
acmqueue | may-june 2021 1

Dear KV,
Many of our newer developers—those who have worked
only with git—seem to find bugs in their code only by using
git’s bisect command. This is troubling for a couple of
reasons. The first is that often—once they find where the
change occurred that caused the problem—they don’t
understand the cause, only that it happened between
versions X and Y. The second is that they do not seem to
understand the limits of debugging in this way, which,
perhaps, is more a topic for you than for me to describe to
you. Do you find this practice becoming more widespread
and perhaps debilitating to good debugging?

Vivisected by Bisection

Dear Vivisected,
Nearly all new tools are both a blessing and a curse, as
close readers of KV will know by now, and the ability to
bisect a set of changes quickly is no different. It is quite
definitely a blessing to have automation take over the
tedious work of checking out a change, building the system,
running a test, and seeing if the test fails, and then if it
doesn’t fail in the right way, doing this all over again until
the change that introduced the bug is found. That kind of
work is something you want automated, and, therefore,
in that case it is a blessing—a limited one, but a blessing
nonetheless. I mean, it’s not manna from heaven, is it?

Divide and Conquer
The use and
limits of
bisection

1 of 3 TEXT
ONLY kode vicious

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3475965.3477581&domain=pdf&date_stamp=2021-07-26

acmqueue | may-june 2021 2

What you are asking me to rant about (you are asking
for a rant, right?) is how such a tool can create lazy
thinkers, and by extension, lazy engineers. Well, there are a
few problems to talk about even before we get to whether
having such automation leads to laziness.

Tools such as bisection are great if, and only if, you
have a well-understood bug that occurs with 100 percent
consistency so that the bisection can work. Bisection is
of no use if you have a heisenbug, or something similarly
subtle, that will fail only from time to time; and, while we
do not want any bugs in our systems, we know that these
subtle bugs are the hardest to fix and the ones that cause
us—well, some of us—truly to think critically about what we
are doing.

Timing bugs, bugs in distributed systems, and all the
difficult problems we face in building increasingly complex
software systems can’t yet be addressed by simple
bisection. It’s often the case that it would take longer to
write a usable bisection test (the damnable thing you must
write to get the bisection to tell you where the bad change
was) for a complex problem than it would to analyze the
problem whilst at the tip of the tree.

Another thing that developers often fail to understand
is that the bug may not be related to any previous change;
it might be right there in front of them, staring back, in
orange on black. I’ve watched several developers who
were absolutely convinced that the bug was “somebody
else’s problem” run and rerun bisections only to realize
that the actual problem was in their latest, uncommitted
change. It is unfair to laugh at people in the middle of a

2 of 3

I

T
ools such as
bisection
are great if,
and only if,
you have a

well-understood
bug that occurs
with 100 percent
consistency
so that
the bisection
can work.

kode vicious

acmqueue | may-june 2021 3

debugging session, and, with KV, it’s a risk to life and limb,
but it is still damned tempting.

What bisection provides all developers is simply another
tool to find bugs in their code. Sure, the bug has to be easy
to test for, likely can’t be in a distributed system, and can’t
be a timing or a heisenbug, but it’s still better than finding
these simpler bugs by hand or writing your own script to do
just what bisect is going to do.

Does this tool make us dumber? Probably not. What it
does is allow a lower-common-denominator developer to
find bugs; however, if that developer wishes to learn, the
tool doesn’t prevent that, and that’s why such a tool is a
boon to some and a cushion to others.

KV
Kode Vicious, known to mere mortals as George V. Neville-
Neil, works on networking and operating-system code for
fun and profit. He also teaches courses on various subjects
related to programming. His areas of interest are code
spelunking, operating systems, and rewriting your bad code
(OK, maybe not that last one). He earned his bachelor’s
degree in computer science at Northeastern University in
Boston, Massachusetts, and is a member of ACM, the Usenix
Association, and IEEE. Neville-Neil is the co-author with
Marshall Kirk McKusick and Robert N. M. Watson of The
Design and Implementation of the FreeBSD Operating
System (second edition). He is an avid bicyclist and traveler
who currently lives in New York City.
Copyright © 2021 held by owner/author. Publication rights licensed to ACM.

3 of 3

Ikode vicious

