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ABSTRACT

Machine learning has been increasingly used to solve various soft-

ware engineering tasks. One example of their usage is in regression

testing, where a classifier is built using historical code commits

to predict which test cases require execution. In this paper, we

address the problem of how to link specific code commits to test

types to improve the predictive performance of learning models

in improving regression testing. We design a dependency taxon-

omy of the content of committed code and the type of a test case.

The taxonomy focuses on two types of code commits: changing

memory management and algorithm complexity. We reviewed the

literature, surveyed experienced testers from three Swedish-based

software companies, and conducted a workshop to develop the

taxonomy. The derived taxonomy shows that memory manage-

ment code should be tested with tests related to performance, load,

soak, stress, volume, and capacity; the complexity changes should

be tested with the same dedicated tests and maintainability tests.

We conclude that this taxonomy can improve the effectiveness of

building learning models for regression testing.

CCS CONCEPTS

· Software and its engineering → Software verification and

validation.
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1 INTRODUCTION

Software testing has evolved to successfully accommodate for the

growing demand of higher product quality and faster delivery of

releases [4]. Nevertheless, testing has been notoriously costly for

its massive resource consumption - accounting for more than 50%

of the development life cycle. Therefore, optimizing testing pro-

cesses becomes pivotal for companies of all sizes to reduce the cost

overhead and increase the velocity of software development.

An essential yet costly activity in any testing process is to per-

form regression testing, which ensures that no new faults in the

system arise due to making new changes to the code base. However,

performing regression testing demands a large amount of resources

and a long execution time, which makes it infeasible to run all

impacted test cases on each committed code change.

To address this problem of regression testing, a number of test

case selection approaches have been proposed in the literature

[15],[2], and [30]. These approaches seek to improve the effective-

ness of test case selection by inferring statistical models that can

potentially predict affected test cases given changes in the code

base. However, a mutual drawback among these approaches is that

they omit to take into account the dependencies between specific

types of code changes (e.g., memory and algorithmic changes) and

test case types (e.g., performance and security tests) when train-

ing predictive models. For example, Al-Sabbagh et al. [2] proposed

building a machine learning (ML) model for test selection by map-

ping history executions of test cases and their relevant code changes

without considering what types of test cases are sensitive to the

changes in the source code. Similarly, Knauss et al. [15] proposed an

automatic recommender that analyzes the frequency in which test

cases fail on a particular day given code changes made to software

modules irrespective of the types of changes made in the code and

their dependencies with specific test case types.

Therefore, in this paper, we set off to fill this gap by developing a

facet-based taxonomy of dependencies between code changes and

test cases of specific types. We define a dependency as a relation

where a change in the source code of a given type that triggers a

failure in one or more test cases of different types. The contribution

of this work is two-fold. First, it gears the testing efforts at software

companies by allowing the execution of test cases that are in relation

with the submitted code changes to the development repositories -

thereby potentially reduce the time for testing. Second, it lays down

the foundation for researchers to investigate, expand, and refine

the identified dependencies. The addressed research question is:
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RQ: To which degree do software testers perceive content of a code

commit and test case types as dependent?

To address this research question, we constructed a taxonomy,

linking the test case types and the categories of source code that

can trigger these test cases. First, we began the taxonomy build-

ing by identifying and extracting data from the literature to find

the test types and categories of code changes and to identify po-

tential synergies between them. Then, we surveyed testers from

software companies to construct and design the faceted taxonomy

[16] Finally, for two categories, where the survey results were in-

conclusive, we conducted a workshop with the testers to find the

strength of these dependencies.

2 RELATED WORK

Our work is related to studies on defect and testing taxonomies.

2.1 Defect Taxonomies

A widely applicable taxonomy in the software testing literature is

Orthogonal Defect Classification (ODC), which was designed by

Chillarege et al [7]. The ODC taxonomy defines attributes for the

classification of failures. Its main purpose was to identify the root

cause of defects and to provide quick feedback to developers about

defects’ cause in the software process. The ODC can also be used for

early detection of faults in static analysis. Several defect taxonomies

have been built on the ODC as a starting point to develop different

domain-specific taxonomies. For example, Li et al. [18] presented

an extended taxonomy of ODC and named it Orthogonal Defect

taxonomy for Black-box Defects (ODC-BD). The taxonomy was de-

signed by the motive of increasing testing efficiency and improving

the analysis of black-box defects. Evaluated on the analysis of 1860

black-box defects that belong to 40 software projects, the results

showed that using ODC-BD reduced the testing effort by 15% in

one month compared to the testing efficiency when not using the

ODC-BD. Another work conducted by Li et al. [20] adopted ODC

to classify web errors for an improved reliability. Their taxonomy

classified web errors according to their response code, file type,

referrer type, agent type, and observation time.

The primary focus of all related work described above is to im-

prove the quality of the code base by identifying the root cause

of defects and to gain insights into the types of commits that de-

velopers commit. However, our work aims to improve the testing

process by providing a taxonomy of code changes and test cases

that can be used to build classifiers for test case selection.

2.2 Taxonomies in Software Testing

Software testing has often been confronted with the challenge of

unveiling software defects under sever time pressure and limited

hardware resources. Due to its importance and practical relevance,

several software testing taxonomies have been proposed in the lit-

erature. In a systematic literature review study [6], Britto identified

a number of studies that present taxonomies in the area of soft-

ware testing. The majority of these taxonomies, however, provides

a classification of the suitability of testing techniques in different

contexts. For example, Novak et al. [23] developed a tree-based

classification of features that are attributed to existing static code

analysis tools. The taxonomy offers a classification of existing static

analyzers based on the technology, availability of rules, and the

programming languages that each tool supports. Similarly, Vegas

et al. [29] classified a set of unit testing techniques and mapped

their characteristics with project characteristics to aid the selection

of suitable testing approaches based on the project’s characteristics.

The presented taxonomy comprised a number of criteria such as

when to use the testing approach, who to use it, and where it can

be used. Felderer and Schieferdecker [11] presented a classification

for supporting the categorization of risk-based testing approaches

and tailoring their usages depending on the context and purpose.

The taxonomy classifies different risk drivers, risk assessments,

risk-based test processes. All of these taxonomies provide a generic

classification of the applicability of testing techniques in different

software engineering projects. However, no taxonomy discusses

the dimension of dependencies between code commits and test

case types. Classifying these dependencies can potentially aid in

the identification and execution of tests that are relevant to the

committed code and hence counteract exhaustive testing efforts.

The taxonomy presented in this study aims at filling this gap by

identifying facets of dependency connections from the viewpoints

of software testers.

3 RESEARCH METHOD

In this study, we follow the method proposed by Usman et al.[28] to

guide the construction of the taxonomy. The method comprises of

four phases: i) planning, ii) identification and extraction, iii) design

and construction, and iv) validation.

3.1 Planning

The first phase in the adopted method involves six activities for

planning the context of the taxonomy and defining its initial set-

tings. Table 1 illustrates the outcome of each planning activity.

Since the ultimate goal of this study is to gear the testing efforts by

improving the selection of test cases, then the the knowledge area

associated to the taxonomy is in the domain of software testing

(A1). The second activity (A2) defines the objective of the taxon-

omy, which in our case is to identify the degree at which testers

perceive dependency patterns between code changes and test case

types. The subject matters (units of classifications) are categories of

code changes and test case types (A3). A faceted-based approach is

devised for creating the taxonomy (A4). The procedure for classify-

ing the subject matters are qualitative and quantitative - literature

review, survey, and discussions with testers in a workshop setting

(A5). Finally, the basis of the taxonomy consists of categories of

code changes and test case types drawn from the literature (A6).

3.2 Identification and Extraction

The identification and extraction phase involves identifying the

main categories and terms used in the taxonomy. We begin the im-

plementation of this phase by reviewing the literature in search for

knowledge about the subject matters. For this purpose, we account

for two inclusion criteria in our literature search. First, we wanted

to include papers that discuss the impact of specific changes in the

code on the quality of the system. Second, we were only interested

in papers that were written in English and accessible. The chal-

lenge in this phase was to extract terms that are consistent and not

interchangeably used in different research studies. Therefore, to
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Table 1: Planning Activities

Id Planning Activity

A1 The software engineering knowledge associated to the

designed taxonomy is software testing.

A2 The main objective of the proposed taxonomy is to identify

dependency patterns between code changes and test case

types from the perspective of testers.

A3 The subject matters of the designed taxonomy are cate-

gories of code changes and test case types.

A4 The taxonomy was designed using a facet-based structure.

A5 The procedure used for classifying the subject matters was

qualitative and quantitative.

A6 The basis of the taxonomy consists of code change cate-

gories and test case types drawn from the literature.

overcome this challenge we based our literature search on the set

of recognized test case types defined in the international standard

ISO/IEC/IEEE CD 2911901:2020(E) document[1] (presented in Sec-

tion 4.1). That is, for each test case type in the ISO document, we

searched for relevant papers that empirically investigate or theoret-

ically discuss types of code changes that trigger a reaction among

the test cases. The outcome of this phase was a list of six categories

of code changes and 18 test case types. Further, and based on our

literature search, we identified synergy links between the six code

categories and the 18 test types (as depicted in Fig 2).

3.3 Design and Construction

This phase presents the relationships between the identified cate-

gories and describes how they were connected. Since the goal of the

taxonomy is to answer the question of To which degree do software

testers perceive content of a code commit and a test case types as

dependent?, we decided to open up for the community of testers to

seek their opinions about potential dependency patterns between

the categories of code changes and test case types and to identify

the strengths of the identified dependencies.

3.3.1 Survey. We began this phase by creating a survey and dis-

tributing an invitation email to software development companies

that are affiliated to a Swedish consortium called ’Software Center’.

The consortium comprises a total of fifteen companies and five uni-

versities that collaborate together to advance knowledge in seven

different software engineering themes.

To mitigate the risk of receiving responses from different domain

perspectives (e.g., web development), we decided to focus on sur-

veying testers that specialize in the same domain area. Therefore,

we sent the invitation email to five companies that are active in

the development of embedded systems. The survey comprised two

column lists. The first list included definitions of the test case types

(see Section 4.1), whereas the second list included the categories of

code changes (see Section 4.2). As a first task, all invitees were asked

to provide a mapping between each test case type and category

of code changes, where a mapping corresponds to a dependency

between a single test case type and a category of code change.

The second task was for testers to propose and map additional

test case types with categories of code changes that were not pro-

vided in the survey. The purpose was to mitigate the risk of missing

out dependency patterns that testers perceive as important.

Finally, to achieve a better understanding of our target group

of testers, all invitees were asked to mark the test case types that

they exercise in their workplaces. Overall, we received a total of

nine responses from nine testers working at the three software

development companies. A general overview of the number of

experienced testers for each test case type is provided in Fig 1.

Figure 1: Number of Experienced Testers Per EachTest Type.

3.3.2 Workshop with Testers. The data from the survey provided

us with the understanding of the dependencies. However, these

dependencies could be of different strength and therefore we orga-

nized a workshop with the respondents to assess the strengths of

dependencies for each test type to code changes. Three out of the

nine respondents, who participated in the survey, and three other

testers from another software company attended the workshop.

Our analysis of the survey responses showed that the strongest

dependencies were concentrated around the memory management

and complexity categories of code changes. Therefore, we decided

to focus on assessing the dependency strengths between these two

categories of code changes and test case types in the workshop.

During the workshop, the entire group of testers discussed how

sensitive each test type to the change of source code that affects 1)

memory management or 2) complexity. The goal of the discussion

was to gain an understanding of the dependency strengths from

the viewpoint of testers, in the following scale:

(1) Not sensitive at all. This level was used when the testers

judged that such a change would not trigger the test case to

fail.

(2) Not very sensitive. This level was used when the testers

judged that triggering a failure would be coincidental.

(3) Somewhat sensitive. This level was used when the testers

judged that triggering would be under specific conditions.

(4) Sensitive. This level was used by the testers to indicate that

a change under most conditions triggers a test case failure.

(5) Very sensitive. This level was used when the change should

trigger the failure of the test case.
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After discussing the sensitivity strengths, using the above scale, we

asked the testers to justify their views about the sensitivity of each

dependency by providing explanations for their ranking.

3.4 Validation

This phase ensures that the selected subject matters are clear and

thoroughly classified Usman et al. [28]. This can be achieved using

three distinct methods: Orthogonality demonstration, benchmark-

ing and utility demonstration. Most of the taxonomies proposed in

Software Engineering are evaluated via an utility demonstration,

i.e., authors apply their taxonomy to an example Usman et al. [28].

In turn, benchmarking is used to compare the classification capa-

bilities of different taxonomies. In both cases, the taxonomy needs

to be applied in actual software artefacts. For this study, we cannot

perform those types of validation because we do not have access to

test cases or code changes from our industry partners. Therefore,

we validate our taxonomy using an orthogonality demonstration.

That is, we demonstrate and discuss the orthogonality between

strongly dependent categories from the viewpoints of testers. The

goal is to illustrate the unique classifications offered by our tax-

onomy. Based on this demonstration, we aim to highlight which

types of tests map to unique types of code changes, as well as those

dependencies that cover multiple types of tests.

4 RESULTS

This section presents the findings for the research question To which

degree do software testers perceive content of a code commit and a

test case types as dependent?

4.1 Test Case Types

In this paper, we decided to base our literature search for extracting

code change categories on the list of test case types defined in this

ISO/IEC/IEEE CD 2911901:2020(E) document[1]. This was done

to overcome the challenge of encountering different terms of test

case types that are used interchangeably in published articles. For

example, the terms ‘back to back’and ‘differential’testing can be

found and used interchangeably in the literature. Table 2 lists the

definitions of all test case types that we used in our literature search.

We used each test case type in the Table to search for relevant papers

that empirically investigate or theoretically discuss the dependency

between the relevant test case type and code changes.

4.2 Code Change Categories and Dependencies

with Test Case Types

Our literature search returned a set of 16 relevant papers from

which we could extract six different categories of code changes.

These categories were: 1) Memory Management, 2) Complexity,

3) Design, 4) Dependency, 5) Conditional, 6) Data. Based on the

literature search, we identified 21 dependency links between the

six drawn categories of code and eight out of the 18 test case types

defined in the ISO document, as shown in Fig 2. Each dependency

corresponds to a relationwhere a change in one of the code category

results in a failure of a test case of specific type.

We now define the identified categories of code changes and

illustrate the effect of each on test case types by means of code

examples written in the C++ language.

Table 2: Definitions of Test Case Types

Test Type Definition

Smoke Initial testing of the main functionality of a test

item to determine whether subsequent testing is

worthwhile.

Soak Testing performed over extended periods to check

the effect on the test item of operating for such long

periods.

Stress Testing performed to evaluate a test item’s be-

haviour under conditions of loading above antic-

ipated requirements.

Volume Testing performed to evaluate the capability of the

test item to process specified volumes of data in

terms of capacity.

Load Testing performed to evaluate the behaviour of a

test item under anticipated conditions of varying

loads.

Statement Test design technique in which test cases are con-

structed to force execution of individual statements

in a test item.

Maintainability Evaluate the degree of effectiveness and efficiency

with which a test item may be modified.

Security Evaluate the degree to which a test item, and as-

sociated data, are protected against unauthorized

access.

Performance Evaluate the degree to which a test item accom-

plishes its designated functions within given time.

Capacity Evaluate the level at which increasing load affects a

test item’s ability to sustain required performance.

Portability Evaluate the ease with which a test item can be

transferred from one environment to another.

Installability Testing conducted to evaluate whether a set of test

items can be installed as required in all specified

environments.

Compatibility Measure the degree to which a test item can function

alongside other independent products.

Reliability Evaluate the ability of a test item to perform its re-

quired functions under stated conditions for a period

of time.

Accessibility Determine the ease by which users with disabilities

can use a test item.

Back-to-back An alternative version of the system is used as an

oracle to generate expected results for comparison

from the same inputs.

Backup and re-

covery

Measures the degree to which a system state can be

restored from backup within specified time in the

event of failure.

Procedure Evaluate whether procedural instructions for inter-

acting with a test item to meet user requirements.
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Figure 2: Extracted Categories of Code Changes and Their

Dependency with Test Case Types.

Figure 3: Code Example For Memory Management Change.

Memory management: This category of change involves groups

that are concerned with the management of memory occupied

by the system during run-time. Such changes include introduc-

ing/fixing memory leaks, buffer overflow, dangling pointers, and

resource interferencewithmulti-threading. The following test types

would react to this category of change: performance[19], load[13],

security[8][27], soak[14], stress[33], reliability[9] tests. A common

memory leak scenario occurs when a developer allocates memory

space using the new or malloc keywords, and misses freeing mem-

ory space after they were used. As the program grows in size, less

memory becomes available and thereby a performance degradation

is encountered. The code example in Fig 3 shows how the memory

space allocated for pointer ’pListElementNext’ was unfreed from

the memory after being used in revision 2.

Complexity: This category represents changes that add/reduce the

time complexity of the program. It includes changes such as adding

or removing loops, conditional statements, nesting blocks and/or

recursions. The following test types have been identified to react to

this category of change: performance [22][25], maintainability[12]

[5] tests. Fig 4 shows a code example for finding the maximum

integer element in an array. The function in the first revision takes

a one dimensional array as input, whereas the second revision is

modified to accept two-dimensional arrays. The nested loop added

to the function in revision 2 would result in an increased time com-

plexity order. Similar changes can potentially trigger performance

degradation and thereby performance test failures.

Figure 4: Code Example For Complexity Change.

Design: This category involves changes that include code refac-

toring, adding or removing methods, classes, interfaces, and enu-

merators, and code smells. The following test types have been

identified to react to this category of change: maintainability[12],

performance[12], security[3], and reliability[17]. The code example

in in Fig 5 illustrates a design change in a program that computes

the sum of an array elements. The function ’CalculateRank’ was

added in the modified revision to handle the task of summing up

the array elements. Such design decisions reduce the amount of

code lines in the program and thus improves its maintainability.

Figure 5: A Code Example For Design Change.

Dependency: This category describes a code change that involves

adding/ removing/ modifying a dependency to another module/

library. It can be importing/ removing/ modifying a new library,

a new namespace, or a new class. Changes in the dependencies

between software artefacts can trigger the following tests: maintain-

ability[24], security[8], procedure[26], and performance[25].

Conditional: This category of change occurs when a logical oper-

ator or a comparative value in a condition is modified. A misuse

in the logical expressions might result in generating the wrong

outputs. Performance and procedure tests [25][26] were identified

as dependent to this category of change.

Data change: This category involves 1) changing functions’ parame-

ters, 2) passing parameters of incompatible types to modules/ func-

tions, and 3) adding/ fixing assignments of incompatible types to
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Figure 6: Testers’ classifications of code changes and test

case types. Each cell indicates the number of testers that

perceive a relationship between the corresponding type of

code changes and tests. Darker cells indicate stronger level

of agreement between testers.

variables, casting statements, and array size allocations, and 4) mod-

ifying variable declarations. The following tests would react to such

code changes: security[32], performance[25], and procedure[26].

4.3 Dependency Patterns and Strengths

4.3.1 Survey. Based on the types of tests and code changes ex-

tracted in the previous step, we created the survey. We sent our

survey to 15 industry practitioners and received responses from

nine participating testers (i.e., 60% response rate). Our analysis

focuses on 1) examining whether testers had proposed additional

types of test cases or categories of code change, and 2) examining

the level of agreement and disagreement between the testers’ per-

ceived connections of types of tests and code changes. For instance,

whether testers expect a connection between design changes and

maintainability tests, as reported in literature. Fig 6 is a contingency

table that depicts the testers’ opinions about potential dependencies.

Our analysis of the responses revealed the following observations:

• The strongest dependency patterns were mostly concen-

trated around the memory management and complexity cat-

egories of code changes.

• There was a general consensus between the testers about the

mappings between performance, soak, load, stress, capacity,

and volume tests and the six types of code change categories.

• Most of the discrepancies in the responses were in the clas-

sification of the design, dependency, and data categories.

• Two additional test types, i.e., not found in our literature

extraction, were proposed by the testers: Regression and

functional tests. The ISO/IEC/IEEE CD 2911901:2020(E) con-

siders these two types of tests as testing activities, since these

can be applied at any point in time irrespective of the testing

level (unit, integration, system, and user acceptance) [1].

Due to the agreement between most testers about the connection

between the complexity and memory management categories of
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Results for Memory Management

Figure 7: Diverging plot showing the strength of perceived

connections between each test type and memory manage-

ment changes. The percentages to the right indicate the pro-

portion of testers that see a stronger relationship, in con-

trast to those that see a weaker relationship. Testers with

a neutral view are shown as the percentage in the middle.

code changes, we decided to focus the workshop on exploring the

deeper connections between these two types of code changes and

all types of tests. Focusing on only those two categories allowed

us to capture the details of practitioners’ perception about the

connections between code changes and many types of tests such

as process or human factors related to identifying those changes,

or code constructs used in industry to classify those changes.

4.3.2 Workshop: We now present the results of the dependency

scores given by the testers during the workshop. Figs 7 and 8 are

diverging plots that show the sensitivity strengths of each test type

to the memory management and complexity categories. By exam-

ining the sensitivity strength scores, of each test case type in Fig 7,

we observe that the majority of the testers perceived six tests types

to be mostly sensitive to memory management changes. Namely,

performance, load, soak, stress, volume and capacity tests. Similarly,

Fig 8 shows that performance, soak, load, statement, stress, vol-

ume, and maintainability tests were perceived as mostly sensitive

to complexity related changes. In the remainder of this subsection,

we present the main results of the discussions with the testers that

explain their perspective on those connections.

4.3.3 Memory Management. Smoke, back-to-back, and statement

tests: The respondents justified the low sensitivity strengths of these
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Figure 8: Diverging plot showing the strength of perceived

connections between each test type and complexity changes.

The percentages to the right indicate the proportion of

testers that see a stronger relationship, in contrast to those

that see a weaker relationship. Testers with a neutral view

are shown as the percentage in the middle.

three test types to the fact that they focus on the functionality of the

software system, rather than its qualities. One respondent linked

the sensitivity of smoke tests to memory management changes to

two specific scenarios: 1) when changing from one programming

language to another, or 2) when doing major code refactoring.

łIt’s not that often that the smoke tests will break due to memory man-

agement changes but one possible scenario for this to happen is when

we switch from C to C++ first we changed the compiler, then we started

modernizing the code to use smart pointers. Another scenario is when

we do major refactoring to optimize the code base.ž - Participant 1

Compatibility and portability tests: All testers agreed that these

two types of tests are not sensitive at all to memory changes. The

testers explained that these tests may only be triggered in the event

of hardware failure in the environment. One opposing viewpoint

considered memory management changes to have an effect on

the stability of APIs used for information exchange in a shared

environment, and thereby can trigger a failure in the two tests.

łFailure in these two types of tests can be explained by a device failure

or in the way the APIs in the shared environments are handling con-

current requests, which often requires memory management changes.ž -

Participant 1

Load, stress, soak, capacity, and volume tests: The majority of

testers considered these test types to be very similar to perfor-

mance tests. As a result, most of the justifications given about the

sensitivity strengths of the five tests are somewhat similar. The

testers explained that, in general, failure in one of the five test types

can be triggered by memory related changes when expanding the

functionality of existing classes.

łif you allocate more memory to expand an existing class then failure

among performance tests might be triggered.ž - Participant 2

In addition, one tester emphasized that failure in any of these

tests depends on the amount of changes made between releases

and the information specified in the test oracle. That is, failures can

only be captured when the amount of code changes made between

releases is large.

łFailure in these tests depends on the oracle. If you just use the perfor-

mance test to compare performance from the latest release then there

might be no issues because the changes are too small, but if you do big

changes then you might spot memory problems.ž - Participant 2

Installability tests: The sensitivity of this test type was perceived

as moderate (somewhat sensitive) by 50% of the testers. These

testers argued that installability testing is sensitive to memory

management changes in situations where the development team

decides to change from one operating system to another.

łWhen porting from a Windows environment to a Linux environment,

we should make some memory changes, which trigger installability tests

to fail.ž - Participant 3

Security tests: There was a disparity in the views of testers regard-

ing the sensitivity of this test type. 33% of the testers perceived this

test to be sensitive to memory changes, 17% perceived it to be some-

what sensitive, whereas 50% of testers perceive a low sensitivity to

this type of test. Testers who considered this test type to be sensitive

argued that memory changes lead to memory leaks which, if not

properly managed, might expose the system to security breaches.

łI think that memory management changes could lead to things being

exposed that should not be. For example exposing kernels space memory

to be violated.ž - Participant 1

Disagreeing participants argued that resource leaks result in

performance issues rather than security breeches. Further, they

linked the sensitivity of security tests to the program domain.

łIn specific domains, memory management is mostly handled on the

cloud side providing the service. Internally, memory is not something

that will trigger security tests to fail.ž - Participant 4

4.3.4 Complexity code changes. Performance, soak, load, volume,

and stress tests: The majority of the testers ranked these types of

tests to be either sensitive or very sensitive to complexity changes.

As an argument for their ranking, the testers discussed that adding

complexity changes such as nested loops will increase the cyclo-

matic complexity size in the system, which would in turn affects

the system’s response time.
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łAs the cyclomatic complexity increases, the response time of the system

will also get impacted.ž - Participant 2

The remaining minority of the testers argued that developers are

aware of the impact of adding complexity changes on performance.

As such, it is highly unlikely that developers will commit complexity

code changes without optimizing their code before testing.

łIf developers are adding complexity consciously then there will be per-

formance issues, but often the times, developers will address these com-

plexity before even pushing their code for testing.ž - Participant 3

Maintainability test: All of the participants perceived this test

type to be either sensitive or very sensitive to complexity changes in

the code. One of the participants argued that adding more control

paths in the system, such as loops and case blocks, leads to the

development of larger and poorly structured software, which makes

it more difficult and less efficient to maintain.

łAdding things like loops or method calls into the program increases

its size and makes the task of debugging more difficult as the program

evolves over time.ž - Participant 5

Security test: 50% of the participants indicated that security tests

are somewhat sensitive to complexity changes. This was explained

by the fact that adding recursion calls and loops to the code can

potentially increase the size and modularity of the system under

test, thus it will increase risk of missing security vulnerabilities.

Conversely, around 30% of the participants believed that security

tests are not sensitive at all to complexity changes. This contrasting

view indicates that the links between security threats and increas-

ing/decreasing code complexity are not clear for testers.

łI think it’s not really a good thing to add complexity for security aware

purposes. It is very important to understand what’s going on in the code

to be able to deal with things like security.ž - Participant 2

ładding loops will in no way expose the system to external threats and

therefore no security tests will break if more loops are added - adding

loops will not cause any vulnerabilities in the system.ž - Participant 6

The remaining 20% of the participants considered security tests

to be sensitive to complexity changes, but did not provide any

justification for this rank.

4.4 Resulting Taxonomy

The constructed taxonomy is based on the analysis of the overall

agreement between testers who participated in the workshop and

their justifications about each dependency. A test case type whose

overall sensitivity to a code change was ranked as either sensitive

or very sensitive by the majority of the testers was added to the tax-

onomy - provided that a justification for the dependency was made

by one or more of the agreeing testers. Our analysis results of the

workshop discussions show that testers have an aligned viewpoint

with the classifications drawn from the literature in six of the depen-

dency connections. Namely between: 1) memory management code

and performance, load, soak, and stress tests, 2) complexity code

and performance and maintainability tests. Beside these aligned

dependencies, testers perceive six other dependencies to be in a

strong causality relationship with the two categories of code. Those

dependencies were between 1) memory management code changes

and volume and capacity tests, 2) complexity code changes and

load, soak, stress, and volume tests. Fig 9 shows the constructed tax-

onomy. We identify the strong and weak relationships mentioned

by practitioners. Overall, the results show that the memory man-

agement code should be tested with tests related to performance,

load, soak, stress, volume and capacity; the complexity changes

should be tested with the same and additionally with the dedicated

maintainability tests.

Figure 9: The final taxonomy of code changes and test case

types. The solid connectors represent strong dependencies

perceived by practitioners, whereas the dashed connectors

correspond to those dependencies perceived as weak.

5 TAXONOMY VALIDATION

We evaluate our taxonomy by discussing the orthogonality of its

classification. In other words, we illustrate how the chosen facets

can support the prediction of connections between types of tests and

code changes. Particularly, we emphasize the unique combinations

found in our facets for supporting testers to classify the tests in

connection with the code changes made. We frame the applicability

of our taxonomy in relation to automated prediction of relationships

between code and tests to support effective test orchestration.

5.1 Orthogonality of the Taxonomy’s Facets

The majority of relationships are connected to the memory man-

agement code changes (11/18). That is not surprising as most of

the types of tests found in literature cover system qualities. In

fact, during workshops, practitioners rarely mention updates in

functionalities (e.g., system requirements), except when discussing

complexity changes. Memorymanagement is exclusively connected

with 5 test types, such that only 1 of those connections is strong

(capacity tests). Consequently, those weak connections can be used

to avoid overhead in test executions when focusing the verification

of changes in memory management of software systems. Changes

in complexity have fewer connections and most of them are ac-

tually shared with memory management (6/7), hence indicating

a confounding factor between verifying changes in complexity to

their impact on verifying memory management. Maintainability is

only associated with complexity which is not surprising, since the

complexity of a source code has impact on core aspects of maintain-

ability such as testability and debugging [10]. The results shows

one weak connection shared between both types of code changes,

which is related to security testing. Still, practitioners did not seem
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to have a consensus on how to handle security tests. Note that on

Figs 3 and 4, security is ranked in the middle between the more

explicit agreement and disagreements for both code categories.

These contrasting views from practitioners on the purpose of se-

curity tests align with the findings drawn by Morrison et al. [21],

where the authors highlighted a number of factors that impede the

construction of effective vulnerability ML models.

5.2 Instrumenting Prediction of Dependencies

Table 3 breaks down memory management and complexity changes

into specific types and their connection to specific code constructs.

We choose C++ constructs because our study encompasses the do-

main of embedded systems. Future work aims at expanding the

constructs to other programming languages such as Java or Python.

Associating these code changes to specific code constructs enables

automatic extraction and identification of code changes by using

information from control version systems, such as git. The process

of identifying and classifying code lines into their relevant cate-

gories can be instrumented using, for example, a tokenizer and a

lexicon of vocabulary that contains a mapping between code tokens

(constructs) and their relevant categories of code. For example, a

code line that appears with a combination of the tokens ’delete,

free, new, and malloc’ can be used to classify a code line as memory

management related, since these tokens are used during objects’

creation/destruction (Table 3). In contrast, automatically identify-

ing and extracting types of tests is more challenging because those

tests are used across different levels (e.g., unit or system) such that

keyword extraction is inaccurate, particularly for higher levels of

testing where tests are written in natural language (e.g., acceptance

tests). Therefore, for this study, we assume that practitioners have

access to the types of their tests, as part of their test process.

RQ. To which degree do software testers perceive con-

tent of a code commit and test case types as dependent?

The measured degree of perception among software testers

suggests a strong dependency between performance, load,

soak, stress, and volume tests and memory management re-

lated code changes. On the other hand, testers believe that soak,

statement, back to back, security and installability tests are

in weak dependencies with memory management code. Simi-

larly, the majority of testers perceive the same set of strongly

dependent test types with memory management changes to

be dependent on complexity changes; in addition to maintain-

ability tests and excluding capacity tests.

Based on these findings, test orchestrators that are keen on

using ML models for test selection are encouraged to build their ML

models on data that reflects the dependency patterns depicted in

the presented taxonomy (Fig 9). Particularly, by mapping memory

management and algorithmic complexity related code changes to

the verdict of the strongly dependent test case types.

6 THREATS TO VALIDITY

In this section, we briefly discuss the limitations of our paper using

the framework recommended by Wohlin et al. [31].

Conclusion Validity: Since this paper does not aim to provide a

systemic survey, we did not use a formal protocol for conducting

the literature review. Therefore, we cannot ensure that the selection

of the code categories and test case types was unbiased. However,

we minimize this risk by inviting testers to propose other types

of code changes and test cases that are not provided in the survey

invitation email. Moreover, there is a likelihood that we missed

adding valid dependencies in the taxonomy as a result of 1) not

discussing the sensitivity of all test types with testers, and 2) lack of

experience among testers in some test case types. However, since

the goal of this work is to study the dependency between code

changes and test types, we accept this risk.

External Validity: The sample size of testers who participated in

the survey and the workshop was small. Therefore, we acknowl-

edge that the generalization of our findings might be delimited.

However, the survey data and the workshop discussion provided

some valuable insights into understanding the dependencies and

sensitivity strengths of different test case types and code changes.

Internal Validity: The time span between the distribution of the

survey and the the workshop was almost two months. This poses

a threat with respect to the testers’ comprehension of the terms

and definitions that were used during the workshop (e.g., test case

types). We mitigated this threat by providing definitions for all the

terms used in the workshop. Another internal threat to validity

is the likelihood that testers were influenced by the opinions of

each other. However, since we construct our taxonomy based on a

triangulated approach, we minimize the likelihood of this risk.

Construct Validity: This study builds on the assumption that there

exists a dependency between code changes and test types. Never-

theless, there is a chance that such a dependency does not exist

and that what we found was coincidental. We minimize this risk by

constructing the taxonomy from the viewpoints of practitioners.

7 CONCLUSION AND FUTUREWORK

The taxonomy presented in this paper aims at classifying depen-

dencies between categories of code changes and test case types.

Exploring these dependencies can potentially contribute to the im-

provement of ML based test case selection approaches that use code

analysis and test execution results. In this paper, we have observed

strong dependencies between two categories of code changes and

seven test case types. This knowledge can gear the test orchestration

efforts by pinpointing and executing test cases that are in relation

with the relevant changes in the source code. The strongest de-

pendencies were captured between performance, load, stress, soak,

volume and the two categories of code changes: memory manage-

ment and complexity. On the opposite end of the spectrum, the

weakest dependencies were found between smoke, back-to-back,

installability, accessibility, portability, compatibility, and backup

and recovery tests, and the two categories of code changes. Those

test cases can be excluded from the suite when the tested code

contains memory management and complexity changes only. As

a future work, we plan to continue working on refining the pre-

sented taxonomy by investigating additional dependency patterns

between other test case types and categories of code changes. An-

other important future work is to investigate potential dependency

links between test script constructs and test execution outcomes

of different types. Finally, we aim at evaluating the taxonomy pre-

sented in this study by using utility demonstrations on different

software projects and programming languages.
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Table 3: Types and Constructs Related to Memory Management and Complexity Code Changes.

Memory Management

Subcategories Description Code Constructs

Dangling/Wild

pointers

occurs when deleting an object from memory without altering the pointer that

points to the object’s location.

&variable, *variable, NULL, free

Memory leaks occur when memory space is allocated but not freed. If such incidents occur,

leaks will happen and could eventually cause the program to run out of memory

resulting in a program halt.

delete, free, new, malloc

Buffer overflow occurs when the data gets written past the boundaries of the buffer allocated in

memory.

malloc, strcpy, gets, strcmp

Complexity

Subcategories Description Code Constructs

Loops and condi-

tions

repeating a sequence of instructions for n times until one or more conditions

are satisfied. The repetition can occur in the form of multiple nested loops.

for, while, do, if, switch, case, break

recursion Occurs when a function calls itself until an exit condition is satisfied.
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