
CVEfixes: Automated Collection of Vulnerabilities and Their
Fixes from Open-Source Software

Guru Bhandari
Simula Research Laboratory

Oslo, Norway
guru@simula.no

Amara Naseer
Simula Research Laboratory

Oslo, Norway
amara@simula.no

Leon Moonen
Simula Research Laboratory

Oslo, Norway
leon.moonen@computer.org

ABSTRACT

Data-driven research on the automated discovery and repair of secu-

rity vulnerabilities in source code requires comprehensive datasets

of real-life vulnerable code and their fixes. To assist in such research,

we propose a method to automatically collect and curate a com-

prehensive vulnerability dataset from Common Vulnerabilities and

Exposures (CVE) records in the National Vulnerability Database

(NVD).We implement our approach in a fully automated dataset col-

lection tool and share an initial release of the resulting vulnerability

dataset named CVEfixes. The CVEfixes collection tool automatically

fetches all available CVE records from the NVD, gathers the vul-

nerable code and corresponding fixes from associated open-source

repositories, and organizes the collected information in a relational

database. Moreover, the dataset is enriched with meta-data such as

programming language, and detailed code and security metrics at

five levels of abstraction. The collection can easily be repeated to

keep up-to-date with newly discovered or patched vulnerabilities.

The initial release of CVEfixes spans all published CVEs up to 9

June 2021, covering 5365 CVE records for 1754 open-source projects

that were addressed in a total of 5495 vulnerability fixing commits.

CVEfixes supports various types of data-driven software security re-

search, such as vulnerability prediction, vulnerability classification,

vulnerability severity prediction, analysis of vulnerability-related

code changes, and automated vulnerability repair.

CCS CONCEPTS

• Security and privacy→ Software and application security;

Vulnerability management; • Software and its engineering →

Software defect analysis; Software libraries and repositories.

KEYWORDS

Security vulnerabilities, dataset, software repository mining, vul-

nerability prediction, vulnerability classification, source code repair.

ACM Reference Format:

Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEfixes: Au-

tomated Collection of Vulnerabilities and Their Fixes from Open-Source

Software. In Proceedings of the 17th International Conference on Predic-

tive Models and Data Analytics in Software Engineering (PROMISE ’21),

August 19ś20, 2021, Athens, Greece. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3475960.3475985

PROMISE ’21, August 19ś20, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8680-7/21/08.
https://doi.org/10.1145/3475960.3475985

1 INTRODUCTION

The exploitation of security vulnerabilities is a significant threat

to the reliability of software systems and to the protection of the

data processed by them, as is frequently evidenced by new data

leaks, ransomware attacks, and substantial outages of essential

systems. Despite the continued efforts of the software engineering

community to improve software quality and security by means of

secure coding guidelines, software testing, and various forms of

code review, the publicly available Common Vulnerabilities and

Exposures (CVE) records reveal an increasing trend in the number

of vulnerabilities that are discovered each year [1].

The overall security of software is highly dependent on the ef-

fective and timely identification and mitigation of software vulner-

abilities. However, this is not an easy task and requires experience

and specialized skills that go beyond the expertise of the typical

developer, resulting in many vulnerabilities that go unnoticed for

a long time. Consequently, there has been considerable attention

in academia and industry to the development of techniques and

tools that can help developers identify, and possibly repair, security

vulnerabilities in source code already in the development phase.

Data-driven vulnerability research depends on the availability of

datasets with samples of real-life vulnerable code and their fixes [2].

Moreover, such datasets should encompass multiple levels of gran-

ularity [3, 4], such as files, classes, functions, etc., and cover widely-

used programming languages [5, 6]. Finally, for reliable training and

evaluation of machine learning (ML) approaches, we need compre-

hensive datasets that contain large numbers of diverse and labeled

samples of both vulnerable and non-vulnerable code [7ś9]. As we

will see in the discussion of related work (Section 2), the currently

available vulnerability datasets do not fulfill these requirements.

To address their shortcomings and assist in data-driven vulner-

ability research, we propose to automatically collect and curate

a comprehensive vulnerability dataset from CVE records in the

National Vulnerability Database (NVD). In particular, we propose

an approach that mines CVE records for open-source software

(OSS) projects hosted on GitHub, GitLab, and Bitbucket, to collect

real-world samples of vulnerable and corresponding patched code.

We implement the proposed approach in a dataset collection tool

and share an initial release of the resulting vulnerability dataset

named CVEfixes. The dataset supports various types of data-driven

software security research, such as ML-based vulnerability iden-

tification, automated classification of identified vulnerabilities in

Common Weakness Enumeration (CWE) types, vulnerability sever-

ity prediction, and automated repair of security vulnerabilities.

Contributions: This paper makes the following contributions:

(a) We survey existing security vulnerability-related datasets

and discuss their strengths and weaknesses.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

30

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3475960.3475985
https://doi.org/10.1145/3475960.3475985
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3475960.3475985&domain=pdf&date_stamp=2021-08-19


PROMISE ’21, August 19ś20, 2021, Athens, Greece Guru Bhandari, Amara Naseer, and Leon Moonen

(b) We propose a method to automatically collect and curate a

comprehensive vulnerability dataset from CVE records in

the NVD, and obtain real-world samples of vulnerable and

corresponding patched code, organized at multiple levels

of granularity. In addition, we discuss how to enrich this

data with meta-data such as programming language used,

and detailed code-related metrics at five levels of abstraction,

such as the commit-, file-, and method levels, as well as the

repository- and CVE levels.

(c) We implement the proposed approach in a dataset collection

tool that is made publicly available.1

(d) We publicly share a version of the CVEfixes vulnerability

dataset for use by other researchers.2 The initial release spans

all published CVE records up to 9 June 2021, covering 5365

CVE records for 1754 OSS projects. A total of 5495 vulnera-

bility fixing commits are obtained from the projects’ version

control systems and linked to information from the corre-

sponding CVE records, such as CVE-IDs, reference links,

severity scores, vulnerability type/CWE type, and other de-

scriptive information.

The remainder of the paper is organized as follows: Section 2 dis-

cusses the currently available vulnerability datasets and how our

work differs from them. Section 3 presents the process for construct-

ing the CVEfixes dataset, followed by an exploration of the initial

release in Section 4. Section 5 discusses applications of the dataset,

together with current limitations and future extensions. Finally, we

conclude in Section 6.

2 RELATED WORK

Several vulnerability-related test suites and datasets were developed

in the last decade, often with particular goals in mind. These sets

were consequently picked up by other security researchers looking

for relevant data to train or evaluate their techniques on. This

section surveys frequently used datasets and discusses some of the

challenges for their reuse in other contexts. We also look at more

general software repositories and repository mining frameworks.

Finally, we discuss how the CVEfixes dataset is different from the

existing work in this area.

Vulnerability Datasets The Software Assurance Metrics And

Tool Evaluation (SAMATE) project created the Juliet Test Suite as

a benchmark for static analysis tools that aim to identify vulnera-

bilities in source code [10, 11]. Programs from the Juliet Test Suite

have been used in several studies on vulnerability and weakness

prediction [12ś16]. However, the benchmark was never created for

this purpose, and concerns have been raised that the vulnerabilities

in Juliet are not very diverse, and many of them are of a synthetic

nature that does not occur in real-world software projects [2, 17].

Mitropoulus et al. [18] constructed a vulnerability dataset by ana-

lyzing the Maven repository using FindBugs [19], a tool conducting

static code analysis on Java byte-code, identifying the vulnera-

bilities in Maven and categorizing them into nine different types.

Similarly, Draper’s VDISC dataset [7] consists of C/C++ source code

of 1.27 million functions mined from open-source projects that were

labeled by three static code analysis tools (Clang, Cppcheck, and

1 https://github.com/secureIT-project/CVEfixes, doi:10.5281/zenodo.5111494.
2 https://zenodo.org/record/4476563, doi:10.5281/zenodo.4476563.

Flawfinder) as vulnerable or not, classified in five groups of vul-

nerabilities, namely CWE-120, 119, 469, 476, and other. However,

there are some challenges with the dataset, such as the fact that it

is highly imbalanced with only 6.8% functions labeled as vulner-

able. Moreover, the extracted functions are incomplete, missing

the function’s return type which excludes certain (signature-based)

analyses. SVCP4C (SonarCloud Vulnerable Code Prospector for C)

is an online tool for collecting vulnerable source code from open-

source repositories linked to SonarCloud. The tool performs static

analysis and labels the potentially vulnerable source code at the

file level [20]. The Devign [21] dataset includes four real-world

open-source C/C++ projects, Linux, FFmpeg, Qemu and Wireshark,

where the labeling is performed using security-related keyword

filtering. The drawback of this dataset is also in the labeling: if a

commit is believed to be vulnerable, then all functions changed

by the commit are labeled as vulnerable, which is always not true.

Moreover, the dataset does not classify the types of vulnerabilities

encountered. A threat recognized by the authors of these datasets/-

tools is that the labeling is based on static analysis, which is known

for its false positives, that may lead to incorrect labeling. Our ap-

proach, as well as others discussed below, aims to mitigate this

threat by building on actual security patches. The Code Gadget

Database (CGD) [22] collects two types of vulnerabilities in C/C++

programs: buffer error vulnerability (CWE-119) and resource man-

agement error vulnerability (CWE-399). The dataset covers 61638

code gadgets including 17725 vulnerable and 43913 non-vulnerable

code gadgets. It aims to improve the labeling quality by checking

if the code slice of confirmed bugs overlaps with a bug fix before

labeling code as ’buggy’. Recently, Zheng et al. [17] published D2A,

which uses an approach based on differential analysis to label issues

in the source code functions or snippets reported by static analysis

tools. The D2A approach analyzes the commit messages to identify

the likeliness of vulnerability fixes from before-commit and after-

commit versions. The dataset considers code from six open-source

C/C++ projects: OpenSSL, FFmpeg, httpd, NGINX, libtiff, and libav.

Vieira et al. [23] introduced a dataset of bug-fixing activities from

70000 bug-fixing reports from 10 years of 55 open-source projects

of Apache mined from Jira,3 a popular issue tracking system that

captures information about software development, bugs, security

vulnerabilities, new functionalities, etc. The dataset’s emphasis is

on process-related information regarding issue management, such

as change metrics, fix effort, status, version, and assignee, but it

does not go into code-level detail. Alves et al. [24] analyze the

bug-tracking systems of five open-source projects (Mozilla, Linux

Kernel, Xen Hypervisor, Httpd, and Glibc), looking for occurrences

of CVE identifiers. They found 2875 security patches and used

the associated code to build a dataset that labels the code before

patching as vulnerable, and after patching as not vulnerable, as

well as adding labels for vulnerability types and severity. Moreover,

they compute software metrics at the file, class, and function level

for the code before and after patching to enable metrics-based

vulnerability prediction research. Similarly, Gkortzis et al. [25]

present a vulnerability dataset correlating source code and software

metrics of 8694 versions of open-source projects.

3 https://atlassian.com/software/jira

31

https://github.com/secureIT-project/CVEfixes
https://doi.org/10.5281/zenodo.5111494
https://zenodo.org/record/4476563
https://doi.org/10.5281/zenodo.4476563
https://atlassian.com/software/jira


CVEfixes: Automated Collection of Vulnerabilities and Their Fixes from Open-Source Software PROMISE ’21, August 19ś20, 2021, Athens, Greece

Jimenez et al. [26] present VulData7, a framework to collect a

security vulnerability dataset covering all reported NVD vulnera-

bilities of four security-critical open-source systems, Linux Kernel,

WireShark, OpenSSL, and SystemD. Although focusing on a limited

set of systems all written in the C programming language, their

approach shares several characteristics with ours, but one main

practical challenge for reusing their framework is that it is based

on the analysis of XML files, a format that is no longer provided

by the NVD. Similarly, Ponta et al. [27] curated a dataset of 1282

commit fixes to vulnerabilities from 205 open-source Java projects

obtained from NVD and project-specific web resources, and Fan

and Nguyen [28] curated a C/C++ code vulnerability dataset named

Big-Vul that corresponds with code changes and CVE database

entries from 2002 to 2019.

Lin et al. [9] emphasize the need for a benchmark for evaluating

the effectiveness of ML approaches aimed at fixing security vulnera-

bility in source code. The authors propose a benchmark dataset that

offers labels at two levels of granularity, i.e., the file- and method

level, collected from nine software projects written in the C pro-

gramming language [29]. The challenge with using this dataset for

training purposes is that it contains only 1471 vulnerable functions

and 1320 vulnerable files, which is rather small for training a deep

learning model.

Software Repositories and Repository Mining Frameworks

Ma et al. [30] present World of Code (WoC), a large and frequently

updated collection of git-based version control data. The data is

indexed three storage abstractions and arranged in four layers. New

and updated repositories are periodically analyzed, and the data-

base is updated once a month. The dataset stores four types of raw

git objects: commits, trees, blobs and tags. The bulk extraction of

these raw git objects was done in parallel using libgit2, a portable

tool implemented in C. Querying this database can help answer

different research questions, such as trends in programming lan-

guages used, ecosystem comparisons, bug prediction, developer

migration studies, bot detection, understanding developer trajecto-

ries, etc. In the same way, the dataset can be inspected for different

security-related research areas, vulnerable commits classification,

developers’ tendency towards vulnerability, etc.

Perceval [31] is an automatic and incremental data gathering

tool to mine software development data from various sources such

as versioning systems, bug tracking systems and mailing lists. The

JSON output of the tool stores commit-level information of the

repositories that can be used to analyze the activities of the reposi-

tories and the developers. However, the tool does not expose access

to the finer granularity levels of open-source projects, such as the

code-level vulnerability information that we are concerned with.

PyDriller4 is a Python package to mine code-level information

from different version control systems [32]. It allows extracting

commit-, file-, method levels information from git repositories, and

it collects all relevant meta-information, including the computation

of a number of code-level metrics. Because of these features, we

use PyDriller during the construction of CVEfixes, before mapping

the collected data to a relational database.

Differences The CVEfixes dataset presented in this paper differs

from the existing datasets in the following ways: (1) In general, it

4 https://github.com/ishepard/pydriller

covers more information about the vulnerability at different levels

of granularity, up to the actual source code before and after fixing.

(2) It covers a longer timeframe, being based on all CVE records

available at the collection date of 9 June 2021. Moreover, it’s not

restricted to this timeframe: at any point in the future, our publicly

available tool can automatically collect and integrate the data up to

the last published CVE at that point in time. (3) Unlike many other

datasets that focus on specific programming languages like Java or

C/C++, our dataset covers multiple programming languages and

allows the language as a query attribute. (4) Some of the existing

vulnerability datasets only classify the source code as vulnerable or

not. In addition to this binary classification, CVEfixes classifies the

vulnerabilities into categories as defined by Common Weakness

Enumeration (CWE) types, as well as CVSS severity scores, enabling

research into multi-class vulnerability prediction.

3 DATASET CONSTRUCTION

3.1 Overall Workflow

The National Vulnerability Database (NVD) [33] is a repository

of vulnerability management data maintained by the National In-

stitute of Standards and Technology (NIST). NIST publishes the

entire NVD database for public use employing various data feeds,

including JSON vulnerability feeds, security checklist references,

security-related software flaws, misconfigurations, product names,

and impact metrics. The JSON vulnerability feed comprises a daily

updated feed of vulnerability records (CVEs), organized by year of

origin (updates may concern CVEs published in earlier years).

Each vulnerability in the file has its CVE-ID, publish date, descrip-

tion, associate reference links, vulnerable product configuration,

CWE weakness categorization [34], and other metrics. Moreover,

each vulnerability’s severity is ranked using the Common Vulnera-

bility Scoring System (CVSS) [35]. The CVSS is composed of a set of

metrics in three groups, i.e., base, temporal, and environmental, to

specify the characteristics and contextual information of a vulnera-

bility. There are two versions of the scoring system: CVSSv2 and

CVSSv3, that are both in active use in the NVD.5 CVSSv3 introduces

a number of changes over CVSSv2 to score vulnerabilities more

accurately and provide more information to distinguish between

different types of vulnerabilities. Finally, when a vulnerability in

an open-source project is fixed, the CVE record will be updated

with one or more pointers to the relevant source code repositories,

as well as commit hashes of the fixes. These comprehensive, scru-

tinized, and frequently updated JSON vulnerability feeds are the

primary basis for generating the vulnerability data in CVEfixes.

Figure 1 presents the overall workflow of the dataset collection

process. It starts by collecting CVE records via JSON vulnerability

feeds. Since these CVE vulnerabilities are categorized according to

CWE weakness types [34], we also collect the details of these CWE

types and cross-reference them with the appropriate CVE records.

Moreover, for CVEs that have fixes associated with them, the

corresponding open-source project repositories are (temporarily)

locally cloned, and source-level information about the vulnerable

code and the corresponding fixes is gathered based on the commit

hashes reported in the CVE record. After extracting the vulnerable

5 https://nvd.nist.gov/vuln-metrics/cvss

32

https://github.com/ishepard/pydriller
https://nvd.nist.gov/vuln-metrics/cvss


PROMISE ’21, August 19ś20, 2021, Athens, Greece Guru Bhandari, Amara Naseer, and Leon Moonen

update 
vulnerability 
information

vulnerability
database 
(SQLite3)

commits

records

associated 
project 

repositories

extract fixing 
commits

Bitbucket GitHub Gitlab

collect 
vulnerable projects

Figure 1: Dataset construction workflow

and fixed code, a number of code-level metrics are computed, and

additional meta-data such as the programming language is derived.

Finally, the collected information is stored in a relational database.

The overall structure of the database is shown in Figure 2. The

main tables capture information about CVE records, CWE records,

OSS repositories, commits, changed files, and changed methods.

Two additional tables respectively associate fixes with CVEs, and

CWE classifications with CVEs.

3.2 Details of the Automated Collection Tool

The proposed process has been implemented in a fully automated

CVEfixes collection tool, and the remainder of this section discusses

the major phases implemented in the tool. The collection can easily

be repeated to keep up-to-date with newly discovered or patched

vulnerabilities. Since updates can affect any of the published CVEs,

the collection tool currently revisits all published CVEs to check if

relevant fixes were added. One direction for future work is enabling

a more incremental process.

Scanning of CVERecords: By default, the collection tool retrieves

all published JSON vulnerability feeds from the NVD server, cover-

ing the first published CVE in 2002 up to the last published one on

the date of collection (the feeds are updated daily). The JSON files

are then aggregated, flattened, and processed to filter out redun-

dant information from the CVE records (in the original feeds, some

fields are repeated at deeper nesting levels). All CVE records that do

not have fixes associated with them in the reference_json field are

ignored, because gathering corresponding vulnerable or fixed code

is not possible for these cases. After processing and filtering the

records, various details of the vulnerability such as CVE-ID, pub-

lished date, last modified date, reference data, CVSS severity scores,

vulnerability impact and scope, exploitability score, are recorded in

the cve table.

Classification of Vulnerabilities: As discussed before, CVE

records in the NVD are annotated with CWE vulnerability types

that indicate at a more abstract level what kind of vulnerability

this CVE concerns. The problemtype_json field of the NVD JSON

vulnerability feeds may refer to one or more of these CWE types.

The NVD only uses a subset6 of the full CWE list maintained by

6 https://nvd.nist.gov/vuln/categories

MITRE,7 and does not distinguish between individual CWEs and

CWE categories, referring to either as łCWE-<num>ž. Moreover,

two additional classifications, łNVD-CWE-noinfož and łNVD-CWE-

otherž, are used to refer to cases where, respectively, there is not

enough info for classification, or where the NVD deviates from the

full CWE. Note that we also found around 250 cases where the NVD

feeds contain the CWE classification łunknownž. For consistency,

we map these łunknownsž to łNVD-CWE-noinfož in our dataset.

Meta-Information for Repositories: At the time of writing, the

majority (>80%) of fixes in the NVD refer to code on one of the

three major OSS forges, GitHub, GitLab, and Bitbucket, with 98% of

those being on GitHub. The remaining 20% of fixes point to other

forges (e.g., sourceforge or the defunct gitorious), or to project-

specific servers hosting other versioning systems (e.g., mercurial,

subversion, or CVS). As a result, we focus on gathering code from

those three OSS forges, and we have modeled the repository table

to maximally cover GitHub’s repository meta-information, such

as repository name, description, date of creation, last date of push,

homepage, programming language, number of forks and number

of stars. This information can be used to, for example, focus on

certain programming languages or filter for popular repositories

by setting a minimum threshold on the number of stars. The latter

is also a common and effective approach to focus on information

related to mature projects. Note that GitLab and Bitbucket do not

offer all of these attributes, so clearly distinguishable values are

used to represent missing information, such as the value ł-1ž for the

stars_count of Bitbucket repositories (which does not offer stars).

Extraction of Commits: Whenever an OSS vulnerability is fixed,

the reference_json in the CVE record contains the repository URL,

as well as a pointer to the exact commit that introduced the fix,

by means of a git hash. We use this information to locally (and

temporarily) clone the repository, and use it to extract versions

of the code before and after submitting the fix. We extract this

information at the commit-, file- andmethod level, where each entry

in the commits table is associated to one or more cves via the fixes

table. In addition, the commits table stores meta-information about

the commit, such as the author, time and date, commit message,

if it is a merge commit (often to include pull requests in projects

using GitHub Flow), the number of lines added or deleted, and Delta

Maintainability Model metrics related to the change [36].

Extracting the Modified Files: Every entry in the commits table

is linked via the commit hash to one or more file_changes that were

included to fix the vulnerability (or vulnerabilities) associated with

the commit. For each file change, the dataset contains the contents

of the file before and after making the change, in code_before and

code_after respectively, as well as the diff of the change in the

format delivered by Git, and a parsed version of this information in

diff_parsed, containing a dictionary of added and deleted lines. In

addition, several meta-data are collected, such as filename, old and

new path, type of the modification (i.e., added, deleted, modified,

or renamed), number of lines added or removed in that file, lines

of code (nloc) after the change, and cyclomatic complexity after

the change. Finally, the Guesslang tool8 is used to detect the actual

programming_language that is used in a given file. Guesslang is an

7 https://cwe.mitre.org/data/index.html
8 https://guesslang.readthedocs.io/en/latest/

33

https://nvd.nist.gov/vuln/categories
https://cwe.mitre.org/data/index.html
https://guesslang.readthedocs.io/en/latest/


CVEfixes: Automated Collection of Vulnerabilities and Their Fixes from Open-Source Software PROMISE ’21, August 19ś20, 2021, Athens, Greece

cwe
PK cwe_id

cwe_name
description
extended_description
url
is_category

commits
PK hash
PK repo_url (FK)

author
author_date
author_timezone
committer
committer_date
committer_timezone
msg
merge
parents
num_lines_added
num_lines_deleted
dmm_unit_complexity
dmm_unit_interfacing
dmm_unit_size

file_change
PK file_change_id

hash (FK)
filename
old_path
new_path
change_type
diff
diff_parsed
num_lines_added
num_lines_deleted
code_after
code_before 
nloc
complexity
token_count
programming_language

method_change
PK method_change_id

file_change_id (FK)
name
signature
parameters
start_line
end_line
code
nloc
complexity
token_count
top_nesting_level
before_change

cve
PK cve_id

published_date
last_modified_date
description
nodes
severity
obtain_all_privilege
obtain_user_privilege
obtain_other_privilege
user_interaction_required
cvss2_vector_string
cvss2_access_vector
cvss2_access_complexity
cvss2_authentication
cvss2_confidentiality_impact
cvss2_integrity_impact
cvss2_availability_impact
cvss2_base_score
cvss3_vector_string
cvss3_attack_vector
cvss3_attack_complexity
cvss3_privileges_required
cvss3_user_interaction
cvss3_scope
cvss3_confidentiality_impact
cvss3_integrity_impact
cvss3_availability_impact
cvss3_base_score
cvss3_base_severity
exploitability_score
impact_score
ac_insuf_info
reference_json
problemtype_json

fixes
PK cve_id (FK)
PK hash (FK)
PK repo_url (FK)

repository
PK repo_url

repo_name
description
date_created
date_last_push
homepage
repo_language
owner
forks_count
stars_count

cwe_classification
PK cve_id (FK)
PK cwe_id (FK)

Figure 2: Entity-Relationship Diagram showing the various levels of abstraction in CVEfixes and their interconnections

open-source deep-learning based classifier that was trained with

over a million source code files, and recognizes over 30 program-

ming languages. Note that these detected languages may differ

from, and are more precise than the repository language that is, for

example, reported by GitHub.

Extracting the Modified Methods: Similar to the changes at

the file-level, we keep track of changes at the method-level in the

method_change table. In addition to the actual code, each method

change stores meta-information such as the method name, its sig-

nature, parameters, start and end line of the method, lines of code,

cyclomatic complexity, and a boolean indicating whether this con-

cerns the code from before committing the fix or not.

3.3 Practical Guidance

The automated CVEfixes dataset collection tool is distributed via

GitHub.9 The distribution comes with detailed requirements and

installation instructions. It requires Python3.8 or later to run, and

SQLite3 to construct and store the data into a relational database.

The main Python packages that it depends on are pandas, numpy,

requests, PyDriller, PyGithub and guesslang. We provide require-

ments.txt and environment.yml files for dependency management

using pip/venv or anaconda/miniconda.

The tool is configured by means of a number of settings in a

.CVEfixes.ini file (an example is provided in the distribution):

• database_path: location of the CVEfixes database file (also

used to hold some temporary files during extraction).

9 https://github.com/secureIT-project/CVEfixes, doi:10.5281/zenodo.5111494.

• sample_limit: an optional limit on the number of commits to

be gathered (mainly for testing and demonstration purposes,

sample_limit = 0 means unlimited collection).

Note that the GitHub API is severely rate-limited when unauthen-

ticated access is used. These limits can be raised significantly to up

to 5000 requests per hour by authenticatinsg with a username and

personal access token.10 A github_username and github_token can

be configured in .CVEfixes.ini for this purpose. With a sample limit

of 25, no token is needed and rate-limiting will not be triggered.

We provide a compressed SQL dump for the initial release of the

CVEfixes vulnerability dataset that covers all published CVEs in the

NVD up to 9 June 2021 at Zenodo.11 The distribution contains a

simple shell script to convert the compressed SQL dump into an

SQLite3 database:

$ sh Code/create_CVEfixes_from_dump.sh

Alternatively, the CVEfixes dataset can be gathered from scratch

using the following shell script:

sh Code/create_CVEfixes_from_scratch.sh

Note that this process will overwrite an existing database. More-

over, at the time of writing, the full collection process can take up

to 15 hours, depending on the available internet connection. The

advantage of taking this route is that the database will contain all

CVEs published up to the date of initiating the collection process.

10 https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-
access-token
11 https://zenodo.org/record/4476563, doi:10.5281/zenodo.4476563.

34

https://github.com/secureIT-project/CVEfixes
https://doi.org/10.5281/zenodo.5111494
https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://zenodo.org/record/4476563
https://doi.org/10.5281/zenodo.4476563


PROMISE ’21, August 19ś20, 2021, Athens, Greece Guru Bhandari, Amara Naseer, and Leon Moonen

The distribution contains an example Jupyter Notebook Exam-

ples/query_CVEfixes.ipynb that shows how to explore the CVEfixes

dataset and contains the code to generate the various tables and

graphs in this paper.

Recall the overall structure of the database shown in Figure 2.

Then the following query extracts all methods involved in fixes

related to C programs before the changes were made:

SELECT m.name , m.signature , m.nloc , m.

parameters , m.token_count , m.code

FROM method_change m, file_change f

WHERE f.file_change_id = m.file_change_id

AND f.programming_language = 'C'

AND m.before_change = True

Another example, inspired by the ManySStuBs4J dataset [37], to

find all files that only add or remove a single line as fix:

SELECT cv.cve_id , f.filename , f.

num_lines_added , f.num_lines_deleted , f.

code_before , f.code_after , cc.cwe_id

FROM file_change f, commits c, fixes fx, cve

cv, cwe_classification cc

WHERE f.hash = c.hash AND c.hash = fx.hash

AND fx.cve_id=cv.cve_id

AND cv.cve_id=cc.cve_id

AND f.num_lines_added <=1

AND f.num_lines_deleted <=1;

4 DATASET EXPLORATION

Table 1 presents the summary statistics of the initial release of the

CVEfixes dataset. This initial release covers 5365 unique CVEs in

1754 OSS projects, with 5495 unique vulnerability fixing commits.

The CVEs are classified into 180 different CWE vulnerability types.

Note that some of the vulnerability fixing commits cover multiple

CVEs, as is indicated by the number of commits being lower than

the number of CVEs.

To further characterize the data, Table 2 presents the top ten

projects in CVEfixes with respect to the number of CVEs, number

of vulnerability fixing commits, and number of files and meth-

ods involved in fixes. In particular, Table 2a corresponds with the

project-wise number of CVEs, the average CVSSv2 and CVSSv3 base

scores of these vulnerabilities, as well as their average exploitability,

and impact scores. Not surprisingly, the long-running and well-

scrutinized linux project has the most vulnerabilities and vulner-

ability fixing commits (shown in resp. Table 2a and 2b), i.e., 1029

commits for fixing 973 vulnerabilities. Note that linux has roughly

six times as much vulnerabilities as ImageMagick, the project with

second most vulnerabilities (157), yet the security impact of those

discovered in ImageMagick is considerably larger, as shown by the

various security metrics.

Table 1: Summary statistics of the CVEfixes dataset

CVEs CWEs projects commits files methods

5,365 180 1,754 5,495 18,249 50,322

Table 2: Top 10 projects in CVEfixes with respect to (a) the

number of fixed CVEs, shown with the project’s security

metrics, (b) number of vulnerability fixing commits, and the

number of (c) files and (d) methods involved in these fixes.

average average average average

project #CVEs CVSSv2 CVSSv3 exploitability impact

linux 973 5.30 3.99 1.16 2.78

ImageMagick 157 5.45 7.25 2.74 4.43

tensorflow 143 3.92 6.67 2.05 4.50

tcpdump 89 7.33 9.57 3.86 5.70

FFmpeg 83 6.35 5.86 2.23 3.57

phpmyadmin 67 4.46 3.55 1.85 1.53

php-src 60 6.59 7.46 3.22 4.21

MISP 50 5.03 6.70 2.81 3.61

WordPress 46 5.27 7.01 3.06 3.66

hhvm 40 6.48 7.54 3.22 4.31

(a)

project # commits

linux 1,029

ImageMagick 171

tensorflow 156

phpmyadmin 126

tcpdump 101

FFmpeg 88

php-src 61

MISP 54

WordPress 47

radare2 43

project # files

linux 2,007

GeniXCMS 1,930

kanboard 698

CycloneTCP 611

X2CRM 594

exponent-cms 445

Ushahidi-Web 402

wityCMS 372

tcpdump 344

tensorflow 340

project #methods

GeniXCMS 14,235

linux 4,303

exponent-cms 3,048

Ilch-2.0 1,427

arangodb 1,224

kanboard 1,169

tensorflow 1,045

moped 950

WordPress 915

X2CRM 790

(b) (c) (d)

Looking at the projects in the four top ten lists of Table 2a-2d, it

is not surprising to see some overlap between the lists. On the other

hand, it is surprising to see that some projects, such as GeniXCMS,

kanboard, and exponent-cms, which do not occur at all in the top ten

CVEs and #commits, come in very highly ranked on the amounts

of files and methods that need to be changed to fix vulnerabilities

in these projects. This sudden rise in the ranks suggests it can

be of interest to investigate how the modularization decisions in

these projects impacted the security fixes that were made, and may

indicate an application-level code smell such as shotgun surgery.

This finding also shows that there is no direct correlation be-

tween the number of files or methods and the number of CVEs (or

commits to fix them), because that would mean the respective top

tens would have been similar. We do see the expected relation be-

tween CVEs and vulnerability fixing commits (with minor changes

due to some commits covering multiple CVEs, as noted earlier).

The 10 projects in Table 2a cover 31.84% of the total number

of CVEs, those in Table 2b cover 31.61% of the total number of

vulnerability fixing commits, the ones in Table 2c account for 42.43%

of the total number of files involved in fixes, and finally, the ten

projects in Table 2d make up 57.84% of the total number of methods

involved in fixes.

Table 3 presents the ten most occurring CWE types based on

CVE count. We see that CWE-79 (Improper Neutralization of Input

During Web Page Generation, is the most commonly identified

35



CVEfixes: Automated Collection of Vulnerabilities and Their Fixes from Open-Source Software PROMISE ’21, August 19ś20, 2021, Athens, Greece

Table 3: Distribution of vulnerabilities over CWE types

CWE description CVEs cmts files

CWE-79 Improper Neutralization of Input During

Web Page Generation (Cross-site Scripting)

635 670 3226

CWE-119 Improper Restriction of Operations within

the Bounds of a Memory Buffer

408 403 716

CWE-20 Improper Input Validation 382 397 1965

CWE-125 Out-of-bounds Read 380 404 1061

CWE-200 Exposure of Sensitive Information to an

Unauthorized Actor

276 314 818

CWE-787 Out-of-bounds Write 205 211 537

CWE-476 NULL Pointer Dereference 195 198 334

noinfo* Insufficient Information 193 219 664

other* Other 165 170 395

CWE-264 Permissions Privileges and Access Controls 143 148 457

* abbreviated from NVD-CVE-noinfo and NVD-CWE-other for space.

vulnerability type. This type is commonly known as Cross-site

Scripting or XSS. It has been assigned to 635 CVEs and was fixed

in 670 commits that changed 3226 files. Observe that the number

of vulnerability fixing commits is larger than the number of CVEs,

which is caused by the fact that some of the CVEs are associated

with multiple fixes. This occurs, for example, when a CVE is fixed

in several related projects, or when the fix is spread over multiple

commits. On second place comes CWE-119 (Improper Restriction

of Operations within the Bounds of a Memory Buffer), reported in

408 CVEs and fixed in 403 commits that changed 716 files.

Next, we find CWE-20 (Improper Input Validation) assigned to

382 CVEs. which is closely followed by CWE-125 (Out-of-bounds

Read), which is actually a łchildž of the more general CWE-119

category, and indicates that an index pointer is used beyond the

bounds of the memory buffer. It is reported in 380 CVEs and fixed

in 404 commits that modified 1159 files. After this top four, we see a

considerable drop in the number of CVEs assigned to lower-ranked

CWEs. The top ten CWEs cover approximately 55.58% of the total

number of CVEs, 57% of the total number of commits, and 55.75%

of the total number of files.

We also investigated if it was possible to compute how long

it took to fix the vulnerabilities, from the day that the CVE was

disclosed to the project to the day that the fix was committed. Un-

fortunately, the NVD only includes the CVE publication date, which

generally does not indicate when the vulnerability was discovered

or when it was shared with the project. The actual disclosure date

can be several months earlier if a responsible disclosure process

is used. For example, Google’s Project Zero delays publication for

90 days after disclosing vulnerabilities that are not actively being

exploited, giving the option for earlier publication with mutual

agreement. Other security researchers may use other time frames

Table 4: Average number of days between CVE publication

and vulnerability fix for all CVEs in CVEfixes.

mean std min 25% 50% 75% max

171.55 414.93 0 7.0 28.0 123.25 7,636

Table 5: Average number of days between CVE publication

and vulnerability fix for the top ten projects with most CVEs

(cf. Table 2a).

project #CVEs #CWEs min max median mean

linux 973 53 0 4,582 49 213.64

ImageMagick 157 27 1 1,474 75 190.14

tensorflow 143 24 2 810 16 22.15

tcpdump 89 4 1 918 1 12.96

FFmpeg 83 17 1 1,523 44 63.22

phpmyadmin 67 13 1 1,211 13 36.15

php-src 60 17 3 855 27 50.26

MISP 50 17 0 430 1 29.33

WordPress 46 14 2 217 4 18.17

hhvm 40 18 1 1,328 37 182.18

or agree on them on a case-by-case basis with the projects. As a re-

sult of the variability this introduces in the time between disclosure

and publication time, it is impossible to make strong statements on

how long the projects really used to address the vulnerability.

With the above caveat in mind, Table 4 shows some statistics for

the complete CVEfixes dataset on how many days it took from the

CVE publication to committing a fix for the vulnerability. Moreover,

Table 5 presents such statistics for the top ten projects with most

CVEs, as earlier presented in Table 2a.

The last two characteristics that we will investigate are the vul-

nerability severity scores of CVEs in CVEfixes, as well as the impact

that their fixes had on the maintainability of the project by means of

the delta maintainability model (DMM). The delta maintainability

model (DMM) [36] is a measure to compare and rank fine-grained

code changes into low and high-risk changes. The overall DMM

score refers to the proportion of low-risk changes in a commit,

and is computed as the mean of three individual metrics that re-

spectively measure the risk associated with code size, (cyclomatic)

complexity, and size of the interface. The values of each of the DMM

metrics range from 0 to 1, with higher values indicating better main-

tainability, i.e., lower risk changes, and low values indicating poor

maintainability, i.e., high risk changes.

0 2 4 6 8 10

metric score

avg
 C

VSS2 b
ase

avg
 C

VSS3 b
ase

avg
 e

xp
lo

ita
bilit

y

avg
 im

pact

v
u

ln
e

ra
b

ili
ty

 s
e

v
e

ri
ty

 m
e

a
s
u

re
s

Figure 3: Violin plot showing the distribution of average

vulnerability severity scores for projects included inCVEfixes

36



PROMISE ’21, August 19ś20, 2021, Athens, Greece Guru Bhandari, Amara Naseer, and Leon Moonen

0.0 0.2 0.4 0.6 0.8 1.0

metric score

avg
 u

nit 
siz

e

avg
 u

nit 
co

m
ple

xit
y

avg
 u

nit 
in

te
rfa

cin
g

avg
 D

M
M

 s
co

re

d
e

lt
a

 m
a

in
ta

in
a

b
ili

ty
 m

e
tr

ic
s

Figure 4: Violin plot showing the distribution of average

DMM scores for fixes to the projects included in CVEfixes

Figure 3 presents violin plots that show the distribution of CVSSv2
and CVSSv3 base scores, as well as exploitability and impact, for all

vulnerabilities in CVEfixes, aggregated into averages per project.

The width of each violin corresponds to the frequency of data points

with that average. Inside the violin there is small box plot showing

the ends of the first and third quartiles, and the median is indicated

by the white dot. The values of these vulnerability severity metrics

can vary between 0 and 10, with lower being better, and higher

being worse. The figure suggests that the majority of the vulnera-

bilities have severity scores that are on the high side of the severity

range, although their exploitability and impact tends to be on the

lower sides of their respective ranges.

Figure 4 presents violin plots that show the distribution of DMM

metrics of all vulnerability fixing commits in CVEfixes, again ag-

gregated into averages per project. These metrics show how the

maintainability of the projects was affected by the security fixes.

Observe that the individual DMM metrics unit size, unit complexity,

and unit interfacing mostly have a high density around 0 (indicating

high risk changes with a detrimental effect on maintainability), and

a smaller number of changes are considered low risk (with scores

closer to 1). The overall DMM score is an aggregate computed as the

mean of the individual metrics [36]. As such, it is more universally

spread across different risk values, but still with a considerable

number of commits requiring high-risk code change to fix the vul-

nerabilities, with the median around 0.25 and the third quartile

around 0.6. An interesting question for follow-up research is inves-

tigating if vulnerability fixing commits that lower maintainability

are followed by refactoring commits that restore maintainability.

5 DISCUSSION

5.1 Applications of CVEfixes

The CVEfixes dataset can be used in several ways to support data-

driven software security research, for example, for automated vul-

nerability prediction, automated classification of identified vulner-

abilities in Common Weakness Enumeration (CWE) types, vul-

nerability severity prediction, and automated repair of security

vulnerabilities. The remainder of this section discusses several of

these applications in more detail.

Automated Vulnerability Prediction/Identification The CVE-

fixes dataset contains different levels of vulnerability data, such as

CVE-ID, version, description, type, publication date, current status,

all interlinked up to the actual code changes that were introduced to

fix the vulnerability. This data can be used to extract code features

and metrics that help to better understand how security vulnerabil-

ities are introduced in code. Moreover, the features and metrics can

be used to model, train, and test vulnerability predictors based on

classical machine learning approaches, and the textual descriptions,

ranging from the CVE vulnerability level to the code level, can be

used to train deep learning-based models for vulnerability predic-

tion. Many studies have already targeted automated vulnerability

identification using various machine learning models [7, 38ś40],

and Section 2 surveyed some of the challenges with the datasets

used in these studies, such as limited size, lack of representative-

ness, and dataset imbalance. A comprehensive dataset like CVEfixes

helps to overcome these challenges and enables a more thorough

evaluation of the approaches.

Automated Vulnerability Classification The inclusion of vul-

nerability classifications in CVEfixes allows us to go one step further

than automated vulnerability prediction, it also enables research on

automated vulnerability classification, i.e., not just predicting the

presence of a vulnerability but characterizing the type of the vulner-

ability. Such a classification is of interest since (automated) program

repair approaches may have different efficacy and efficiency for

different vulnerability types, so knowing the vulnerability type

helps to inform which repair strategy to take. To address this chal-

lenge, 𝜇VulDeePeaker [4] and ManySStuBs4J [37] have constructed

the multi-class vulnerability dataset. However, those datasets are

specific to a given programming language and certain vulnerabil-

ity/bug types. CVEfixes, on the other hand, uses the well-known

CWE taxonomy to classify vulnerabilities in a hierarchy of vulner-

ability types and categories, and covers 27 programming languages

(though 9 of these have fewer than 100 files changed in the commits

covered by the dataset).

Analysis of vulnerability fixing patches Similar to how the

vulnerable code in CVEfixes can be used to better understand how

security vulnerabilities are introduced in code and how these can

be automatically predicted, the fixes offered by CVEfixes can be

used to analyze and build on vulnerability fixing patches. Several

studies have already initiated research analyzing such patches, such

as the detection of patterns that can be used in automated program

repair [41], and the identification of security-relevant commits, also

known as pre-patches, as these may inadvertently leak information

about security vulnerabilities before the CVE is published [42, 43].

Other research has analyzed vulnerability fixing patches to facilitate

the automated transformation of patches into łhoneypotsž that help

trap malicious actors and detect if the corresponding vulnerabilities

are exploited in the wild [44].

Automated program repair The pairs of vulnerable and fixed

code provided by CVEfixes can be used to train machine learning-

based automated program repair along the lines of SequenceR [45]

and related work surveyed in Section 2, though we need to warn for

a caveat w.r.t. the completeness of the patches, as discussed in more

detail in the next section. Moreover, the current state of the art in

this area is constrained with respect to the length of repairs that can

be learned/synthesized, with 50 tokens beingmentioned as an upper

37



CVEfixes: Automated Collection of Vulnerabilities and Their Fixes from Open-Source Software PROMISE ’21, August 19ś20, 2021, Athens, Greece

limit for acceptable performance [46]. By querying into CVEfixes

data as shown in the previous subsection (and the example Jupyter

Notebook in the distribution), CVEfixes facilitates the extraction of

specific fixes that used only single (or a few)modified lines for fixing

a vulnerability. This can be used to focus attention of the training

process on cases with a lower number of modified tokens which

are within reach of the technology, in order to help improve patch

quality. Several studies [47ś50] have already initiated work on the

prediction of bugs/errors taking single line modified statements into

account using the ManySStuBs4J dataset [37]. Querying CVEfixes

in the way we presented earlier enables the extension of this work

towards different programming languages, and vulnerability types.

5.2 Limitations and Future Extensions

One of the limitations of the current CVEfixes collection tool is

that it collects all available fixes from scratch. We opted for this

approach since any of the CVEs in the NVDmay receive updates, so

all should be inspected anyway. Nevertheless, it may be interesting

to explore a more incremental update scheme that only clones a

repository if not all of its fixes are already captured in the database,

and augments the existing fixes in the other case. Such an approach

would help to speed up the process of updating the database. One

caveat is that we may also need to remove fixes from the database if

they are no longer referenced by a CVE, but as we have seen, those

fixes may be referred to by other CVEs as well, so some additional

checks would be needed.

Another challenge/limitation that we have noticed is that some

of the project repositories referenced in the NVD are no longer

available. There can be multiple reasons; for example, the owners

might have removed/changed/renamed their repositories, or they

may have moved the repository between forges. This makes it

impossible to fetch the fixes for these repositories. The current

implementation tries to gather code from as many repositories as

possible, and removes references to those that are unavailable to

present an internally consistent view. However, this choice also

means that we only present a subset of the information that is

available in the NVD.

A last limitation is that a commit that is referenced as a vul-

nerability fixing commit in the NVD can still leave (part of) the

vulnerability in the source code, and there may be later commits

that complete the fix of the vulnerability, or the commit may contain

changes unrelated to the fix [51]. To further improve the quality of

the data, it would be of interest for future work to analyze consecu-

tive patches, and select/untangle the code that together addresses

the vulnerability.

Another direction for future work is upgrading our extraction

tool to support mining the repositories from other issue-tracking

and version control systems, i.e., Bugzilla, Mercurial, Subversion,

etc. This will make it possible to gather vulnerability data from an

even larger collection of projects.

Finally, considering the current controversy around ML models

that are trained on (A)GPL licensed code and may possibly regurgi-

tate some of that code as part of their operation, we plan to extend

our datamodel with license information for the fixes included, so

that users of CVEfixes can make an informed choice about including

or excluding certain fixes from their training data.

6 CONCLUDING REMARKS

In this study, we propose the CVEfixes dataset and a fully automated

collection tool that fetches this vulnerability dataset from publicly

available information in the NVD and different version control sys-

tems. The dataset consists of real-world samples of vulnerable and

corresponding patched code, their security metrics at five levels of

abstraction, all linked to the CVE records. The collected informa-

tion is enriched with various security and code related metrics and

organized into a relational database to support easy querying.

The initial release of the dataset covers 5495 vulnerability fix-

ing commits from 1754 open-source projects. This multi-level

dataset establishes both qualitative and quantitative opportuni-

ties for vulnerability-related investigations. Researchers can study

the relation from published CVEs all the way down to the corre-

sponding code level vulnerabilities and their proposed fixes. The

CVEfixes dataset enables research on vulnerability detection and

classification, vulnerability severity prediction, (pre-)patch anal-

ysis, automated vulnerability repair, and many others. We plan

to periodically update CVEfixes, and extend it with mining other

open-source projects from different version control systems and

issue tracking systems.

ACKNOWLEDGMENTS

The work presented in this paper has been financially supported

by the Research Council of Norway through the secureIT project

(RCN contract #288787).

REFERENCES
[1] MITRE. Common Vulnerabilities and Exposures (CVE). url: https:

//cve.mitre.org/ (visited on May 28, 2021).

[2] M.-j. Choi, S. Jeong, H. Oh, and J. Choo. łEnd-to-End Prediction of

Buffer Overruns from Raw Source Code via Neural Memory Net-

works.ž In: Int’l Joint Conf. Artificial Intelligence. 2017, pp. 1546ś1553.

[3] P. Morrison, K. Herzig, B. Murphy, and L. Williams. łChallenges with

Applying Vulnerability Prediction Models.ž In: Symp. and Bootcamp

on the Science of Security. ACM, 2015, pp. 1ś9.

[4] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin. ł𝜇VulDeePecker: A Deep

Learning-Based System for Multiclass Vulnerability Detection.ž In:

IEEE Trans. Dependable and Secure Computing (2019), p. 13.

[5] X. Wang, K. Sun, A. Batcheller, and S. Jajodia. łDetecting "0-Day"

Vulnerability: An Empirical Study of Secret Security Patch in OSS.ž

In: Int’l Conf. Dependable Systems and Networks. 2019, pp. 485ś492.

[6] Z. Feng et al. łCodeBERT: A Pre-TrainedModel for Programming and

Natural Languages.ž In: Findings of the Association for Computational

Linguistics: EMNLP 2020. 2020, pp. 1536ś1547.

[7] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P.

Ellingwood, and M. McConley. łAutomated Vulnerability Detection

in Source Code Using Deep Representation Learning.ž In: Int’l Conf.

Machine Learning and Applic. IEEE, 2018, pp. 757ś762.

[8] R. Coulter, Q.-L. Han, L. Pan, J. Zhang, and Y. Xiang. łCode Anal-

ysis for Intelligent Cyber Systems: A Data-Driven Approach.ž In:

Information Sciences 524 (2020), pp. 46ś58.

[9] G. Lin, S. Wen, Q.-L. Han, J. Zhang, and Y. Xiang. łSoftware Vul-

nerability Detection Using Deep Neural Networks: A Survey.ž In:

Proceedings of the IEEE (2020), pp. 1ś24.

[10] T. Boland and P. E. Black. łJuliet 1.1 C/C++ and Java Test Suite.ž In:

IEEE Computer 45.10 (2012), pp. 88ś90.

[11] P. E. Black. łA Software Assurance Reference Dataset: Thousands of

Programs With Known Bugs.ž In: 123 (2018).

38

https://cve.mitre.org/
https://cve.mitre.org/


PROMISE ’21, August 19ś20, 2021, Athens, Greece Guru Bhandari, Amara Naseer, and Leon Moonen

[12] M. Gupta, M. Govil, and G. Singh. łText-Mining and Pattern-

Matching Based Prediction Models for Detecting Vulnerable Files in

Web Applications.ž In: J. Web Eng. 17.1-2 (2018), pp. 28ś44.

[13] M. K. Gupta, M. C. Govil, and G. Singh. łPredicting Cross-Site Script-

ing (XSS) Security Vulnerabilities in Web Applications.ž In: Int’l Joint

Conf. Computer Science and Softw. Eng. 2015, pp. 162ś167.

[14] S. A. Mokhov, J. Paquet, and M. Debbabi. łMARFCAT: Fast Code

Analysis for Defects and Vulnerabilities.ž In: Int’l Ws. Softw. Analytics.

2015, pp. 35ś38.

[15] I. Medeiros, N. F. Neves, and M. Correia. łAutomatic Detection and

Correction of Web Application Vulnerabilities Using Data Mining to

Predict False Positives.ž In: Int’l Conf. World Wide Web. ACM, 2014,

pp. 63ś74.

[16] S. Mokhov, J. Paquet, and M. Debbabi. łThe Use of NLP Techniques

in Static Code Analysis to Detect Weaknesses and Vulnerabilities.ž

In: Canadian Conf. Artificial Intelligence. Vol. 8436. 2014, pp. 326ś332.

[17] Y. Zheng, S. Pujar, B. Lewis, L. Buratti, E. Epstein, B. Yang, J. Laredo, A.

Morari, and Z. Su. łD2A: A Dataset Built for AI-Based Vulnerability

Detection Methods Using Differential Analysis.ž In: Int’l Conf. Softw.

Eng.: Softw. Eng. in Practice. IEEE, 2021, pp. 111ś120.

[18] D. Mitropoulos, G. Gousios, P. Papadopoulos, V. Karakoidas, P. Louri-

das, and D. Spinellis. łThe Vulnerability Dataset of a Large Software

Ecosystem.ž In: Int’l Ws. Building Analysis Datasets and Gathering

Experience Returns for Security. IEEE, 2014, pp. 69ś74.

[19] FindBugs. url: http://findbugs.sourceforge.net/ (visited on Jan. 25,

2021).

[20] R. Raducu, G. Esteban, F. J. Rodríguez Lera, and C. Fernández. łCol-

lecting Vulnerable Source Code from Open-Source Repositories for

Dataset Generation.ž In: Applied Sciences 10.4 (2020), p. 1270.

[21] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu. łDevign: Effective Vulnera-

bility Identification by Learning Comprehensive Program Semantics

via Graph Neural Networks.ž In: Conf. Neural Information Processing

Systems. 2018, p. 11.

[22] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong.

łVulDeePecker: A Deep Learning-Based System for Vulnerability

Detection.ž In: Network and Distributed System Security Symp. 2018.

[23] R. Vieira, A. da Silva, L. Rocha, and J. P. Gomes. łFrom Reports to

Bug-Fix Commits: A 10 Years Dataset of Bug-Fixing Activity from

55 Apache’s Open Source Projects.ž In: Int’l Conf. Predictive Models

and Data Analytics in Softw. Eng. ACM, 2019, pp. 80ś89.

[24] H. Alves, B. Fonseca, and N. Antunes. łSoftware Metrics and Secu-

rity Vulnerabilities: Dataset and Exploratory Study.ž In: European

Dependable Computing Conf. 2016, pp. 37ś44.

[25] A. Gkortzis, D. Mitropoulos, and D. Spinellis. łVulinOSS: A Dataset

of Security Vulnerabilities in Open-Source Systems.ž In: Int’l Conf.

Mining Softw. Repositories. ACM, 2018, pp. 18ś21.

[26] M. Jimenez, Y. Le Traon, andM. Papadakis. łEnabling the Continuous

Analysis of Security Vulnerabilities with VulData7.ž In: Int’l Working

Conf. Source Code Analysis and Manipulation. 2018, pp. 56ś61.

[27] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dangremont. łA

Manually-Curated Dataset of Fixes to Vulnerabilities of Open-Source

Software.ž In: Int’l Conf. Mining Softw. Repositories. 2019, pp. 383ś387.

[28] J. Fan, L. Li, S. Wang, and T. N. Nguyen. łA C/C++ Code Vulnerability

Dataset with Code Changes and CVE Summaries.ž In: Int’l Conf.

Mining Softw. Repositories. 2020, p. 5.

[29] G. Lin, W. Xiao, J. Zhang, and Y. Xiang. łDeep Learning-Based Vul-

nerable Function Detection: A Benchmark.ž In: Int’l Conf. Information

and Communications Security. Vol. 11999. 2020, pp. 219ś232.

[30] Y. Ma, T. Dey, C. Bogart, S. Amreen, M. Valiev, A. Tutko, D. Kennard,

R. Zaretzki, and A. Mockus. łWorld of Code: Enabling a Research

Workflow for Mining and Analyzing the Universe of Open Source

VCS Data.ž In: Empirical Softw. Eng. 26.2 (2021), p. 22.

[31] S. Dueñas, V. Cosentino, G. Robles, and J. M. Gonzalez-Barahona.

łPerceval: Software Project Data at Your Will.ž In: Int’l Conf. Softw.

Eng. ACM, 2018, pp. 1ś4.

[32] D. Spadini, M. Aniche, and A. Bacchelli. łPyDriller: Python Frame-

work for Mining Software Repositories.ž In: Joint European Softw.

Eng. Conf. and Symp. Found. Softw. Eng. ACM, 2018, pp. 908ś911.

[33] NIST. National Vulnerability Database (NVD). url: https://nvd.nist.

gov/ (visited on July 22, 2020).

[34] MITRE. Common Weakness Enumeration (CWE). url: https://cwe.

mitre.org/ (visited on May 28, 2021).

[35] Forum of Incident Response and Security Teams (FIRST). Common

Vulnerability Scoring System (CVSS). url: https://www.first.org/cvss

(visited on May 28, 2021).

[36] M. di Biase, A. Rastogi, M. Bruntink, and A. van Deursen. łThe Delta

Maintainability Model: Measuring Maintainability of Fine-Grained

Code Changes.ž In: Int’l Conf. Technical Debt. IEEE, 2019, pp. 113ś122.

[37] R.-M. Karampatsis and C. Sutton. łHow Often Do Single-Statement

Bugs Occur? The ManySStuBs4J Dataset.ž In: Int’l Conf. Mining Softw.

Repositories. 2020, pp. 573ś577.

[38] X. Li, L.Wang, Y. Xin, Y. Yang, and Y. Chen. łAutomated Vulnerability

Detection in Source Code Using Minimum Intermediate Representa-

tion Learning.ž In: Applied Sciences 10.5 (2020).

[39] N. Saccente, J. Dehlinger, L. Deng, S. Chakraborty, and Y. Xiong.

łProject Achilles: A Prototype Tool for Static Method-Level Vulner-

ability Detection of Java Source Code Using a Recurrent Neural

Network.ž In: Int’l Conf. Autom. Softw. Eng. IEEE, 2019, pp. 114ś121.

[40] H. K. Dam, T. Tran, T. T. M. Pham, S. W. Ng, J. Grundy, and A. Ghose.

łAutomatic Feature Learning for Predicting Vulnerable Software

Components.ž In: IEEE Trans. Softw. Eng. 47.1 (2018), pp. 67ś85.

[41] P. Hegedűs. łInspecting JavaScript Vulnerability Mitigation Patches

with Automated Fix Generation in Mind.ž In: Int’l Conf. Computa-

tional Science and Its Applic. Vol. 12252 LNCS. 2020, pp. 975ś988.

[42] M. Yang, J. Wu, S. Ji, T. Luo, and Y. Wu. łPre-Patch: Find Hidden

Threats in Open Software Based on Machine Learning Method.ž In:

World Congress on Services. Vol. 10975. 2018, pp. 48ś65.

[43] A. Sabetta and M. Bezzi. łA Practical Approach to the Automatic

Classification of Security-Relevant Commits.ž In: Int’l Conf. Softw.

Maintenance and Evolution. IEEE, 2018.

[44] A. Larmuseau and D. Shila. łPatchSweetner: Exploit Detection

Through the Automatic Transformation of Security Patches.ž In:

Military Communications Conf. 2018, pp. 939ś945.

[45] Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk,

and M. Monperrus. łSEQUENCER: Sequence-to-Sequence Learning

for End-to-End Program Repair.ž In: IEEE Trans. Softw. Eng. (2019).

[46] Z. Chen, S. Kommrusch, and M. Monperrus. Using Sequence-to-

Sequence Learning for Repairing C Vulnerabilities. arXiv: 1912.02015.

CoRR e-print, 2019.

[47] E. Mashhadi and H. Hemmati. łApplying CodeBERT for Automated

Program Repair of Java Simple Bugs.ž In: Int’l Conf. Mining Softw.

Repositories. IEEE, 2021, p. 5.

[48] B. Mosolygó, N. Vándor, G. Antal, and P. Hegedűs. łOn the Rise and

Fall of Simple Stupid Bugs: A Life-Cycle Analysis of SStuBs.ž In: Int’l

Conf. Mining Softw. Repositories. IEEE, 2021, p. 5.

[49] F. Madeiral and T. Durieux. łA Large-Scale Study on Human-Cloned

Changes for Automated Program Repair.ž In: Int’l Conf. Mining Softw.

Repositories. IEEE, 2021, p. 5.

[50] J. Hua and H. Wang. łOn the Effectiveness of Deep Vulnerability

Detectors to Simple Stupid Bug Detection.ž In: Int’l Conf. Mining

Softw. Repositories. IEEE, 2021, p. 5.

[51] K. Herzig, S. Just, and A. Zeller. łThe Impact of Tangled Code

Changes on Defect Prediction Models.ž In: Empirical Softw. Eng. 21.2

(2016), pp. 303ś336.

39

http://findbugs.sourceforge.net/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://www.first.org/cvss

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset Construction
	3.1 Overall Workflow
	3.2 Details of the Automated Collection Tool
	3.3 Practical Guidance

	4 Dataset Exploration
	5 Discussion
	5.1 Applications of CVEfixes
	5.2 Limitations and Future Extensions

	6 Concluding Remarks

