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ABSTRACT
Blockchain is an emerging technology with the potential to resolve
auditing issues. Implementing a new blockchain-related feature
implies moving to a platform with another database or duplicating
its parts in a blockchain system. Both ways are difficult to migrate
and maintain. The alternative is to implement blockchain features
within the existing database, including consensus mechanisms and
specific data structures for audit needs. The paper describes and
evaluates a database extension with blockchain-related structures,
leaving consensus beyond the scope. We use an account-based
prototype of cryptocurrency as a model example. The proposed
extension allows provably checking transaction content and user
balance without a full database lookup. The numerical experiments
to study the overhead of the proposed extension are provided.

CCS CONCEPTS
• Information systems→Data management systems; •Com-
puter systems organization→ Peer-to-peer architectures.
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1 INTRODUCTION
A database is a collection of data or information that is stored
electronically on computer devices. The majority of industrial com-
panies manage and organize their data to improve efficiency. Rela-
tional databases [8] are databases that store and provides access to
data points. The relational database helped organizations maintain
databases and create information by combining the data tables,
thus allowing users to understand the relationships between them.
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The sheer volume of stored information instigates data auditability
problems [3, 4, 15], i.e., users without full access can send their
queries but cannot verify the validity of the response, especially
if they do not trust the system maintainers. Blockchain provides
an immutable transaction log with specific tree structures [29] and
solves the auditability problem.

Enabling new blockchain-related features for classical database
systems implies moving to a platform with another database inside
or duplicating it in a blockchain system. Such migration and mainte-
nance are difficult. Although the blockchain has application inmany
areas, like the financial sector, state registries, supply chains, ma-
chine learning, Internet of things [2, 16, 19–21, 23, 24, 29, 31, 32, 34],
its implementation in existing projects is inconvenient. The al-
ternative is to implement blockchain features within the existing
database. Researchers have already proposed several such solutions
[25, 28, 35, 36]. But they only affect the consensus mechanism, while
classical blockchain systems [5, 29] also provide specific data struc-
tures cryptographically provable query responses without looking
at the entire data store. In the current research, we reproduce these
data structures through a traditional database.

This paper describes and evaluates the proposed blockchain’s
data storage performance using the database example of an account-
based prototype cryptocurrency so that the transaction and bal-
ance requests can support cryptographic proofs for the response’s
correctness. PostgreSQL is a database management system for im-
plementation because it is popular, open-source, highly scalable,
and compatible with different programming languages [12]. How-
ever, the implementation is not platform-specific, and the results
are portable to other relational databases with SQL-like language
support. The cryptocurrency is easy to understand and, historically,
is the first example of the blockchain system. We emphasize that it
is only a prototype as it is not secure as a cryptocurrency because
of authorization absence. Nevertheless, it allows demonstrating the
concepts.

2 RELATEDWORK
2.1 Databases inside Blockchains
Blockchains are characterized by a consensus and a method to store
data. Consensus algorithms are used to agree on a new batch of
transactions to commit to the blockchain block. From the point of
view of this paper, consensus represents a reliable system timestamp.
Meaning, the economic [14, 18, 19, 29] fault-tolerant [7, 11, 13, 22],
impossibility of corruption within the chosen model. However, the
consensus mechanism is beyond the scope of the paper. Initially,
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databases were used as internal parts of blockchain solutions pro-
viding data storage. Let us point some of their features.

The Bitcoin white paper [29] introduces storing the transaction
in the data directory associated with blocks and Merkle trees [27].
This data storage structure verifies if a given block’s transaction
is valid by comparing precalculated block’s Merkle root with the
recalculating the root of the Merkle tree starting from the given
transaction.

The Ethereumwallet does not store the account balances directly
in the blockchain, but only the root node hashes of the transaction
prefix tree (trie), state trie, and receipts trie in the form of modified
Merkle Patricia trie (hereafter, Patricia tree to be short). When a
transaction occurs, theworld state, which keeps thewallets’ balance,
gets updated, and only the root hash of this state tire is stored in the
blockchain. Ethereum supports proofs for each account state and
associated storage [17]. Since 2015, parallel to public blockchains,
such as Bitcoin and Ethereum, private blockchain [6, 37] got their
popularity for blockchain applications in many projects at the state
and global business levels [30, 31].

2.2 Databases with Built-in Blockchains
Several distributed databases are designed to have blockchain as its
part [25, 28, 35, 36]. They are characterized by an internal database,
supported query language (SQL mostly standard [26]), and a con-
sensus protocol. These systems timestamp database transactions
between nodes in a decentralized way, which provides an incorrupt-
ible record of history and Bitcoin-like Merkle proofs for committed
transactions. The existing databases with blockchain allow only
to check the transaction’s presence if the whole data storage is
observable for the user. However, the blockchain will enable one
to extend cryptographic proofs into arbitrary transaction-driven
objects.

This paper considers a database for a prototype cryptocurrency.
It shows how to support query responses with proofs for transaction
entries and user balances, i.e., for more involved transaction-driven
objects. The implementation is an extension of the popular database
system using its standard instruments by adding extra tables and
modifying queries within the supported language.

3 PREREQUISITE: MERKLE AND PATRICIA
TREES

Merkle and Patricia Trees play a vital role in blockchain data stor-
age organization, and they are building blocks for the proposed
architecture in the paper. The structures include both benefits of

• Trees: operations on elements (appending a new element,
getting an element) takeO(lnN ) operations, where N is num-
ber of elements. Hereafter O(x ) is a Biд O [10].

• Hashes: verification of the (data storage) copies.

It is time-consuming and computationally expensive to check
the entirety of each part. That is why Merkle and Patricia Trees
are used whenever a system wants to verify data. The reference to
these two concepts from the blockchain point of view is provided
in the current Section.

Figure 1: Merkle tree example, The data correctness of t2 can
be proved only with availability of data h4 and h01. Which
can then be compared with root of the Merkel tree (r ).

Figure 2: Example of the proposed Patricia structure

3.1 Merkle Tree
Merkle tree [27] is a binary tree built over a sequence of data
pieces that aggregates hashes at each level till the root hash, storing
information about the state of all data chunks. Root hash is used as
a digital fingerprint of a block in the blockchain. Merkle trees store
information in an effective way [33] such that verification takesO(h)
=O(ln(B)), where B is the number of transactions per block, andh is
the tree height. The Merkle trees are used in BitTorrent protocol [9],
Interplanetary File System (IPFS), distributed Git Version Control
System, etc.

The values in the tree nodes are filled in from the bottom up. If
sibling nodes are odd in number at each level, then the last node in
the sequence is duplicated and appended and is repeated recursively
until one element is left. Therefore, it is convenient to use a simple
recursive algorithm to build Merkle Tree.

3.2 Patricia Tree
The Ethereum project uses a modified version of the Merkel tree–
modified Merkle Patricia trie (Patricia tree, MPT)–to store data
about accounts, transactions, results of their execution, and other
necessary data required for the system to function. MPT allows to
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efficiently store key-value pairs and still provide verification of the
stored data.

Every node has a hash value of its content. Key-value storage
is used as the path on the MPT. Hex-prefix (HP) encoding is used
on the trie data structure paths that differentiate between the type
of nodes, i.e., extension or leaf nodes. Extension nodes have edges
connected to a child node, and a node without a child node is called
a leaf node. HP uses its encoding known as Recursive Lenght Prefix
(RLP) for data serialization.

Patricia trie is entirely deterministic, i.e., with the same (key,
value) bindings are guaranteed to be the same down to the last byte
and therefore have the same root hash, provide the holy grail of
efficiency for inserts, lookups, and deletes, and are much easier to
understand and code than more complex comparison- based alter-
natives like red-black trees, where is the number of transactions.

4 PROTOTYPE IMPLEMENTATION
In our prototype cryptocurrency, we have users (unique strings)
with non-negative balances and two types of transactions

• create a user with a given name and balance
• transfer some tokens from sender to receiver (without au-
thorization).

The implementation is written in Python 3.7.0.

4.1 Implementation of Merkle Tree
Merkle tree is used to provide auditability for individual transac-
tions. Like in blockchains, it is more effective (in terms of through-
put expressed in transactions per second) to reach a consensus
about a batch of transactions–block–instead of each one. So Merkle
trees are computed to generate proof within blocks.

Merkle tree data structure stores information like transaction
hash, the hash of user, position in the Merkle tree, and block id. For
each block size, random transactions are generated and stored in
the Merkle node. The hash of the path to reach a specific node is
hashed and added in that particular node’s Merkle node database.

4.2 Implementation of Patricia Tree
MPT is used to provide an auditability for user balance. We have a
path to each user with at least one incoming transaction. Under it,
we have an MPT subtree with transactions that changed the user’s
balance.

Consider a model cryptocurrency system that has the following
types of transactions:

• CREATE: Creating an account for the user with or without
initial balance.

• SPEND: Transfer of token from one account to another.
Like in Ethereum, each block of the blockchain contains the root

hash of the user’s state. With every transaction, the user’s balance
is updated. Thus, the new root hash value is stored in the next block
of the blockchain. The leaves of the state tree contain a balance
of the user, known as the balance node, and the user’s key is used
as a path to traverse to reach the balance node from the root. The
balance node stores the root hash of transaction trie, i.e., incoming
and outgoing transactions of a particular user. The transaction
root is updated with any transaction taking place. For both sender

PatriciaNode PatriciaEdge

node_id (INT)
parent_id (INT)
balance (INT)
hash (STR)
type

edge_id (INT)
node_id (INT)
child_id (INT)
prefix (STR)

Balance

user_id (STR, UNIQUE)
amount (INT)

Transaction

transaction_id (INT)
tx_hash (STR, UNIQUE)
type (STR)
user1 (STR)
user2 (STR)
amount (INT)
block_id (INT)
position (INT)

Block

block_id (INT)
merkle_hash (STR)
merkle_height (STR)
patricia_hash (STR)
block_hash (STR)

MerkleNode

node_id (INT)
block_id (INT)
level (INT)
position (INT)
hash (STR)Aggregation Concat(Prefix)

Figure 3: Proposed Database Structure

and receiver, state root is updated and added to the blockchain.
In Figure 2, We have three users user1 : 010100, user2 : 000010,
user3 : 111111 with balances 60,50 and 40 respectively stored at
balance node (marked in yellow).User1 and user2 have same prefix
0, therefore at node 3, the unique prefix is split into two nodes.User2
has two separate outgoing transactions 1000 to user1 of value 10
and 1001 to user3 of value 40. Transaction trie also uses the same
encoding like state tree where common transaction prefix is split.

Note. For ease of understanding, we use 0 and 1 as a string char-
acter for user address of length 6 and transaction hash of length 4 in
Figure 2

4.3 Data Storage
The data is stored in 6 tables. Figure 3 describes the data storage
architecture of the proposed system. The transactions and users’
balances are recorded in the transaction and balance tables, respec-
tively. They are not specific to the blockchain. All newly committed
transactions are grouped into blocks and stored in Merkle tree ar-
chitecture. The precalculated information about Merkle tree nodes
is stored in themerklenode table, and the block information is in
block table. To support proofs for balances, we maintain a global Pa-
tricia tree. The precalculated information about its nodes and edges
is stored in patricianode and patriciaedдe tables, respectively.

In this model system, all transactions are processed in a fixed
block size of the transaction that can be accommodated. The block
size is the hyperparameter of the system. Each transaction block
has its Merkle tree. In the database, we store Merkle tree nodes as
a tuple, i.e., storing (the block number, the height of this node, the
sequence number in this height, the hash value of this node). A
hash is calculated by applying the hash function to the previous
block’s concatenation.

Each transaction is characterized by a user, transaction hash, and
change of the balance, the prefix tree is updated as follows:
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(a) Average Transaction query time as a function of block size (b) Average Transaction query time as a function of
the transaction number 

 

(C) Average balance query time as a function of the transaction
number

(d) Time to add N new transaction into the database 
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Figure 4: Performance results of processing different queries and memory consumption

• Find the vertex in the prefix tree corresponding to the user
ID

• The vertex’s balance is updated.
• After updating the user’s vertex balance, the balance of all
vertexes located below it and the transaction hash string
is updated. In other words, the subtree of the node corre-
sponding to each user contains information about all its
transactions in the form of Merkel Patricia trie.

• Finally, recursion is performed to the root of the prefix tree.
While recursing, the vertex hashes in the prefix tree are
updated. The new hash of a vertex is obtained by applying
the hash function to concatenate all the hashes of its child
nodes.

5 EXPERIMENTS
To evaluate the performance of the prototype, we performed tests
on a local machine. The database without any blocks and tree
structures is used as a baseline algorithm, i.e., only two tables–
transaction and balance (see Figure 4). The full blockchain-based
data structure from Section 3 is used as a proposed solution. The
experiments were performed on a computer with memory 16 GB
2400 MHz DDR4, Intel Core i9 running @2,3GHz.

• initialize empty database

• createU random users and commit a transaction with their
initial balances

• generate and process N random one-to-one transfer trans-
actions.

Note. The initial balances equal 106 tokens, the amounts for trans-
fers are uniform random integers from [1,100], and the number of
transactions M always less than 106. So, the situation of too low user’s
balance to transfer is impossible during the computations. No user
authorization is used during the experiment.

We varied two parameters:
• the number of transfer transactions N
• the block size B (applicable only to the proposed system).

The following characteristics were measured
(A) Average transaction query time as function of block size
(B) Average transaction query time
(C) Average balance query time
(D) Time to add N new transactions into the database
(E) Database tables sizes.
The code to the repository is available at GitHub [1].

5.1 Transaction Request
Random existing transactions hashes were generated for the ex-
periment. The average transaction query time as a function of the
number of transactions N is shown in Figure 4(a). For baseline
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system one need only to find the proper line in the transaction
table. While for the proposed algorithm, one also needs to find
and return the lines for the corresponding block’s Merkle tree. The
time is constant as a function of N, where the constant increases as
O(lnB) as shown in Figure 4(b).

5.2 Transaction Processing
The average time to add a new into the database is represented in
Figure 4(d). The baseline algorithm add only a new line into the
sorted transaction table and updates two lines in the sorted balance
(sender’s and receiver’s) per transaction, i.e. we need O(ln(U + T ))
operations, where O(x) is the Biд O [10]. The proposed system
process transactions block-wise, i.e. batch-wise. And, in addition to
transaction and balance tables update, per B transactions we need to
generate and commit a Merkle tree with O(B) for O(B) operations
elements and perform O(B) Patricia trie updates for O(ln(U+T ))
computation.

5.3 Balance Request
Random existing user names were generated for the experiment.
The average balance query time as a function of the number of
transactions N is shown in Figure 4(c). For baseline system one
need only to find the proper line in the balance table.

5.4 Memory Usage
Memory usage per table as a function of the number of transactions
is shown in Figure 4(e). All the tables sizes grow linearly as the
number of their elements grows linearly. The Merkle structures for
the bigger block size is also more significant due to the tree depth
increase.

6 CONCLUSION
The paper presents and evaluates the performance of blockchain
extension for data storage within the database. A particular ex-
ample of an account-based prototype cryptocurrency is used. It is
implemented using Python and PostgreSQL, and this approach is
applicable for other database systems with SQL-like language. The
prototype supports two types of queries with verifiable answers.
All the supplementary data structures for proofs are precalculated
during the insert and update events processing and are stored in the
database. The numerical experiments show the expected overhead
for the database blockchainization, which is acceptable in non-high-
performance services. An addition of a consensus mechanism is
needed to make blockchain on the top of the prototype.

Nevertheless, it is enough to estimate the computation and mem-
ory overhead for blockchainization. Additionally, a constructor of
the necessary tree structure is required to implement practical in-
terest. We consider the automated new queries addition, consensus
protocol inclusion, stored procedures support as future work.
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