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Abstract—Blockchain technologies originate from cryptocur-
rencies. Thus, most blockchain technologies assume an envi-
ronment with a fast and stable network. However, in some
blockchain-based systems, e.g., supply chain management (SCM)
systems, some Internet of Things (IOT) nodes can only rely on
the low-quality network sometimes to achieve consensus. Thus,
it is critical to understand the applicability of existing consensus
algorithms in such environments. We performed a systematic
mapping study to evaluate and compare existing consensus
mechanisms’ capability to provide integrity and security with
varying network properties. Our study identified 25 state-of-the-
art consensus algorithms from published and preprint litera-
ture. We categorized and compared the consensus algorithms
qualitatively based on established performance and integrity
metrics and well-known blockchain security issues. Results show
that consensus algorithms rely on the synchronous network for
correctness cannot provide the expected integrity. Such consensus
algorithms may also be vulnerable to distributed-denial-of-service
(DDOS) and routing attacks, given limited network throughput.
Conversely, asynchronous consensus algorithms, e.g., Honey-
BadgerBFT, are deemed more robust against many of these
attacks and may provide high integrity in asynchrony events.

Index Terms—Blockchain, consensus, security, integrity, per-
formance and supply chain

I. INTRODUCTION

Blockchain has evolved significantly since its initial roots

from Bitcoin and has seen adoption with novel use of the

technology for healthcare [1], banking [2], control systems

[3], and SCM [4]. In SCM systems, different actors are

working together to deliver timely and quality products to their

customers. A consensus algorithm used in SCM systems shall

provide high transaction throughput to take advantage of vast

amounts of IOT sensor data. Furthermore, it would need to

function well in an environment with varying network delays.

Some nodes, e.g., nodes to collect and transfer temperature

data of fresh food on trucks or vessels, may have poor or no

internet connection. The blockchain system will be subject

to the CAP theorem [5], which is challenging, given high

requirements towards transaction throughput and the constraint

caused by an unstable network environment.

This study aims to study to which degree existing consensus

algorithms can provide integrity and security with limited

network throughput and low network quality. Our primary re-

search hypothesis theorizes that there is little empirical knowl-

edge of blockchain applications’ effectiveness with limited

network throughput concerning the consensus mechanisms.

We performed a mapping study and covered published and

preprint articles. Our study aimed at answering the following

research questions.

RQ1: How well existing consensus algorithms can provide

integrity in an environment with limited network throughput?

RQ2: How well existing consensus algorithms can provide

security in an environment with limited network throughput?

We identified and analyzed 25 consensus algorithms quali-

tatively in this study. The results show that many existing con-

sensus algorithms are unfit for use in an environment affected

by varying network throughput. Some consensus algorithms

which assume a partially synchronous network can provide

integrity in events of asynchrony. However, their transaction

throughput may be significantly reduced when faced with

targeted denial-of-service attacks. Consensus algorithms that

do not make synchronization assumptions, adapted to an

asynchronous network, may avoid both.

The remainder of the paper is organized as follows. Section

2 lists related work. Section 3 explains the research design and

implementation. Section 4 present the research result. Section

5 discusses the results and Section 6 concludes the study.

II. RELATED WORK

Studies, e.g., [6]–[10], have focused on reviewing the state

of the art consensus algorithms. [6] defined a five-component

framework for categorizing blockchain consensus algorithms,

provided a comprehensive review of current consensus algo-

rithms, and evaluated the algorithms’ performance according

http://arxiv.org/abs/2103.02916v1


to their fault tolerance and throughput. [7] analyzed the

algorithm’s throughput, mining incentive, decentralization, and

security challenges. [10] provided a game-theoretic point of

view and looked at the mining incentive provided by different

consensus algorithms. Gramoli [8] evaluated the Proof-of-

Work (PoW) scheme of cryptocurrencies like Bitcoin and

Ethereum according to traditional Byzantine consensus al-

gorithms, and provided insight into PoW specific security

challenges, like the Bitcoin anomaly and balancing attacks.

[9] provided an extensive mapping of consensus algorithms,

according to their architecture and paradigm, and highlighted

fundamental differences between public and private blockchain

systems, and showed how this impacts the algorithms’ appli-

cability in these specific types of systems.

Other studies, e.g., [11], [12], have focused on security

challenges related to using using blockchain technology. In

particular, the studies highlighted the security implications the

choice of consensus algorithm has upon the overall blockchain

system. [11] provided a comprehensive overview of security

and privacy aspects of blockchain technology, defined core

security properties, and described existing security techniques.

Sayeed and Marco-Gisbert [12] assessed major Nakamoto

style consensus algorithms against the 51% attack, as well

as other major security threats towards blockchain systems,

and reviewed current mitigation techniques.

Both industry and academia have shown great interest in

assessing new use cases for blockchain technology, following

its success within the cryptocurrency space [13]–[16]. Belotti,

Božić, Pujolle, et al. [13] provided a vademecum to guide

designers in their decisions for when and how to apply

blockchain technology to their specific use case. Reference

[14] presented a systematic review of blockchain within the

energy sector and discussed its limitations and potential use

cases. Reference [15] reviewed current blockchain initiatives

and highlighted domains having real-world technology adop-

tion. Bodkhe, Mehta, Tanwar, et al. [16] presented a compre-

hensive analysis of the state of the art consensus algorithms

and their appropriateness related to cyber-physical systems. In

particular, the authors outlined domain-specific challenges for

supply chain management blockchain systems.

Another exciting research area has been the interconnection

of blockchain technology and IOT systems. Several studies,

e.g., [17], [18], have been dedicated to describing the state of

the art IOT blockchain systems and their challenges. Reference

[17] provided an extensive analysis of key components of

IOT blockchain systems and promising consensus schemes and

reviewed major IOT blockchain projects. [18] reviewed core

security issues related to IOT systems and how blockchain

technology might be applied to solve some of these issues.

The research goals of the related studies mentioned above are

summarized in Table I. Furthermore, the consensus algorithms

they discussed are summarized in Table II.

None of the related studies highlight the challenge of

consensus in environments with varying network delays. In

particular, in the context of supply chain management sys-

tems, real-world scenarios often involve entities transporting

goods over larger geographical areas, with periods of poor

or no internet connection. To deliver on the promises of

traceability, accountability, and improved information sharing,

SCM blockchain systems’ underlying consensus algorithm

must allow for efficient data sharing between stakeholders,

despite participants being affected by varying network delays.

Therefore, assessing the state of the art consensus algorithms’

performance under such an environment is essential to find

suitable consensus algorithms for SCM blockchain systems.

Furthermore, such an analysis may uncover the need for

designing novel consensus mechanisms if current mechanisms

are found insufficient for the use case.

III. RESEARCH DESIGN AND IMPLEMENTATION

This study aims to provide insight into core mechanisms of

the state of the art consensus algorithms and how they relate to

SCM blockchain systems in an enterprise setting with multiple

stakeholders affected by varying network throughput.

A. Data collection

We followed the systematic mapping study guideline pro-

posed by [19]. The search query ”Blockchain AND Consensus

Algorithm” was used to identify papers related to consensus

in blockchain systems. The query was executed at Oria [20],

a search engine aggregating research papers from scientific

databases, including IEEE Xplore, Springer, ACM Digital

library, and Scopus. We included only peer-reviewed research

papers in this round of search. Furthermore, to also gain

insight into the current non-peer-reviewed literature, the afore-

mentioned search query was also executed towards Arxiv.org.

This combined search is meant to provide a holistic view

of the current literature on consensus mechanisms applicable

to blockchain systems. To exclude irrelevant papers, we first

read through the papers’ titles and abstracts. Papers that did

not explicitly mention consensus algorithms were excluded.

Papers that were not available online were also excluded.

Furthermore, we excluded any paper that does not provide

an adequate description of the algorithm or sufficient security

analysis.

A total of 2151 papers were identified via the Oria search

engine. Through disregarding non-peer-reviewed papers, the

total was narrowed down to 451 papers. We then read through

the papers’ titles and abstracts to exclude any paper that

did not explicitly mention consensus algorithms and got 81

papers. Of these 81 papers, 63 papers were identified as studies

that presented consensus algorithms. Regarding the search

executed at Arxiv.org, a total of 103 papers were identified.

The papers were analyzed in the same manner as with the

Oria search. To get representative consensus algorithms, We

only include consensus algorithms if they were discussed in

more than one paper. We end up with a total of 25 consensus

algorithms to analyze.

B. Data analysis

Our classification is based on qualitative analysis and uses a

classification scheme differing from [19] because none of the



Reference ID [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]

Review existing consensus algorithms x x x x x x x x x x x x x

Review and analyze current blockchain projects x x x x x x

Security analysis x x x x

Provide analysis framework x x

Present domain specific use cases x x x x x x
TABLE I

RESEARCH GOALS OF RELATED STUDIES

Reference ID [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]

Proof of Work (PoW) x x x x x x x x x x x x x

Proof of Stake (PoS) x x x x x x x x x x x x

Delegated Proof of Stake (DPOS) x x x x x x x x x x

Proof of Authority (PoAuth) x x x x x x x

Proof of Elapsed Time (PoET) x x x x x x x x

Proof of TEE-Stake (PoTS) x x

Proof of Retrievability (PoR) x x x

Proof of Weight (PoWeight) x

Proof of Burn (PoB) x x x x x x x x

Proof of Capacity (PoC) x x x x x x x

Proof of Importance (PoI) x x x x x x

Proof of Authority (PoA) x x x x x

Practical Byzantine Fault Tolerance (PBFT) x x x x x x x x x x x

Delegated Byzantine Fault Tolerance (Delegated
BFT)

x x x

Democratic Byzantine Fault Tolerance (Democratic
BFT)

x

Byzantine Fault Tolerant State Machine Replication
(BFT-SMART)

x

Honey-Badger Byzantine Fault Tolerance (Honey-
Badger BFT)

x x x

Ripple Protocol Consensus Algorithm (RPCA) x x x x x x x

Stellar Consensus Protocol (SCP) x x

Byzantine Fault Tolerance based Proof of Work
(BFT-based POW)

x x

Byzantine Fault Folerance based Proof of Stake
(BFT-based POS)

x x x x x

Paxos x

Raft x x x x
TABLE II

CONSENSUS ALGORITHMS IN RELATED STUDIES

identified papers sufficiently covered the topic of consensus

in low throughput networks. To classify performance of the

consensus algorithms and to answer RQ1, we applied the

metrics shown in Table III.

• Reference [21] define read and transaction latency and

read and transaction throughput as essential performance

metrics. In this study, we are specifically interested

in evaluating consensus mechanisms in relation to a

blockchain system affected by low network through-

put, distributed over a greater geographical area. Thus,

the particular focus of the classification is attributed to

communication-related costs, in the form of consensus

latency and communication complexity.

• To avoid the impossibility result [22], one can assume that

the underlying communication network is synchronous.

However, the network may be particular asynchronous

[23] because of the limited network throughput. Thus,

the consensus algorithms’ timing assumptions are also

included as a metric. The timing assumptions made by

consensus algorithms can be categorized accordingly.

– Synchronous: There exist a known fixed upper

bound ∆ on the message delay between peers within

the network.

– Partial Synchronous: Either of the following state-

ments holds:

i There exists an upper bound ∆ on the message

delay between peers within the network, but it

cannot be known a priori.

ii There exists an upper bound ∆ on the message

delay between peers within the network, but it

does not hold before an unknown point of time

T .



– Asynchronous: There is no known fixed upper

bound ∆ on the message delay between peers within

the network.

• Byzantine fault tolerance and transaction finality are

included, highlighting the algorithms’ resilience towards

adversarial attacks, as well as transaction confirmation

time. A consensus algorithm’s transaction finality is the

algorithm’s guarantee that committed transactions can-

not be reversed. Some consensus algorithms providing

probabilistic finality, e.g., Nakamoto style consensus,

favor availability over strong consistency. Other consen-

sus algorithms providing immediate finality, e.g., BFT

style consensus, need strong consistency to enforce this,

thus sacrificing the system’s availability during network

partitioning.

Metrics Description

Consensus latency Number of Round-trip time (RTT) needed
to complete a round of consensus.

Communication complexity Number of messages needed to complete a
round of consensus.

Timing assumptions Timing assumptions made by the consensus
model related to the underlying network.
This relates to a synchronous, partial syn-
chronous or asynchronous network.

Byzantine Fault Tolerance The percentage of adversarial control in the
network, in which the consensus model can
resist double spend attacks.

Finality The assurance that transactions committed
will not be reverted. Either immediate or
probabilistic.

TABLE III
METRICS TO MEASURE PERFORMANCE AND TO ANSWER RQ1

To answer RQ2, we first identified core security issues

related to the blockchain system based on [11] and [12].

The identified security issues are shown in Table IV. In

terms of the SCM setting, with a permissioned blockchain

system affected by limited network throughput, not all security

issues listed in Table IV are relevant. For example, given that

participants in the system are authenticated, a Sybil attack can

effectively be combated. In an authenticated setting, aspects

like user anonymity and transaction unlinkability are deemed

irrelevant. We excluded irrelevant security issues and classified

the consensus algorithms based only on double-spend attacks,

balance attacks, Long-range attacks, p + Epsilon attacks,

DDOS attacks, and BGP attacks.

IV. RESEARCH RESULTS

We first classified the 25 consensus algorithms identified

from the literature into five categories, namely, Nakamato,

Byzantine Fault Tolerant (BFT), Federated Byzantine Agree-

ment (FBA), Hybrid, and Crash Tolerant, based on their

core principles. Then, we analyzed 1) whether the algorithm

provides sufficient performance in this specific application

scenario with limited network throughput; 2) whether the

algorithms provide integrity in the application scenario, as of

RQ1; 3) to what extent the algorithms provides security in this

application scenario, as of RQ2. The findings related to the

performance metrics are summarized in Table V. The answers

to RQ1 and RQ2 are summarized in Table VI.

A. Performance

Nakamoto style consensus algorithms usually provide con-

sensus in a single communication step, except PoA. They all

operate with linear complexity as well as requiring an honest

majority. The timing assumption is synchronous, which is

challenging with low network throughput. With probabilistic

finality, there is also a great chance of forking given our SCM

application scenario.

BFT style consensus algorithms usually provide consensus

in a three communication step process, with quadratic commu-

nication complexity. Delegated BFT, Mixed BFT, and Linear-

BFT can achieve linear communication complexity through

partitioning the network. Delegated BFT and Mixed BFT

delegate consensus to a subset of the nodes in the network.

Linear-BFT reduces the number of messages sent per node

by using an expander graph. This, however, comes at the cost

of either significantly increased centralization or potentially

higher consensus latency. BFT style consensus algorithms

all provide deterministic finality, which may be of major

benefit, providing low confirmation latency for transactions.

In the enterprise setting, this can be a deciding factor. These

consensus algorithms can typically withstand a maximum of
1

3
Byzantine nodes, posing a significantly weaker resistance

than the honest majority threshold provided by Nakamoto style

consensus algorithms. Linear-BFT emerges as a promising

innovation, providing the optimal threshold of 1

2
Byzantine

nodes, while also having amortized optimal communication

complexity of Θ(n).
FBA style consensus algorithms do not provide any guar-

antees to the number of consensus steps involved in agreeing

upon a set of transactions. As nodes only communicate within

their respective quorum slice, communication complexity de-

pends on each node’s quorum slice’s size. In Ripple, Unique

Node Lists (UNL) need to overlap 90% across the network

to ensure security, making communication complexity Θ(n2).
In SCP, nodes are free to pick their quorum slices based on

their own reasoning (e.g., reputation, wealth, brand). In an

optimistic setting, where the size of quorum slices is constant,

SCP’s communication complexity is Θ(n). SCP furthermore

provides optimal resilience towards Byzantine nodes in the

federated setting, only requiring that nodes’ quorum slices in-

tersect honestly. RPCA makes an assumption of a maximum of

20% Byzantine nodes for a given UNL list. As FBA agreement

builds upon nodes’ quorum slices intersecting, consensus relies

on that not all these interconnections are faulty. If these critical

nodes suffer from low network throughput, this could hamper

the speed and throughput in which the network can process

transactions. In particular, if they cannot respond for a long

time, transaction throughput may halt.

Hybrid style consensus algorithms typically provide con-

sensus in linear communication complexity using a three-step

BFT style process to reach consensus, while using mechanisms



Name Description

Consistency Which approach will the system utilize to ensure the consistency of the system’s ledger?

Tamper-Resistance Is the system able to ensure the integrity of the ledger?

Byzantine Fault Tolerance To which an extent do the system need to tolerate Byzantine faults, e.g. adversarial nodes?

Sybil attack How will the system protect against malicious actors creating multiple fake identities, attempting to outvote an
honest majority?

Double spend attack How will the system prevent nodes spending the same currency for two separate transactions? Specifically related
to cryptocurrency systems.

Long-Range attack To which extent is the system vulnerable to Long-Range attacks; forking the blockchain at its genesis block and
privately building an alternative chain?

P+ Epsilon attack To which extent is the system vulnerable to P+ Epsilon attacks; taking advantage of the dominant strategy among
network participants, leveraging non-altruistic participants against the system?

Balance attack To which an extent is the system vulnerable to balancing attacks; splitting the network into sub-networks, delaying
transactions and performing double spend attacks?

Border Gateways Protocol (BGP)
Hijacking

How will the system handle adversarial attacks against the network’s routing mechanisms; partitioning the network
or delaying block propagation?

Distributed-Denial-of-Service
(DDOS) susceptibility

To which an extent is the system susceptible to DDOS attacks, in terms of impact upon safety and liveness?
Especially relevant for leader based consensus models.

Degree of centralization To which an extent is the system centralized around a subset of participants? This may have implications on
various double spend attacks, as well as DDOS susceptibility.

User anonymity Are participants of the system able to partake in transactions while staying anonymous?

Transaction confidentiality To which extent are transactions kept confidential?

Transaction unlinkability To which extent is it possible to link a group of transactions to a specific identity?
TABLE IV

SECURITY CONSIDERATIONS FOR BLOCKCHAIN SYSTEMS

from Nakamoto style consensus algorithms for leader election.

This scheme allows for immediate finality, which enables

consensus algorithms to work in a permissionless setting. The

consensus algorithms can scale better than standard Nakamoto

consensus algorithms with the cost of reduced Byzantine fault

tolerance.

Crash tolerant style consensus algorithms, i.e., Raft, pro-

vide consensus in a single communication step, with the

optimal communication complexity of Θ(n). It also provides

deterministic finality. The main caveat related to crash tolerant

consensus algorithms is that they cannot tolerate Byzantine

faults. Disregarding Byzantine faults, Raft tolerates up to

50% crashed nodes. Raft’s communication pattern is com-

pletely leader-centered. During normal operation, the leader

continuously broadcasts messages to the rest of the network,

while follower nodes only respond to the messages they re-

ceive. Therefore, the leader node must have sufficient network

throughput and computational resources for the leader not to

become a bottleneck in terms of performance.

B. Integrity

Limited network throughput may cause increased asyn-

chrony within a blockchain system. This makes it infeasible

to make assumptions regarding the ordering or timing of

messages being sent. As such, consensus algorithms relying on

synchronous network for correctness cannot provide integrity

in the relevant setting.

Nakamoto style consensus algorithms are unfit for the

setting [49].

BFT style consensus algorithms may work depending on

their timing assumptions. Linear-BFT specifically assumes

synchronous network and therefore cannot guarantee integrity

either. BFT consensus algorithms assuming a partial syn-

chronous or asynchronous network will still provide integrity

in such an asynchronous network. It is important to point

out that while many BFT style consensus algorithms can

provide integrity during times of asynchrony, these same

algorithms cannot provide liveness at the same time, as a

result of the FLP impossibility [22]. The network needs to

stabilize before transactions can be continued to be processed.

In light of this, the Honey-BadgerBFT consensus algorithm

differentiates itself, as it makes no assumptions regarding the

network’s synchrony. As Honey-BadgerBFT functions purely

asynchronously, it may avoid the standstill of asynchrony or

performance impact of a larger message delay ∆. In particular,

[43] points out that there will always be an inherent trade-off

related to such synchrony assumptions. If the ∆ parameter

value is too low, the system will not provide progress. If the

∆ parameter value is too high, it will not fully take advantage

of the network’s bandwidth. The authors propose Honey-

BadgerBFT as a candidate for consortium blockchain systems,

emphasizing its benefits of robustness and high transaction

throughput, despite being an asynchronous system.

FBA style consensus algorithms, i.e., RPCA and SCP,

assume a partially synchronous network and can provide

integrity even in periods of asynchrony. However, they require

messages to be bounded by some upper bound message delay

∆ to provide forward progress.

Hybrid style consensus algorithms Byzcoin and Tendermint

make synchronization assumptions equal to that of partial

synchrony. In times of asynchrony, consensus algorithms can

preserve integrity. Conversely, the consensus algorithms’ trans-

action throughput may suffer significantly during these events,

similar to that of BFT style consensus algorithms.



Name Ref Latency Complexity Timing assumptions BFT Finality

Nakamoto style consensus algorithms

PoW [24] 1 RTT Θ(n) Synchronous 50 % Probabilistic

PoS [25] 1 RTT Θ(n) Synchronous 50 % Probabilistic

DPoS [26] 1 RTT Θ(n) Synchronous 50 % Probabilistic

DDPoS [27] 3 RTT Θ(n2) Synchronous 50 % Probabilistic

PoAuth [28] 1 RTT Θ(n) Synchronous 50 % Probabilistic

PoET [29] 1 RTT Θ(n) Synchronous 50 % Probabilistic

PoTS [30] 1 RTT Θ(n) Synchronous 50 % Probabilistic

PoR [31] 1 RTT Θ(n) Synchronous 50 % Probabilistic

PoB [32] 1 RTT Θ(n) Synchronous 50 % Probabilistic

PoC [33] 1 RTT Θ(n) Synchronous 50 % Probabilistic

PoI [34] 1 RTT Θ(n) Synchronous 50 % Probabilistic

PoA [35] 3 RTT Θ(n) Synchronous 50 % Probabilistic

BFT style consensus algorithms

Linear-BFT [36] 6 RTT Θ(n) Synchronous 50 % Immediate

PBFT [37] 3 RTT Θ(n2) Partial Synchronous 33 % Immediate

IBFT [38] 3 RTT Θ(n2) Partial Synchronous 33 % Immediate

Delegated BFT [39] 3 RTT Θ(n) Partial Synchronous 33 % Immediate

BFT - SMART [40] 3 RTT Θ(n2) Partial Synchronous 33 % Immediate

T-PBFT [41] 3 RTT Θ(n2) Partial Synchronous 33 % Immediate

MBFT [42] N/A Θ(n) Partial Synchronous 33 % Immediate

Honey-BadgerBFT [43] 6 RTT Θ(n2) Asynchronous 33 % Immediate

Federated Byzantine Agreement consensus algorithms

RPCA [44] N/A Θ(n2) Partial Synchronous 20 % Immediate

SCP [45] N/A Θ(n) Partial Synchronous N/A Immediate

Hybrid consensus algorithms

BFT-based POW [46] 3 RTT Θ(n) Partial Synchronous 33 % Immediate

BFT-based POS [47] 3 RTT Θ(n) Partial Synchronous 33 % Immediate

Crash Tolerant consensus algorithms

Raft [48] 1 RTT Θ(n) Partial Synchronous 0 % Immediate
TABLE V

CONSENSUS ALGORITHM CLASSIFICATION

Crash tolerant style consensus algorithm relies on synchro-

nization assumptions similar to that of BFT style consensus

algorithms. In particular, Raft assumes a known broadcasting

latency, which is then used to determine an election timeout

interval. The algorithm can ensure integrity, even in periods of

asynchrony, despite the message delay exceeding the assumed

bound. However, it will not be able to provide any forward

progress in such events. There will be a continuous re-election

process until the network stabilizes. This may be problematic

in terms of a network with high communication latency and

poor network throughput.

C. Security

Nakamoto style consensus algorithms are targets of a

multitude of attacks. Sufficient delay of messages caused by

the asynchrony of the network may enable double spend and

balance attacks. Furthermore, the Nakamoto style consensus

algorithms may be vulnerable to P + Epsilon attacks, depend-

ing on the blockchain system’s incentivization mechanisms.

In contrast to many other types of consensus schemes, which

are centered around a stable leader, Nakamoto style consensus

algorithms elect leaders non-deterministically on a block-to-

block basis, which makes DDOS attacks infeasible in most

practical settings. Conversely, the consensus algorithms may,

however, be vulnerable to BGP attacks. In particular, [50]

has shown the feasibility of utilizing routing attacks against

Bitcoin’s PoW scheme.

BFT style consensus algorithms usually have an increased

susceptibility towards DDOS attacks, compared to Nakamoto

style consensus. Specifically, when sufficiently powerful ad-

versaries have insight into which of the network’s nodes is the

leader for a given election term or view, they could impair the

system’s liveness by overloading the leader with incoming traf-

fic. This is exasperated in our SCM setting with low network

throughput. As many BFT style consensus algorithms rely on

a stable leader for progress, in the worst case, this could lead

to a continuous view change, grinding transaction throughput

to a halt. The Honey-BadgerBFT consensus algorithm once

again differentiates itself from the other BFT style consensus

algorithms in that it is leaderless. Therefore, the Honey-

BadgerBFT consensus algorithm does not suffer from the

aforementioned susceptibility towards DDOS attacks. DDOS

attacks could also potentially target non-leader nodes in an

attempt to increase the number of faulty nodes. As most BFT

style consensus algorithms require a supermajority of honest

nodes to ensure the system’s integrity, a sufficiently powerful



RQ1: What consensus models are able to provide integrity in an environment with limited network throughput?

Consensus algorithms Nakamoto BFT FBA Hybrid Crash Tolerant

Integrity in asynchronous system - ! + + +

RQ2: What consensus models are able to provide security in an environment with limited network throughput?

Consensus algorithms Nakamoto BFT FBA Hybrid Crash Tolerant

Double spend attacks - + + + !

Balance attacks - + + + +

Long-Range attacks ! + + + +

P + Epsilon attacks ! + + + +

DDOS attacks + - ! - -

BGP attacks - - ! - -

+ Strong guarantees
- Lacking guarantees
! Depending on the specifics of the consensus algorithm or the configuration of the blockchain system

TABLE VI
SUMMARY OF CONSENSUS ALGORITHMS IN RELATION TO PERFORMANCE METRICS, RQ1 AND RQ2.

adversary could target honest nodes and break the Byzantine

Fault Tolerance threshold. Whether this would be feasible in

a practical setting depends on the size of the network, the

current number of Byzantine nodes, as well as the adversaries’

combined computational resources. Linear-BFT, which only

requires a majority of honest nodes to ensure integrity, may

be better suited to defend against this kind of attack. BFT style

consensus algorithms could also be vulnerable to BGP attacks.

When an adversary gains control of routing mechanisms

used within the system, they could potentially partition the

network or delay communication between nodes. Targeting

the leader could hamper the liveness of the system. When the

adversaries have access to an especially central router within

the communication system, they could isolate larger groups of

participants. Like a DDOS attack, this could allow adversaries

to break the Byzantine Fault Tolerance threshold, invalidating

any guarantees about the system’s integrity.

FBA style consensus algorithms avoid some of the pitfalls

related to BFT style consensus. In particular, as RPCA and

SCP are leaderless, there is no vulnerability related to a leader

being targeted by a DDOS attack, stopping the system from

achieving progress. There is, however, a new potential attack

vector related to splitting the network. Going back to the

important role in which intersecting nodes play in federated

Byzantine agreement, a sufficiently powerful adversary could

perform DDOS attacks targeting well-connected nodes. Such

an attack could partition the network, isolating nodes, making

consensus in the original network unachievable, and hindering

transaction throughput. FBA style consensus algorithms could

be vulnerable to the BGP attack. Similar to that of a targeted

DDOS attack against a well-connected node, if an adversary

gains control of a central router within the communication

network, they could partition the network, creating divergence.

In terms of RPCA, where the 90% UNL overlap makes

divergence attacks unlikely, attackers might rather try to break

the Byzantine Fault Tolerance threshold of 20%. As for SCP,

allowing users to communicate only with nodes selectively

they specifically trust, any form of substantial routing attack

may break the network, depending on the size of each user’s

node list.

Hybrid style consensus algorithms have an increased

susceptibility to DDOS attacks due to the transition from

Nakamoto style consensus to a hybrid approach. Like BFT

style consensus algorithms, the hybrid approach is leader-

centered and needs to maintain a stable leader to provide

high performance. Combined with limited network through-

put, this may further hinder transaction throughput. DDOS

attacks might also target non-leader nodes of the network. As

inclusion in the inner consensus group is the core of Nakamoto

style consensus mechanisms, attacking arbitrary nodes would

require most nodes to become faulty before the Byzantine

Fault Tolerance threshold would break. If the adversary instead

chooses to target the inner consensus group, the threshold is

reduced to only 33% of the consensus group itself, and as such,

should be significantly more feasible. Furthermore, hybrid

style consensus algorithms are vulnerable to BGP attacks.

Combining Nakamoto and BFT style consensus mechanisms,

Hybrid style consensus algorithms inherit both groups’ vul-

nerabilities related to BGP.

Crash tolerant style consensus algorithm suffers from the

same DDOS susceptibility as BFT style consensus algorithms.

The consensus algorithm needs to maintain a stable leader to

provide liveness, and such, continuous DDOS attacks targeting

leaders can hamper transaction throughput. This may be fur-

ther exasperated by nodes having limited network throughput.

Similar to BFT style consensus algorithms, a DDOS attack

may also be used against arbitrary network nodes. In Raft’s

case, to break the Crash Tolerance threshold, a total of 50%

of the network nodes must become faulty. Thus, unless the

network is volatile and at some points contains a lot of faulty



nodes, such an attack would be less practical than targeting the

leader directly. Finally, Raft is also vulnerable to BGP attacks.

An adversary initiating a routing attack against the network

leader would be able to completely halt transaction throughput,

hindering any broadcasts from reaching the follower nodes.

Furthermore, given sufficient power, the adversary could par-

tition the network, attempting to break the Crash Tolerance

threshold of 50%, enabling double spends.

V. DISCUSSIONS

A. Comparison with related work

Numerous surveys, e.g., [6], [7], [9], [11] have been dedi-

cated to present and classify consensus algorithms according

to their performance characteristics. In particular, [6] and [7]

present novel evaluation frameworks for analyzing consensus

algorithms. [6] furthermore highlights the impact network

synchrony has on consensus algorithms. Our study differs

from related work because it focuses on consensus algo-

rithms’ performance characteristics in the specific application

scenario in which the network is constrained by varying

network throughput. Furthermore, our classification scheme is

skewed towards the impact of communication costs and timing

assumptions on the algorithms’ performance, utilizing the

metrics of communication latency, communication complexity,

and timing assumptions.

Studies [6], [11], [12] focuses on the security properties of

consensus algorithms, including that of ensuring the integrity

of the blockchain. [11] discusses core security properties of

consensus algorithms and their ability to ensure consistency

and tamper-resistance across a blockchain system’s ledgers.

[12] furthermore discusses the circumstances in which these

properties may be broken. [6] discusses how consensus al-

gorithms may function in a fully asynchronous setting. Our

study differentiates from [6], [11], [12] in that it investigates

how consensus algorithms ensure integrity in the specific

application scenario in which the network is constrained

by varying network throughput. The scenario includes both

increased asynchrony of the network, as well as isolation

of nodes. It thus provides a unique perspective into which

consensus algorithms can provide safety and integrity in such

a constrained environment.

B. Known limitations

This study does not provide insight into experimental data

for the different consensus algorithms surveyed. It is, therefore,

difficult to draw comparisons regarding transaction throughput

among different categories of consensus algorithms.

Furthermore, this study focuses on consensus in enterprise

and permissioned blockchain systems affected by limited net-

work throughput. Blockchain systems that do not fit a similar

application scenario may emphasize other factors rather than

those presented by our classification scheme. The security

aspect of this study is based on the reviews of [11] and [12].

While it is deemed that these works constitute a comprehensive

review of security attacks generally applicable to blockchain

systems, there may be other security attacks to consider, given

the specifics of the blockchain system in question or the

scenario in which it is utilized.

VI. CONCLUSION AND FUTURE WORK

The purpose of this study is to analyze how the state of the

art consensus algorithms relate to SCM blockchain systems

in an enterprise setting with multiple stakeholders, affected

by limited network throughput and poor network quality.

The mapping study’s classification emphasizes how well the

consensus algorithms can satisfy performance, integrity, and

security requirements in a degraded network environment. The

study gives insights into the advantages and weaknesses of

the investigated consensus algorithms. Our future work will

evaluate and compare the consensus algorithms identified from

this study more quantitatively by running simulations and

experiments.
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