular dimension reduction technique first formulated by
[6] and [3]. Despite their intersection however, the outcome
is as different as can be since PCA yields a reduced set of
variables by transforming the original variables while PLA
selects a subset of the original variables. Nonetheless, PLA
partially adopts established concepts from PCA.
PLA is originally based on the covariance matrix. However,
we feel that this comes at a price due to the lack of scale
invariance of the covariance matrix and, hence, we propose
rather to use both, the covariance and the correlation matrix.
Each for different steps of PLA. Therefore, our contribution
is an adjusted method of PLA. Further, we suggest to rescale
the eigenvectors and we provide simulations to find optimal
cut-off values.
This article is organized as follows: Section 2 provides
notation needed for the remainder of this work. In Section 3,
we recap PLA based on the covariance matrix. The focus
of this article is Section 4 where we elaborate the issue
regarding the usage of the covariance matrix. Our main
result is summarized in Corollary 4.1. In Section 5 and
Section 6 we provide updated algorithms based on the cor-
relation matrix while we implement rescaled eigenvectors
in the latter algorithm. Section 7 contains our conclusion for
optimal threshold values from the simulation studies while
we also briefly cover simulation difficulties regarding PLA.
Finally, we summarize our work in Section 8.

2 SETUP

Let x =
(
x1 · · · xM

)
be a N × M sample containing

n ∈ {1, . . . , N} observations of a random vector X =
(X1 · · · XM ) with covariance matrix Σ = (σi,j) for defined
indices i, j ∈ {1, . . . ,M} throughout this work. We consider
the case when the covariance matrix is slightly perturbed by
a sparse matrix E = (εi,j) such that

Σ̃ ≡ Σ+E .

E is a technical construction and contains small components
we want to extract from Σ. Hence, εi,j 6= 0 ⇒ σi,j = 0. The
sample counterpart of Σ̃ is of the form

ˆ̃
Σ ≡ (ˆ̃σi,j) ≡ Σ+E+HN

where HN = (ηi,j|N ) is a perturbation in the form of a
random noise matrix. The noise is due to having only a
finite number of observations in the sample. The correlation
matrix and the sample correlation matrix are denoted by P̃

and
ˆ̃
P respectively. We consider the eigendecomposition of

ˆ̃
Σ to be given by

ˆ̃
Σ ≡ ˆ̃

V
ˆ̃
Λ

ˆ̃
V ⊤ (2.1)

with
ˆ̃
V ⊤ ˆ̃

V = I,
ˆ̃
Λ = diag(

ˆ̃
λ1, . . . ,

ˆ̃
λM ) and

ˆ̃
λ1 ≥ . . . ≥

ˆ̃
λM .

The eigenvectors
ˆ̃
V =

(

ˆ̃v1 · · · ˆ̃vM

)

are ordered accord-

ing to the respective eigenvalues. The eigendecomposition
of Σ̃ is denoted analogously. The eigendecomposition of the

sample correlation matrix is given by
ˆ̃
P = ˆ̃

U
ˆ̃
Ω

ˆ̃
U⊤ where

ˆ̃
U⊤ ˆ̃

U = I and
ˆ̃
Ω = diag(ˆ̃ω1, . . . , ˆ̃ωM ).

When two blocks of random variables Xi1 , . . . , XiI and

Xj1 , . . . , XjJ are uncorrelated we write (Xi1 , . . . , XiI )
c

⊥⊥
(Xj1 , . . . , XjJ ). Further, we recap the definition of ε-
uncorrelatedness provided by [1]:

Definition 2.1. We say that two blocks of random variables
Xi1 , . . . , XiI and Xj1 , . . . , XjJ are ε-uncorrelated if σ̃iī,jj̄ =
εiī,jj̄ for ī ∈ {1, . . . , I} and j̄ ∈ {1, . . . , J}. We then write

(Xi1 , . . . , XiI )
ε

⊥⊥ (Xj1 , . . . , XjJ ).

For practical purposes we define D ⊂ {1, . . . ,M} such that
|D| = M∗ where 1 ≤ M∗ < M . D will contain the indices
of the variables {Xd} ≡ {Xd}d∈D we consider to discard
and we introduce the shortcut dc /∈ D when referring to
the case that dc ∈ {1, . . . ,M}\D. In the same spirit, ∆ with

http://arxiv.org/abs/2102.09912v1


2

|∆| = M∗ will be used to index eigenvectors with respective
eigenvalues linked to the {Xd} and δc /∈ ∆ refers to δc ∈
{1, . . . ,M}\∆. Further, the elements of any (M × 1) vector

ξ are denoted by ξ =
(

ξ(1) · · · ξ(M)
)⊤

.

3 PRINCIPAL LOADING ANALYSIS

PLA is a tool for dimension reduction where a subset of
existing variables is selected while the other variables are
discarded. The intuition is that blocks of variables are dis-
carded which distort the covariance matrix only slightly. It

will turn out that those blocks are specified by
ˆ̃
Σ. Firstly, we

recap PLA and deepen the understanding of the explained
variance in subsection 3.1 and afterwards restate the proce-
dure of PLA in subsection 3.2.

3.1 Contribution to the Explained Variance

We start to recap the method by assuming that only a single
block, consisting of the variables {Xd} is discarded. Those
variables distort the covariance matrix only by a little if
the M∗ rows indexed by d ∈ D of M − M∗ eigenvectors
are small in absolute terms and if the contribution of those
eigenvectors to the explained variance is large, hence if the
contribution of the other eigenvectors is small.

We assume that the eigenvectors {ˆ̃vδc}dc/∈∆ are the eigen-

vectors with small absolute elements {|ˆ̃v
(d)
δc |}d∈D,δc/∈∆.

Consequently, {ˆ̃vδ}δ∈∆ contain small absolute elements

{|ˆ̃v
(dc)
δ | ≤ τ}δ∈∆,dc /∈D , where τ is a chosen threshold, since

the eigenvectors are orthonormal due to the symmetry of
ˆ̃
Σ. The percent contribution of the {ˆ̃vδ}δ∈∆ to the explained

variance of
ˆ̃
Σ is then given by

(
∑

i

ˆ̃λi

)−1



∑

δ∈∆

ˆ̃λδ

∑

d∈D

(ˆ̃v
(d)
δ )2 +

∑

δc /∈∆

ˆ̃λδc
∑

d∈D

(ˆ̃v
(d)
δc )2





(3.1)
which equals the contribution of the block containing the
{Xd}. The intuition of (3.1) is as follows: considering τ = 0,
the expression reduces to

(
∑

i

ˆ̃
λi

)−1(
∑

δ∈∆

ˆ̃
λδ

)

(3.2)

since ˆ̃v
(d)
δc = ˆ̃v

(dc)
δ = 0 for all d ∈ D, dc /∈ D, δ ∈ ∆ and δc /∈

∆. Hence, it also holds that 1 = ‖ˆ̃vδ‖
2
2 =

∑

d∈D(
ˆ̃v
(d)
δ )2. (3.2)

then is the percent contribution of the linear combination of
{Xd} to the explained variance since

Var

(
∑

d∈D

ṽ
(d)
δ Xd

)

= Var(ṽ⊤
δ X) = ṽ⊤

δ Σ̃ṽδ = λ̃δ

is the population contribution of the {Xd} into the direction
of ṽδ and since the population contribution of the {Xd} in
all directions is therefore given by

∑

δ∈∆
λ̃δ . Consequently,

the sample counterpart is
∑

δ∈∆

ˆ̃λδ which we divide by the

overall explained variance
∑

i
ˆ̃
λi in order to obtain a percent

contribution. Note that the elements in (3.1) are squared
since the eigenvectors are normed one and therefore each
squared element, say the i-th element, can be interpreted

as the percent contribution of the corresponding random
variable Xi into the direction of the eigenvector. [1]
Since usually τ 6= 0 with τ small however, (3.2) serves
as a fairly good approximation of (3.1). This is due to the
sparseness of H which bounds maxj |λ̃j − λj | ≤ ‖H‖F as

shown by [1] and further because ˆ̃v
(d)
δc ≈ ˆ̃v

(dc)
δ ≈ 0.

3.2 PLA Algorithm

Variables cause small components in the eigenvectors when
the variables are arranged in blocks1 such that

(X1, . . . , XM1
)

︸ ︷︷ ︸

κ1-many

ε

⊥⊥ . . .
ε

⊥⊥ (XML−1+1, . . . , XML
)

︸ ︷︷ ︸

κL-many

which can be denoted as

Σ̃1
︸︷︷︸

κ1×κ1

ε

⊥⊥ . . .
ε

⊥⊥ Σ̃L
︸︷︷︸

κL×κL

(3.3)

to emphasize the block structure. This follows since the
population eigenvectors of Σ are then of shape

(
∗κ1

0

)

, . . . ,

(
∗κ1

0

)

︸ ︷︷ ︸

κ1-many

,





0

∗κ2

0



 , . . . ,





0

∗κ2

0





︸ ︷︷ ︸

κ2-many

, . . . ,
(

0

∗κL

)

, . . . ,

(
0

∗κL

)

︸ ︷︷ ︸

κL-many

(3.4)
where ∗κl

with l ∈ {1, . . . , L} are vectors of length κl and 0

are vectors of suitable dimension containing zeros. The first
κb1 eigenvectors have (at least) M − κb1 zero-components,
the following κb2 eigenvectors have (at least) M − κb2 zero-

components and so on. The eigenvectors of
ˆ̃
Σ follow the

same shape however they are slightly perturbed due to E

and distorted by the noise HN .

PLA for discarding, say, B blocks Σb1 , . . . ,ΣbB with Σbβ

c

⊥⊥
Σbl ∀l 6= β for β ∈ {1, . . . ,B} is then given by the following
algorithm provided by [1].

Algorithm 3.1 (PLA). Discard the variables corresponding to
Σb1 , . . . ,ΣbB according to PLA proceeds as follows:

1. Check if the eigenvectors of Σ satisfy the required struc-
ture in (3.4) to discard Σb1 , . . . ,ΣbB .

2. Decide if Σb1 , . . . ,ΣbB are relevant according to the
explained variance of the realisations {xd} of their con-
tained random variables {Xd} by calculating (3.1) (or
(3.2)).

3. Discard Σb1 , . . . ,ΣbB .

4 ISSUES WHEN USING THE COVARIANCE MATRIX

While [1] propose to check if the absolute elements of the
eigenvectors of the covariance matrix are below a threshold
τ , we complement their results by providing an incentive
to consider the usage of the correlation matrix instead.
Our contribution is to show that the small elements of the
eigenvectors converge towards zero when {Var(Xd)}d∈D

increase. This is a concern because the variance is not scale
invariant hence PLA might yield different results for the

1. Note that we can assume that the covariance matrix behaves in
this convenient way because we can always obtain this structure using
a permutation matrix.
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same but rescaled data set.
We consider to drop only a single block, say, Σb containing
{Xd} where it is assumed for convenience purposes that
D = {1, . . . ,M∗}. Again, we can assume those elements for
D because we can obtain this structure of the covariance
matrix using a permutation matrix. The extension to the
general case when discarding several blocks is analogue.

Theorem 4.1. Let D and ∆ as introduced in section 2 and ˆ̃σjj ≡
ˆ̃Var(Xj) and let i ∈ {1, . . . ,M}. We assume that

ˆ̃λδ 6= 0. For
each d ∈ D there exists one δ ∈ ∆ such that

∂|ˆ̃v
(i)
δ |

∂ ˆ̃Var(Xd)
< 0 and

∂ ˆ̃v
(d)
δ

∂ ˆ̃Var(Xd)
> 0

for i 6= d and as long as |ˆ̃v
(d)
δ | 6= 1 and |ˆ̃v

(i)
δ | 6= 0.

Proof. Let i,m ∈ {1, . . . ,M} with i 6= d. From the trace

tr( ˆ̃Σ) =
∑

m

ˆ̃λm =
∑

m

ˆ̃σmm ≡
∑

m

ˆ̃Var(Xm) (4.1)

we can conclude that λ̃j =
∑

m
ˆ̃Var(Xm)−

∑

m 6=j
ˆ̃λj . If we

consider now that
ˆ̃Var(Xj) changes by, say, µj

ˆ̃Var(Xj) 7→
ˆ̃Var(Xj) + µj

it holds that
ˆ̃
λm 7→

ˆ̃
λm + pmjµj (4.2)

changes as well with pmj ∈ [0, 1] and
∑

m pmj = 1 such that
(4.1) is satisfied.
Further, from the eigendecomposition in (2.1) we can con-

clude that ˆ̃vδ =
ˆ̃
λ−1
δ

ˆ̃
Σˆ̃vδ and hence from (4.1) that

ˆ̃v
(i)
δ =

∑

m
ˆ̃σim

ˆ̃v
(m)
δ

ˆ̃λδ

=

∑

m
ˆ̃σim

ˆ̃v
(m)
δ

∑

m
ˆ̃σmm −

∑

m 6=δ
ˆ̃λm

(4.3)

ˆ̃v
(d)
δ =

∑

m
ˆ̃σdm

ˆ̃v
(m)
δ

ˆ̃λδ

=
ˆ̃σdd

ˆ̃v
(d)
δ +

∑

m 6=d
ˆ̃σdm

ˆ̃v
(m)
δ

∑

m
ˆ̃σmm −

∑

m 6=δ
ˆ̃λm

(4.4)

which can both be considered as a function of
ˆ̃Var(Xd) ≡

ˆ̃σdd. We can now derive the partial derivatives.
Case I: starting with the case that pδd ∈ (0, 1] i.e. that pδd 6= 0
and

∑

m 6=δ pmd < 1, we obtain from (4.3) due to (4.1) and
(4.2) that

ˆ̃v
(i)
δ

(
ˆ̃Var(Xd) + µd

)

≡ ˆ̃v
(i)
δ

(

ˆ̃σdd + µd

)

=

∑

m
ˆ̃σim

ˆ̃v
(m)
δ

µd

(

1−
∑

m 6=δ pmdµd

)

+
∑

m
ˆ̃σmm −

∑

m 6=δ
ˆ̃
λm

=

∑

m
ˆ̃σim

ˆ̃v
(m)
δ

µd

(

1−
∑

m 6=δ pmdµd

)

+ ˆ̃λδ

=

∑

m
ˆ̃σim

ˆ̃v
(m)
δ

pδdµd +
ˆ̃λδ

. (4.5)

Let f(µd) ≡
∣
∣ˆ̃v

(i)
δ

(
ˆ̃Var(Xd) + µd

) ∣
∣ −

∣
∣ˆ̃v

(i)
δ

(
ˆ̃Var(Xd)

) ∣
∣.

From (4.3) and (4.5) we see that limµd→0 f(µd) = 0. Hence,
the partial derivative is given by

∂|ˆ̃v
(i)
δ |

∂ ˆ̃Var(Xd)
= lim

µd→0

f(µd)

µd
= lim

µd→0

∂f(µd)

∂µd

= −

|
∑

m

ˆ̃σim
ˆ̃v
(m)
δ |

ˆ̃
λδ

|ˆ̃λδ|3
(4.6)

where we used L’Hospital’s rule in the second step since
limµd→0 µd = 0 as well as ∂µd/∂µd = 1. The final step is an
immediate result of the chain rule ∂/∂x · 1/|x| = ∂/∂|x| ·

1/|x| · ∂|x|/∂x. The result follows since
ˆ̃
Σ is positive semi-

definite by construction hence
ˆ̃λδ > 0 because

ˆ̃λδ 6= 0 is
assumed.
To obtain the second result we conclude from ‖ˆ̃vδ‖

2
2 = 1

that
ˆ̃v
(d)
δ =

√

1−
∑

m 6=d

(ˆ̃v
(m)
δ )2 . (4.7)

If now |ˆ̃v
(i)
δ | 6= 0 decreases which is the case if

ˆ̃Var(Xd)

increases since ∂|ˆ̃v
(i)
δ |/∂ ˆ̃Var(Xd) < 0, then |ˆ̃v

(d)
δ | increases

due to (4.7). Hence ∂|ˆ̃v
(d)
δ |/∂ ˆ̃Var(Xd) > 0.

Case II: when pδd = 0 we obtain from (4.4) that

ˆ̃v
(d)
δ =

( ˆ̃Var(Xd) + µd)ˆ̃v
(d)
δ +

∑

m 6=d
ˆ̃σdm

ˆ̃v
(m)
δ

ˆ̃
λδ

(4.8)

since
ˆ̃
λδ does not change in

ˆ̃Var(Xd). Analogue to case I, let

g(µd) ≡
∣
∣ˆ̃v

(d)
δ

(
ˆ̃Var(Xd) + µd

) ∣
∣ −

∣
∣ˆ̃v

(d)
δ

(
ˆ̃Var(Xd)

) ∣
∣. From

(4.4) and (4.8) we see that limµd→0 g(µd) = 0. Hence, the
partial derivative is given by

∂|ˆ̃v
(d)
δ |

∂ ˆ̃Var(Xd)
= lim

µd→0

g(µd)

µd
= lim

µd→0

∂g(µd)

∂µd
=

|ˆ̃v
(d)
δ |

|
ˆ̃
λδ|

> 0

following the same arguments as in (4.6) and due to the

structure in (3.4). We obtain that ∂|ˆ̃v
(i)
δ |/∂ ˆ̃Var(Xd) < 0

analogue to case I when solving (4.7) for ˆ̃v
(i)
δ instead of

ˆ̃v
(d)
δ and follow the arguments above however reversed by

considering first that |ˆ̃v
(d)
δ | 6= 1 increases.

The intuition behind Theorem 4.1 is that Var(Xd) is present

in both, the numerator and denominator of ˆ̃v
(d)
δ while

Var(Xd) only enters the denominator of ˆ̃v
(i)
δ for i 6= d

via
ˆ̃
λd. Strictly speaking, a change of Var(Xd) enters also

the numerator of ˆ̃v
(i)
δ due to

ˆ̃Cov(Xi, Xd) ≡ ˆ̃σid. Con-
sider to increase or decrease X by c · X , for c ∈ R

being a constant, as it might occur when changing scales.

Then
ˆ̃Cov(Xi, c · Xd) = c · ˆ̃Cov(Xi, Xd). However, since

ˆ̃Var(c·Xd) = c2 · ˆ̃Var(Xd) we can simply shorten the fraction
to get rid of c in the numerator. When considering a change
in a variable as a sum, as we did in the proof of Theorem 4.1,
the change will not be present in the numerator since
ˆ̃Cov(Xi, Xd + c) = ˆ̃Cov(Xi, Xd). Further, the assumption

that
ˆ̃λδ 6= 0 is reasonable since this case barely occurs for a
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covariance matrix and is less strict than assuming positive
definiteness.

Corollary 4.1. Let D and ∆ as introduced in section 2 and ˆ̃σjj ≡
ˆ̃Var(Xj). We assume that

ˆ̃
λδ 6= 0. For each d ∈ D there exists

one δ ∈ ∆ such that for all dc /∈ D

∂|ˆ̃v
(dc)
δ |

∂ ˆ̃Var(Xd)
< 0 .

Corollary 4.1 shows the issue when using the covariance
matrix for PLA. Since the covariance matrix is not scale
invariant, the respective eigenvectors are neither: if the
variance decreases, the elements that we check to lie un-
der a certain threshold increase. Further they decrease, in

fact converge towards zero lim ˆ̃Var(Xd)→∞
ˆ̃v
(dc)
δ → 0, if the

variance increases.

Corollary 4.2. Let D and ∆ as introduced in section 2 and ˆ̃σjj ≡
ˆ̃Var(Xj). We assume that

ˆ̃
λδ 6= 0. For each d ∈ D there exists

one δ ∈ ∆ such that for all i 6= δ

∂|ˆ̃v
(d)
i |

∂ ˆ̃Var(Xd)
< 0 .

Proof. The result follows from Theorem 4.1 and since the

rows of
ˆ̃
V are normed to 1.

When introducing PLA, [1] also considered to check not
(only) the rows of the eigenvectors but (also) the columns.
According to Corollary 4.2 we face the same problem when
following the latter approach.

5 PLA USING THE CORRELATION MATRIX

In this section, we introduce PLA based on the correlation
matrix and address a concern regarding the eigenvalues.
Since, both the correlation matrix P is invariant to linear
changes [5] and the eigenvectors have the same shape (3.4)
as the eigenvectors of Σ, PLA based on P is a natural choice.
However, there is a downside when it comes down to
calculate the explained variance. For simplicity, we consider
to use (3.2). Note that the same issues hold for (3.1) as well.
We denote the block structure of ε-uncorrelated random
variables analogue to (3.3) by

P̃1
︸︷︷︸

κ1×κ1

ε

⊥⊥ . . .
ε

⊥⊥ P̃L
︸︷︷︸

κL×κL

.

Since tr(P) =
∑

i ωi =
∑

i ρii = M and tr(Pl) =
∑

δl
ωδl =

∑Ml

m=Ml−1
ρmm = κl, where δl indexes the eigenvalues

corresponding to the eigenvectors linked to the random
variables contained in Pl, the explained variance for any
block Pl is given by

(
∑

i

ωi

)−1



∑

δl

ωδl



 =
κl

M
.

Hence, the explained variance for any block ˆ̃
Pl is approx-

imately given by κl/M , since E and HN are sparse. This

means that we loose the information provided by
ˆ̃
Λ to

evaluate the importance of each block since we standardized

each variable to unit variance. Therefore, we propose to use

the eigenvectors of
ˆ̃
P to search the blocks of concern and

to use the eigenvalues of
ˆ̃
Σ to decide whether to discard

or not. However, that
ˆ̃
Σ is not scale invariant is the price

we pay when coming back to
ˆ̃
Σ to calculate the explained

variance. Since this is a well known concern in classic PCA,
we refer to [2] and [4] for elaborate explanations.

Algorithm 5.1 (PLA based on the correlation matrix).
Discard the variables corresponding to Pb1 , . . . ,PbB according
to PLA based on the correlation matrix proceeds as follows:

1. Check if the eigenvectors of P satisfy the required struc-
ture in (3.4) to discard Pb1 , . . . ,PbB .

2. Decide if Pb1 , . . . ,PbB are relevant according to the
explained variance of the realisations {xd} of their con-
tained random variables {Xd} by calculating (3.1) (or
(3.2)).

3. Discard Pb1 , . . . ,PbB .

6 RESCALED EIGENVECTORS

A minor addition to PLA is rescaling the eigenvectors. In
this section we briefly cover this change and provide a
modified algorithm.
Originally coming from PCA, the idea is to rescale the
eigenvectors so the maximum value equals one [4] which
is easily done by dividing by the largest element. Hence, we

do not check the elements of ˆ̃vj but rather the elements of

ˆ̃uj/arg maxi| ˆ̃u
(i)
j | . (6.1)

This modifies PLA to a more standardised procedure. We
provide the algorithm when using rescaled eigenvectors of
the correlation matrix. The change of the algorithm based
on the covariance matrix is analogue.

Algorithm 6.1 (PLA based on rescaled eigenvectors of
the correlation matrix). Discard the variables corresponding
to Pb1 , . . . ,PbB according to PLA based on rescaled eigenvectors
of the correlation matrix proceeds as follows:

1. Check if the rescaled eigenvectors (6.1) of P satisfy the
required structure in (3.4) to discard Pb1 , . . . ,PbB .

2. Decide if Pb1 , . . . ,PbA are relevant according to the
explained variance of the realisations {xd} of their con-
tained random variables {Xd} by calculating (3.1) (or
(3.2)).

3. Discard Pb1 , . . . ,PbB .

7 SIMULATION STUDY

We conduct a simulation study in this section to evaluate the
performance of PLA based on the rescaled eigenvectors of
the correlation matrix for different threshold values. There is
a concern regarding the simulation due to the perturbations
E and H which we discuss as well.
Choosing the optimal cut-off value τ is crucial for PLA,
however finding such a value theoretically is rather difficult
due to the fuzziness of algorithm step 2 [1]. Hence, we
conducted a simulation study. We simulated the case when
dropping k ∈ {1, . . . , 5} uncorrelated blocks of dimension
1 × 1, i.e. single variables, and the case when dropping
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a single uncorrelated κ × κ block with κ ∈ {2, . . . , 6}.
The population X consisting of M variables with 100 000
realisations was simulated S = 10 000 times. Then, for
each S a sample x of size N ∈ {5000, 10 000} has been
drawn and we conducted PLA according to Algorithm 6.1
for τ ∈ {0.4, 0.5, 0.6, 0.7} and τ ∈ {0.6, 0.7, 0.8, 0.9} for the
single variable case and for the block case respectively. We
considered cut-off values used in published studies as an
orientation [7].2 The resulting type I error probabilities are
calculated as the share of iterations where PLA did not lead
to a consideration of a drop.
The concern when using a simulation study to find optimal
thresholds is described in Theorem 4.2 in [1]. The theorem
provides an intuition of the possible magnitude of the
perturbations of Σ that results in a drop. The result for the
perturbations of P is analogue. For completion, we restate
the theorem as well as the proof.

Theorem 7.1. Denote λ̃0 = λ0 ≡ ∞ and λ̃M+1 = λM+1 ≡
−∞. For j ∈ {1, . . . ,M} it holds that

23/2‖E+HN‖F
min(λj−1 − λj , λj − λj+1)

< τ ⇒ ‖εj + ηj|N‖∞ < τ .

Proof. From Corollary 1 in [8] we can conclude that ‖εj +
ηj|N‖2 ≤ 23/2‖E+HN‖F /min(λj−1−λj , λj−λj+1) which
yields our desired result since ‖εj+ηj|N‖∞ ≤ ‖εj+ηj|N‖2.

Hence, discarding depends on the size of E and HN which
enlarges the amount of parameters that have to be simu-
lated. In this work however we simulate the special case
when E = 0 and focus on the influence of the sample noise
reflected by the sample size N . For completion, we shall
emphasise that Theorem 7.1 is not always feasible for P

without assuming that the eigenvalues are distinct since the
eigenvalues for P are more close in general. Nonetheless,
the intuition behind the theorem is valid.
In Table 1 in Appendix A we see that the type I error for
discarding single uncorrelated variables is smaller 0.05 for
most cases when τ ∈ {0.5, 0.6}. Of course, the error prob-
ability decreases when the thresholds increases. However,
since one should expect that the type II error increases with
larger thresholds, we recommend to use the smallest cut-off
yielding sufficient results hence τ ≤ 0.6. τ ≡ τ(N,M, k)
is hereby a function of sample size, number of variables
and number of uncorrelated variables and can be adjusted
according to those values. In an analogue manner according
to Table 2, the type I errors for single uncorrelated blocks
performs well for τ ≤ 0.8 where τ ≡ τ(N,M, κ) is a func-
tion of sample size, number of variables and the dimension
of the uncorrelated block. We shall emphasize however that
the choice of thresholds depends on the data as well as
on the purpose of statistical analysis. Hence, choosing even
smaller or wider cut-off values might be reasonable if larger
type I or type II errors are tolerable.

2. We considered cut-off values ranging from 0.1 to 0.9 during
research. However, we only present thresholds that are suitable for
practice. Further, the tails of the tables sufficiently indicate the decrease
in performance for wider or tighter thresholds. This makes illustrating
more extreme cut-off values dispensable.

8 CONCLUDING REMARKS

We propose to use both, the covariance and the correlation
matrix to conduct PLA. This is because the covariance ma-
trix is not scale invariant which may result in different out-
comes of PLA. Hence, we recommend to use Algorithm 5.1
or Algorithm 6.1 instead. For the latter one, an orientation is
to use a threshold τ ≤ 0.6 for the case of single uncorrelated
variables and τ ≤ 0.8 for a block of uncorrelated variables.
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APPENDIX

We provide the type I error rates for k ∈ {1, . . . , 5} single uncorrelated variables and for an uncorrelated κ× κ block with
κ ∈ {2, . . . , 6} respectively. As specified in Section 7, the error probabilities are calculated as the share of iterations where
PLA did not lead to a consideration of a drop.

TABLE 1: Type I error for k ∈ {1, 2, 3, 4, 5} uncorrelated variables with sample size N ∈ {5000, 10 000} and threshold
τ ∈ {0.4, 0.5, 0.6, 0.7}

N = 5000 N = 10 000

M k τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 M k τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7

20 1 0.0434 0.0079 0.0014 0.0000 20 1 0.0245 0.0041 0.0000 0.0000
40 1 0.0419 0.0053 0.0003 0.0000 40 1 0.0196 0.0014 0.0000 0.0000
60 1 0.0489 0.0058 0.0005 0.0000 60 1 0.0174 0.0023 0.0001 0.0001
80 1 0.0576 0.0065 0.0004 0.0001 80 1 0.0159 0.0010 0.0001 0.0000

100 1 0.0688 0.0080 0.0004 0.0000 100 1 0.0192 0.0012 0.0000 0.0000
120 1 0.0822 0.0090 0.0002 0.0001 120 1 0.0205 0.0012 0.0001 0.0000
140 1 0.0911 0.0119 0.0006 0.0002 140 1 0.0226 0.0008 0.0000 0.0000
160 1 0.1070 0.0131 0.0013 0.0001 160 1 0.0250 0.0010 0.0001 0.0000
180 1 0.1226 0.0140 0.0016 0.0000 180 1 0.0281 0.0019 0.0000 0.0000
200 1 0.1462 0.0176 0.0011 0.0000 200 1 0.0285 0.0025 0.0002 0.0000

20 2 0.1055 0.0364 0.0103 0.0011 20 2 0.0681 0.0232 0.0065 0.0009
40 2 0.1293 0.0297 0.0054 0.0013 40 2 0.0692 0.0151 0.0015 0.0000
60 2 0.1411 0.0291 0.0042 0.0005 60 2 0.0660 0.0105 0.0007 0.0000
80 2 0.1588 0.0299 0.0043 0.0005 80 2 0.0611 0.0087 0.0014 0.0002

100 2 0.1743 0.0318 0.0056 0.0002 100 2 0.0636 0.0069 0.0007 0.0000
120 2 0.2014 0.0337 0.0039 0.0003 120 2 0.0651 0.0086 0.0005 0.0002
140 2 0.2281 0.0385 0.0047 0.0007 140 2 0.0721 0.0080 0.0005 0.0000
160 2 0.2434 0.0438 0.0042 0.0003 160 2 0.0754 0.0088 0.0004 0.0000
180 2 0.2650 0.0507 0.0059 0.0005 180 2 0.0802 0.0069 0.0006 0.0000
200 2 0.2950 0.0507 0.0077 0.0003 200 2 0.0861 0.0095 0.0004 0.0001

20 3 0.1470 0.0546 0.0159 0.0037 20 3 0.0970 0.0397 0.0093 0.0022
40 3 0.1978 0.0511 0.0107 0.0017 40 3 0.1085 0.0270 0.0038 0.0006
60 3 0.2258 0.0508 0.0093 0.0010 60 3 0.1011 0.0178 0.0025 0.0006
80 3 0.2513 0.0513 0.0078 0.0008 80 3 0.1071 0.0156 0.0026 0.0000

100 3 0.2749 0.0532 0.0081 0.0007 100 3 0.1079 0.0157 0.0020 0.0003
120 3 0.3076 0.0587 0.0079 0.0013 120 3 0.1130 0.0131 0.0013 0.0001
140 3 0.3303 0.0626 0.0080 0.0008 140 3 0.1136 0.0139 0.0010 0.0003
160 3 0.3722 0.0687 0.0093 0.0007 160 3 0.1230 0.0156 0.0017 0.0002
180 3 0.3964 0.0771 0.0089 0.0008 180 3 0.1348 0.0155 0.0015 0.0001
200 3 0.4315 0.0845 0.0094 0.0010 200 3 0.1415 0.0136 0.0011 0.0001

20 4 0.1981 0.0807 0.0265 0.0074 20 4 0.1251 0.0501 0.0169 0.0037
40 4 0.2566 0.0745 0.0153 0.0032 40 4 0.1455 0.0361 0.0056 0.0015
60 4 0.2957 0.0678 0.0117 0.0029 60 4 0.1472 0.0299 0.0051 0.0006
80 4 0.3213 0.0777 0.0118 0.0022 80 4 0.1464 0.0254 0.0028 0.0004

100 4 0.3680 0.0777 0.0109 0.0027 100 4 0.1543 0.0228 0.0027 0.0002
120 4 0.3953 0.0824 0.0107 0.0014 120 4 0.1552 0.0224 0.0019 0.0002
140 4 0.4302 0.0924 0.0113 0.0018 140 4 0.1672 0.0216 0.0026 0.0008
160 4 0.4702 0.0949 0.0112 0.0002 160 4 0.1736 0.0201 0.0018 0.0000
180 4 0.4975 0.1044 0.0133 0.0018 180 4 0.1789 0.0218 0.0025 0.0000
200 4 0.5409 0.1168 0.0157 0.0012 200 4 0.1949 0.0186 0.0017 0.0003

20 5 0.2170 0.0977 0.0373 0.0103 20 5 0.1451 0.0667 0.0214 0.0055
40 5 0.3107 0.0961 0.0237 0.0050 40 5 0.1784 0.0547 0.0109 0.0019
60 5 0.3588 0.0956 0.0162 0.0033 60 5 0.1884 0.0375 0.0077 0.0007
80 5 0.4057 0.1005 0.0163 0.0023 80 5 0.1881 0.0347 0.0033 0.0005

100 5 0.4401 0.1035 0.0145 0.0019 100 5 0.1902 0.0298 0.0036 0.0001
120 5 0.4812 0.1071 0.0161 0.0018 120 5 0.2008 0.0267 0.0033 0.0002
140 5 0.5248 0.1117 0.0153 0.0017 140 5 0.2016 0.0243 0.0031 0.0004
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TABLE 1: Type I error for k ∈ {1, 2, 3, 4, 5} uncorrelated variables with sample size N ∈ {5000, 10 000} and threshold
τ ∈ {0.4, 0.5, 0.6, 0.7} (continued)

N = 5000 N = 10 000

M k τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 M k τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7

160 5 0.5628 0.1234 0.0142 0.0014 160 5 0.2142 0.0263 0.0028 0.0001
180 5 0.5975 0.1328 0.0170 0.0013 180 5 0.2240 0.0254 0.0031 0.0001
200 5 0.6382 0.1477 0.0188 0.0017 200 5 0.2425 0.0276 0.0016 0.0004

Notes: the type I error is computed as the share of iterations where the k variables have not been discarded.

TABLE 2: Type I error for a single uncorrelated κ × κ block with κ ∈ {2, 3, 4, 5, 6}, sample size N ∈ {5000, 10 000} and
threshold τ ∈ {0.6, 0.7, 0.8, 0.9}

N = 5000 N = 10 000

M κ τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9 M κ τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9

20 2 0.0684 0.0256 0.0084 0.0011 20 2 0.0429 0.0178 0.0041 0.0008
40 2 0.0573 0.0165 0.0031 0.0012 40 2 0.0249 0.0064 0.0011 0.0004
60 2 0.0540 0.0143 0.0040 0.0009 60 2 0.0174 0.0036 0.0003 0.0001
80 2 0.0629 0.0143 0.0028 0.0003 80 2 0.0180 0.0021 0.0001 0.0001

100 2 0.0647 0.0149 0.0030 0.0006 100 2 0.0144 0.0035 0.0004 0.0001
120 2 0.0746 0.0176 0.0024 0.0003 120 2 0.0175 0.0030 0.0004 0.0000
140 2 0.0790 0.0188 0.0036 0.0003 140 2 0.0176 0.0015 0.0001 0.0000
160 2 0.0903 0.0219 0.0034 0.0005 160 2 0.0162 0.0025 0.0003 0.0001
180 2 0.0931 0.0238 0.0037 0.0006 180 2 0.0186 0.0027 0.0000 0.0000
200 2 0.1038 0.0239 0.0035 0.0009 200 2 0.0224 0.0032 0.0003 0.0000

20 3 0.0847 0.0325 0.0091 0.0016 20 3 0.0556 0.0209 0.0049 0.0011
40 3 0.0731 0.0213 0.0048 0.0013 40 3 0.0341 0.0063 0.0018 0.0004
60 3 0.0821 0.0254 0.0039 0.0009 60 3 0.0275 0.0049 0.0009 0.0003
80 3 0.0831 0.0215 0.0049 0.0007 80 3 0.0249 0.0053 0.0010 0.0000

100 3 0.0894 0.0213 0.0052 0.0006 100 3 0.0250 0.0055 0.0010 0.0003
120 3 0.0937 0.0217 0.0052 0.0016 120 3 0.0254 0.0048 0.0006 0.0001
140 3 0.1037 0.0236 0.0040 0.0008 140 3 0.0270 0.0047 0.0007 0.0001
160 3 0.1078 0.0254 0.0061 0.0008 160 3 0.0263 0.0054 0.0006 0.0001
180 3 0.1177 0.0264 0.0040 0.0010 180 3 0.0259 0.0039 0.0011 0.0002
200 3 0.1262 0.0283 0.0050 0.0008 200 3 0.0251 0.0052 0.0007 0.0001

20 4 0.1409 0.0658 0.0225 0.0073 20 4 0.0895 0.0388 0.0137 0.0037
40 4 0.1337 0.0449 0.0146 0.0030 40 4 0.0704 0.0223 0.0045 0.0005
60 4 0.1329 0.0442 0.0125 0.0036 60 4 0.0567 0.0152 0.0036 0.0003
80 4 0.1459 0.0397 0.0122 0.0018 80 4 0.0547 0.0125 0.0026 0.0006

100 4 0.1595 0.0461 0.0105 0.0023 100 4 0.0514 0.0116 0.0017 0.0003
120 4 0.1622 0.0496 0.0114 0.0023 120 4 0.0503 0.0111 0.0013 0.0002
140 4 0.1780 0.0491 0.0122 0.0030 140 4 0.0504 0.0113 0.0024 0.0003
160 4 0.2021 0.0493 0.0106 0.0020 160 4 0.0582 0.0099 0.0013 0.0002
180 4 0.2069 0.0490 0.0114 0.0017 180 4 0.0570 0.0087 0.0014 0.0004
200 4 0.2065 0.0548 0.0119 0.0021 200 4 0.0592 0.0100 0.0013 0.0003

20 5 0.1884 0.0990 0.0443 0.0146 20 5 0.1255 0.0698 0.0277 0.0074
40 5 0.1991 0.0778 0.0244 0.0060 40 5 0.1043 0.0342 0.0112 0.0025
60 5 0.1982 0.0766 0.0191 0.0054 60 5 0.0892 0.0280 0.0075 0.0011
80 5 0.2221 0.0722 0.0199 0.0051 80 5 0.0854 0.0258 0.0039 0.0008

100 5 0.2354 0.0740 0.0193 0.0040 100 5 0.0862 0.0215 0.0040 0.0010
120 5 0.2580 0.0783 0.0233 0.0036 120 5 0.0865 0.0207 0.0041 0.0007
140 5 0.2726 0.0792 0.0209 0.0033 140 5 0.0895 0.0187 0.0039 0.0008
160 5 0.2858 0.0895 0.0180 0.0038 160 5 0.0855 0.0188 0.0029 0.0004
180 5 0.2914 0.0867 0.0222 0.0040 180 5 0.0928 0.0201 0.0033 0.0004
200 5 0.3129 0.0907 0.0192 0.0038 200 5 0.0932 0.0191 0.0036 0.0005

20 6 0.2440 0.1413 0.0703 0.0245 20 6 0.1708 0.0938 0.0458 0.0178
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TABLE 2: Type I error for a single uncorrelated κ × κ block with κ ∈ {2, 3, 4, 5, 6}, sample size N ∈ {5000, 10 000} and
threshold τ ∈ {0.6, 0.7, 0.8, 0.9} (continued)

N = 5000 N = 10 000

M κ τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9 M κ τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9

40 6 0.2711 0.1194 0.0399 0.0136 40 6 0.1564 0.0598 0.0180 0.0056
60 6 0.2822 0.1073 0.0315 0.0104 60 6 0.1399 0.0429 0.0104 0.0031
80 6 0.3018 0.1082 0.0350 0.0080 80 6 0.1334 0.0336 0.0094 0.0014

100 6 0.3288 0.1137 0.0328 0.0077 100 6 0.1340 0.0352 0.0075 0.0012
120 6 0.3472 0.1197 0.0316 0.0081 120 6 0.1363 0.0318 0.0074 0.0008
140 6 0.3723 0.1210 0.0310 0.0092 140 6 0.1388 0.0296 0.0067 0.0007
160 6 0.3861 0.1281 0.0326 0.0071 160 6 0.1337 0.0312 0.0070 0.0009
180 6 0.3958 0.1404 0.0353 0.0065 180 6 0.1399 0.0314 0.0050 0.0004
200 6 0.4152 0.1389 0.0340 0.0070 200 6 0.1405 0.0305 0.0049 0.0008

Notes: the type I error is computed as the share of iterations where the block containing κ variables has not been
discarded.
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