
Blockchain Extension for PostgreSQL Data Storage
Yash Madhwal

Center for Computational and
Data-Intensive Science and

Engineering, Skolkovo Institute of
Science and technology, Moscow

Russia
yash.madhwal@skoltech.ru

Darkhan Nurlybay
Faculty of Computer Science,

National Research University Higher
School of Economics, Moscow

Russia
dnurlybay@edu.hse.ru

Yury Yanovich
Center for Computational and
Data-Intensive Science and

Engineering, Skolkovo Institute of
Science and technology, Moscow

Russia
yury.yanovich@skoltech.ru

ABSTRACT
Blockchain is an emerging technology with the potential to resolve
auditing issues. Implementing a new blockchain-related feature
implies moving to a platform with another database or duplicating
its parts in a blockchain system. Both ways are difficult to migrate
and maintain. The alternative is to implement blockchain features
within the existing database, including consensus mechanisms and
specific data structures for audit needs. The paper describes and
evaluates a database extension with blockchain-related structures,
leaving consensus beyond the scope. We use an account-based
prototype of cryptocurrency as a model example. The proposed
extension allows provably checking transaction content and user
balance without a full database lookup. The numerical experiments
to study the overhead of the proposed extension are provided.

CCS CONCEPTS
• Information systems→Data management systems; •Com-
puter systems organization→ Peer-to-peer architectures.

KEYWORDS
Blockchain, Database, Merkle tree, Modified Merkle Patricia Trie

ACM Reference Format:
Yash Madhwal, Darkhan Nurlybay, and Yury Yanovich. 2021. Blockchain
Extension for PostgreSQL Data Storage. In 2021 3rd Blockchain and Internet
of Things Conference (BIOTC 2021) (BIOTC 2021), July 8–10, 2021, Ho Chi
Minh City, Vietnam. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3475992.3476002

1 INTRODUCTION
A database is a collection of data or information that is stored
electronically on computer devices. The majority of industrial com-
panies manage and organize their data to improve efficiency. Rela-
tional databases [8] are databases that store and provides access to
data points. The relational database helped organizations maintain
databases and create information by combining the data tables,
thus allowing users to understand the relationships between them.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BIOTC 2021, July 8–10, 2021, Ho Chi Minh City, Vietnam
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8951-8/21/07. . . $15.00
https://doi.org/10.1145/3475992.3476002

The sheer volume of stored information instigates data auditability
problems [3, 4, 15], i.e., users without full access can send their
queries but cannot verify the validity of the response, especially
if they do not trust the system maintainers. Blockchain provides
an immutable transaction log with specific tree structures [29] and
solves the auditability problem.

Enabling new blockchain-related features for classical database
systems implies moving to a platform with another database inside
or duplicating it in a blockchain system. Such migration and mainte-
nance are difficult. Although the blockchain has application inmany
areas, like the financial sector, state registries, supply chains, ma-
chine learning, Internet of things [2, 16, 19–21, 23, 24, 29, 31, 32, 34],
its implementation in existing projects is inconvenient. The al-
ternative is to implement blockchain features within the existing
database. Researchers have already proposed several such solutions
[25, 28, 35, 36]. But they only affect the consensus mechanism, while
classical blockchain systems [5, 29] also provide specific data struc-
tures cryptographically provable query responses without looking
at the entire data store. In the current research, we reproduce these
data structures through a traditional database.

This paper describes and evaluates the proposed blockchain’s
data storage performance using the database example of an account-
based prototype cryptocurrency so that the transaction and bal-
ance requests can support cryptographic proofs for the response’s
correctness. PostgreSQL is a database management system for im-
plementation because it is popular, open-source, highly scalable,
and compatible with different programming languages [12]. How-
ever, the implementation is not platform-specific, and the results
are portable to other relational databases with SQL-like language
support. The cryptocurrency is easy to understand and, historically,
is the first example of the blockchain system. We emphasize that it
is only a prototype as it is not secure as a cryptocurrency because
of authorization absence. Nevertheless, it allows demonstrating the
concepts.

2 RELATEDWORK
2.1 Databases inside Blockchains
Blockchains are characterized by a consensus and a method to store
data. Consensus algorithms are used to agree on a new batch of
transactions to commit to the blockchain block. From the point of
view of this paper, consensus represents a reliable system timestamp.
Meaning, the economic [14, 18, 19, 29] fault-tolerant [7, 11, 13, 22],
impossibility of corruption within the chosen model. However, the
consensus mechanism is beyond the scope of the paper. Initially,

70

https://orcid.org/0000-0002-4619-2971
https://orcid.org/0000-0003-4651-7585
https://doi.org/10.1145/3475992.3476002
https://doi.org/10.1145/3475992.3476002
https://doi.org/10.1145/3475992.3476002
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3475992.3476002&domain=pdf&date_stamp=2021-10-02

BIOTC 2021, July 8–10, 2021, Ho Chi Minh City, Vietnam Madhwal et al.

databases were used as internal parts of blockchain solutions pro-
viding data storage. Let us point some of their features.

The Bitcoin white paper [29] introduces storing the transaction
in the data directory associated with blocks and Merkle trees [27].
This data storage structure verifies if a given block’s transaction
is valid by comparing precalculated block’s Merkle root with the
recalculating the root of the Merkle tree starting from the given
transaction.

The Ethereumwallet does not store the account balances directly
in the blockchain, but only the root node hashes of the transaction
prefix tree (trie), state trie, and receipts trie in the form of modified
Merkle Patricia trie (hereafter, Patricia tree to be short). When a
transaction occurs, theworld state, which keeps thewallets’ balance,
gets updated, and only the root hash of this state tire is stored in the
blockchain. Ethereum supports proofs for each account state and
associated storage [17]. Since 2015, parallel to public blockchains,
such as Bitcoin and Ethereum, private blockchain [6, 37] got their
popularity for blockchain applications in many projects at the state
and global business levels [30, 31].

2.2 Databases with Built-in Blockchains
Several distributed databases are designed to have blockchain as its
part [25, 28, 35, 36]. They are characterized by an internal database,
supported query language (SQL mostly standard [26]), and a con-
sensus protocol. These systems timestamp database transactions
between nodes in a decentralized way, which provides an incorrupt-
ible record of history and Bitcoin-like Merkle proofs for committed
transactions. The existing databases with blockchain allow only
to check the transaction’s presence if the whole data storage is
observable for the user. However, the blockchain will enable one
to extend cryptographic proofs into arbitrary transaction-driven
objects.

This paper considers a database for a prototype cryptocurrency.
It shows how to support query responses with proofs for transaction
entries and user balances, i.e., for more involved transaction-driven
objects. The implementation is an extension of the popular database
system using its standard instruments by adding extra tables and
modifying queries within the supported language.

3 PREREQUISITE: MERKLE AND PATRICIA
TREES

Merkle and Patricia Trees play a vital role in blockchain data stor-
age organization, and they are building blocks for the proposed
architecture in the paper. The structures include both benefits of

• Trees: operations on elements (appending a new element,
getting an element) takeO(lnN) operations, where N is num-
ber of elements. Hereafter O(x) is a Biд O [10].

• Hashes: verification of the (data storage) copies.

It is time-consuming and computationally expensive to check
the entirety of each part. That is why Merkle and Patricia Trees
are used whenever a system wants to verify data. The reference to
these two concepts from the blockchain point of view is provided
in the current Section.

Figure 1: Merkle tree example, The data correctness of t2 can
be proved only with availability of data h4 and h01. Which
can then be compared with root of the Merkel tree (r).

Figure 2: Example of the proposed Patricia structure

3.1 Merkle Tree
Merkle tree [27] is a binary tree built over a sequence of data
pieces that aggregates hashes at each level till the root hash, storing
information about the state of all data chunks. Root hash is used as
a digital fingerprint of a block in the blockchain. Merkle trees store
information in an effective way [33] such that verification takesO(h)
=O(ln(B)), where B is the number of transactions per block, andh is
the tree height. The Merkle trees are used in BitTorrent protocol [9],
Interplanetary File System (IPFS), distributed Git Version Control
System, etc.

The values in the tree nodes are filled in from the bottom up. If
sibling nodes are odd in number at each level, then the last node in
the sequence is duplicated and appended and is repeated recursively
until one element is left. Therefore, it is convenient to use a simple
recursive algorithm to build Merkle Tree.

3.2 Patricia Tree
The Ethereum project uses a modified version of the Merkel tree–
modified Merkle Patricia trie (Patricia tree, MPT)–to store data
about accounts, transactions, results of their execution, and other
necessary data required for the system to function. MPT allows to

71

Blockchain Extension for PostgreSQL Data Storage BIOTC 2021, July 8–10, 2021, Ho Chi Minh City, Vietnam

efficiently store key-value pairs and still provide verification of the
stored data.

Every node has a hash value of its content. Key-value storage
is used as the path on the MPT. Hex-prefix (HP) encoding is used
on the trie data structure paths that differentiate between the type
of nodes, i.e., extension or leaf nodes. Extension nodes have edges
connected to a child node, and a node without a child node is called
a leaf node. HP uses its encoding known as Recursive Lenght Prefix
(RLP) for data serialization.

Patricia trie is entirely deterministic, i.e., with the same (key,
value) bindings are guaranteed to be the same down to the last byte
and therefore have the same root hash, provide the holy grail of
efficiency for inserts, lookups, and deletes, and are much easier to
understand and code than more complex comparison- based alter-
natives like red-black trees, where is the number of transactions.

4 PROTOTYPE IMPLEMENTATION
In our prototype cryptocurrency, we have users (unique strings)
with non-negative balances and two types of transactions

• create a user with a given name and balance
• transfer some tokens from sender to receiver (without au-
thorization).

The implementation is written in Python 3.7.0.

4.1 Implementation of Merkle Tree
Merkle tree is used to provide auditability for individual transac-
tions. Like in blockchains, it is more effective (in terms of through-
put expressed in transactions per second) to reach a consensus
about a batch of transactions–block–instead of each one. So Merkle
trees are computed to generate proof within blocks.

Merkle tree data structure stores information like transaction
hash, the hash of user, position in the Merkle tree, and block id. For
each block size, random transactions are generated and stored in
the Merkle node. The hash of the path to reach a specific node is
hashed and added in that particular node’s Merkle node database.

4.2 Implementation of Patricia Tree
MPT is used to provide an auditability for user balance. We have a
path to each user with at least one incoming transaction. Under it,
we have an MPT subtree with transactions that changed the user’s
balance.

Consider a model cryptocurrency system that has the following
types of transactions:

• CREATE: Creating an account for the user with or without
initial balance.

• SPEND: Transfer of token from one account to another.
Like in Ethereum, each block of the blockchain contains the root

hash of the user’s state. With every transaction, the user’s balance
is updated. Thus, the new root hash value is stored in the next block
of the blockchain. The leaves of the state tree contain a balance
of the user, known as the balance node, and the user’s key is used
as a path to traverse to reach the balance node from the root. The
balance node stores the root hash of transaction trie, i.e., incoming
and outgoing transactions of a particular user. The transaction
root is updated with any transaction taking place. For both sender

PatriciaNode PatriciaEdge

node_id (INT)
parent_id (INT)
balance (INT)
hash (STR)
type

edge_id (INT)
node_id (INT)
child_id (INT)
prefix (STR)

Balance

user_id (STR, UNIQUE)
amount (INT)

Transaction

transaction_id (INT)
tx_hash (STR, UNIQUE)
type (STR)
user1 (STR)
user2 (STR)
amount (INT)
block_id (INT)
position (INT)

Block

block_id (INT)
merkle_hash (STR)
merkle_height (STR)
patricia_hash (STR)
block_hash (STR)

MerkleNode

node_id (INT)
block_id (INT)
level (INT)
position (INT)
hash (STR)Aggregation Concat(Prefix)

Figure 3: Proposed Database Structure

and receiver, state root is updated and added to the blockchain.
In Figure 2, We have three users user1 : 010100, user2 : 000010,
user3 : 111111 with balances 60,50 and 40 respectively stored at
balance node (marked in yellow).User1 and user2 have same prefix
0, therefore at node 3, the unique prefix is split into two nodes.User2
has two separate outgoing transactions 1000 to user1 of value 10
and 1001 to user3 of value 40. Transaction trie also uses the same
encoding like state tree where common transaction prefix is split.

Note. For ease of understanding, we use 0 and 1 as a string char-
acter for user address of length 6 and transaction hash of length 4 in
Figure 2

4.3 Data Storage
The data is stored in 6 tables. Figure 3 describes the data storage
architecture of the proposed system. The transactions and users’
balances are recorded in the transaction and balance tables, respec-
tively. They are not specific to the blockchain. All newly committed
transactions are grouped into blocks and stored in Merkle tree ar-
chitecture. The precalculated information about Merkle tree nodes
is stored in themerklenode table, and the block information is in
block table. To support proofs for balances, we maintain a global Pa-
tricia tree. The precalculated information about its nodes and edges
is stored in patricianode and patriciaedдe tables, respectively.

In this model system, all transactions are processed in a fixed
block size of the transaction that can be accommodated. The block
size is the hyperparameter of the system. Each transaction block
has its Merkle tree. In the database, we store Merkle tree nodes as
a tuple, i.e., storing (the block number, the height of this node, the
sequence number in this height, the hash value of this node). A
hash is calculated by applying the hash function to the previous
block’s concatenation.

Each transaction is characterized by a user, transaction hash, and
change of the balance, the prefix tree is updated as follows:

72

BIOTC 2021, July 8–10, 2021, Ho Chi Minh City, Vietnam Madhwal et al.

(a) Average Transaction query time as a function of block size (b) Average Transaction query time as a function of
the transaction number

(C) Average balance query time as a function of the transaction
number

(d) Time to add N new transaction into the database

(e) Table size (bytes) as a function of the number of transaction

Ti
m

e
in

 S
ec

Ti
m

e
in

 S
ec

Ti
m

e
in

 S
ec

Ti
m

e
in

 S
ec

Size of Block Number of Transactions Number of Transactions

Number of Transactions
Number of Transactions

Figure 4: Performance results of processing different queries and memory consumption

• Find the vertex in the prefix tree corresponding to the user
ID

• The vertex’s balance is updated.
• After updating the user’s vertex balance, the balance of all
vertexes located below it and the transaction hash string
is updated. In other words, the subtree of the node corre-
sponding to each user contains information about all its
transactions in the form of Merkel Patricia trie.

• Finally, recursion is performed to the root of the prefix tree.
While recursing, the vertex hashes in the prefix tree are
updated. The new hash of a vertex is obtained by applying
the hash function to concatenate all the hashes of its child
nodes.

5 EXPERIMENTS
To evaluate the performance of the prototype, we performed tests
on a local machine. The database without any blocks and tree
structures is used as a baseline algorithm, i.e., only two tables–
transaction and balance (see Figure 4). The full blockchain-based
data structure from Section 3 is used as a proposed solution. The
experiments were performed on a computer with memory 16 GB
2400 MHz DDR4, Intel Core i9 running @2,3GHz.

• initialize empty database

• createU random users and commit a transaction with their
initial balances

• generate and process N random one-to-one transfer trans-
actions.

Note. The initial balances equal 106 tokens, the amounts for trans-
fers are uniform random integers from [1,100], and the number of
transactions M always less than 106. So, the situation of too low user’s
balance to transfer is impossible during the computations. No user
authorization is used during the experiment.

We varied two parameters:
• the number of transfer transactions N
• the block size B (applicable only to the proposed system).

The following characteristics were measured
(A) Average transaction query time as function of block size
(B) Average transaction query time
(C) Average balance query time
(D) Time to add N new transactions into the database
(E) Database tables sizes.
The code to the repository is available at GitHub [1].

5.1 Transaction Request
Random existing transactions hashes were generated for the ex-
periment. The average transaction query time as a function of the
number of transactions N is shown in Figure 4(a). For baseline

73

Blockchain Extension for PostgreSQL Data Storage BIOTC 2021, July 8–10, 2021, Ho Chi Minh City, Vietnam

system one need only to find the proper line in the transaction
table. While for the proposed algorithm, one also needs to find
and return the lines for the corresponding block’s Merkle tree. The
time is constant as a function of N, where the constant increases as
O(lnB) as shown in Figure 4(b).

5.2 Transaction Processing
The average time to add a new into the database is represented in
Figure 4(d). The baseline algorithm add only a new line into the
sorted transaction table and updates two lines in the sorted balance
(sender’s and receiver’s) per transaction, i.e. we need O(ln(U + T))
operations, where O(x) is the Biд O [10]. The proposed system
process transactions block-wise, i.e. batch-wise. And, in addition to
transaction and balance tables update, per B transactions we need to
generate and commit a Merkle tree with O(B) for O(B) operations
elements and perform O(B) Patricia trie updates for O(ln(U+T))
computation.

5.3 Balance Request
Random existing user names were generated for the experiment.
The average balance query time as a function of the number of
transactions N is shown in Figure 4(c). For baseline system one
need only to find the proper line in the balance table.

5.4 Memory Usage
Memory usage per table as a function of the number of transactions
is shown in Figure 4(e). All the tables sizes grow linearly as the
number of their elements grows linearly. The Merkle structures for
the bigger block size is also more significant due to the tree depth
increase.

6 CONCLUSION
The paper presents and evaluates the performance of blockchain
extension for data storage within the database. A particular ex-
ample of an account-based prototype cryptocurrency is used. It is
implemented using Python and PostgreSQL, and this approach is
applicable for other database systems with SQL-like language. The
prototype supports two types of queries with verifiable answers.
All the supplementary data structures for proofs are precalculated
during the insert and update events processing and are stored in the
database. The numerical experiments show the expected overhead
for the database blockchainization, which is acceptable in non-high-
performance services. An addition of a consensus mechanism is
needed to make blockchain on the top of the prototype.

Nevertheless, it is enough to estimate the computation and mem-
ory overhead for blockchainization. Additionally, a constructor of
the necessary tree structure is required to implement practical in-
terest. We consider the automated new queries addition, consensus
protocol inclusion, stored procedures support as future work.

REFERENCES
[1] 2020. GitHub Repository. https://github.com/yashmadhwal/Blockchain-

Extension-for-PostgreSQL-Data-Storage
[2] Naif Alzahrani and Nirupama Bulusu. 2018. Block-Supply Chain: A New

Anti-Counterfeiting Supply Chain Using NFC and Blockchain. In Proceedings
of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Sys-
tems - CryBlock’18. ACM Press, New York, New York, USA, 30–35. https:
//doi.org/10.1145/3211933.3211939

[3] Bitfury Group. 2016. On Blockchain Auditability. bitfury.com (2016), 1–
40. https://bitfury.com/content/downloads/bitfury-white-paper-on-blockchain-
auditability.pdf

[4] Eric A Brewer. 2000. Towards robust distributed systems (abstract). In Proceedings
of the nineteenth annual ACM symposium on Principles of distributed computing -
PODC ’00. ACM Press, New York, USA, 7. https://doi.org/10.1145/343477.343502

[5] Vitalik Buterin. 2014. Ethereum White Paper: A Next Generation Smart Contract
& Decentralized Application Platform. Etherum January (2014), 1–36. https:
//github.com/ethereum/wiki/wiki/White-Paper

[6] Christian Cachin. 2016. Architecture of the Hyperledger Blockchain Fabric. IBM
Research July (2016).

[7] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems 20, 4 (11 2002),
398–461. https://doi.org/10.1145/571637.571640

[8] E F Codd. 1970. A relational model of data for large shared data banks. Commun.
ACM 13, 6 (6 1970), 377–387. https://doi.org/10.1145/362384.362685

[9] Bram Cohen. 2008. The BitTorrent Protocol Specification. (2008). http://www.
bittorrent.org/beps/bep_0003.html

[10] Thomas H Cormen, Charles E Leiserson, and Ronald L Rivest. 2001. Introduction
to Algorithms , Second Edition. 1184 pages. https://doi.org/10.2307/2583667

[11] Jean Dollimore, Tim Kindberg, and George Coulouris. 2005. Distributed Systems:
Concepts and Design. Addison-Wesley. 944 pages.

[12] Joshua D. Drake and John C. Worsley. 2002. Practical PostgreSQL. O’Reilly Media,
Inc. 640 pages.

[13] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the
presence of partial synchrony. J. ACM 35, 2 (4 1988), 288–323. https://doi.org/
10.1145/42282.42283

[14] Cynthia Dwork and Moni Naor. 1992. Pricing via Processing or Combatting
Junk Mail. In Advances in Cryptology — CRYPTO’ 92. Springer Berlin Heidelberg,
Berlin, Heidelberg, 139–147. https://doi.org/10.1007/3-540-48071-4{_}10

[15] Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. ACM SIGACT News 33, 2 (6
2002), 51. https://doi.org/10.1145/564585.564601

[16] Tzipora Halevi, Fabrice Benhamouda, Angelo De Caro, Shai Halevi, Charanjit
Jutla, Yacov Manevich, and Qi Zhang. 2019. Initial Public Offering (IPO) on
Permissioned Blockchain Using Secure Multiparty Computation. In 2019 IEEE
International Conference on Blockchain (Blockchain). IEEE, 91–98. https://doi.
org/10.1109/Blockchain.2019.00021

[17] Simon Jentzsch and Christoph Jentzsch. 2018. EIP-1186: RPC-Method to get
Merkle Proofs. https://github.com/ethereum/EIPs/issues/1186

[18] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
2017. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Vol. 10401 LNCS. Springer, Cham,
357–388. https://doi.org/10.1007/978-3-319-63688-7{_}12

[19] Sunny King and Scott Nadal. 2012. PPCoin : Peer-to-Peer Crypto-Currency with
Proof-of-Stake. Self-published paper (2012), 1–6. http://encryptopedia.org/ppcoin-
proof-of-stake/

[20] Kari Korpela, Jukka Hallikas, and Tomi Dahlberg. 2017. Digital Supply Chain
Transformation toward Blockchain Integration. In Proceedings of the 50th Hawaii
International Conference on System Sciences. 4182–4191. https://doi.org/10.24251/
HICSS.2017.506

[21] I. Kotsiuba, M. Nesterov, Y. Yanovich, I. Skarga-Bandurova, T. Biloborodova, and
V. Zhygulin. 2019. Multi-Database Monitoring Tool for the E-Health Services.
In Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018.
https://doi.org/10.1109/BigData.2018.8622020

[22] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gener-
als Problem. ACM Transactions on Programming Languages and Systems 4, 3 (7
1982), 382–401. https://doi.org/10.1145/357172.357176

[23] Yash Madhwal and Peter Panfilov. 2017. Blockchain And Supply Chain Manage-
ment: Aircrafts’ Parts’ Business Case. In Annals of DAAAM and Proceedings of
the International DAAAM Symposium. 1051–1056. https://doi.org/10.2507/28th.
daaam.proceedings.146

[24] Nisha Malik, Priyadarsi Nanda, Xiangjian He, and RenPing Liu. 2019. Trust and
Reputation in Vehicular Networks: A Smart Contract-Based Approach. In 2019
18th IEEE International Conference On Trust, Security And Privacy In Computing
And Communications/13th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE). IEEE, 34–41. https://doi.org/10.1109/
TrustCom/BigDataSE.2019.00015

[25] Trent Mcconaghy, Rodolphe Marques, Andreas Müller, Dimitri De Jonghe, Troy
Mcconaghy, Greg Mcmullen, Ryan Henderson, Sylvain Bellemare, and Alberto
Granzotto. 2016. BigchainDB: A Scalable Blockchain Database. BigchainDB
(2016), 1–65. http://www.noql.com

[26] Jim Melton. 1998. Database Language SQL. In Handbook on Architectures of
Information Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 103–128.
https://doi.org/10.1007/978-3-662-03526-9{_}5

74

https://github.com/yashmadhwal/Blockchain-Extension-for-PostgreSQL-Data-Storage
https://github.com/yashmadhwal/Blockchain-Extension-for-PostgreSQL-Data-Storage
https://doi.org/10.1145/3211933.3211939
https://doi.org/10.1145/3211933.3211939
https://bitfury.com/content/downloads/bitfury-white-pape r-on-blockchain-auditability.pdf
https://bitfury.com/content/downloads/bitfury-white-pape r-on-blockchain-auditability.pdf
https://doi.org/10.1145/343477.343502
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/362384.362685
http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html
https://doi.org/10.2307/2583667
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
https://doi.org/10.1007/3-540-48071-4{_}10
https://doi.org/10.1145/564585.564601
https://doi.org/10.1109/Blockchain.2019.00021
https://doi.org/10.1109/Blockchain.2019.00021
https://github.com/ethereum/EIPs/issues/1186
https://doi.org/10.1007/978-3-319-63688-7{_}12
http://encryptopedia.org/ppcoin-proof-of-stake/
http://encryptopedia.org/ppcoin-proof-of-stake/
https://doi.org/10.24251/HICSS.2017.506
https://doi.org/10.24251/HICSS.2017.506
https://doi.org/10.1109/BigData.2018.8622020
https://doi.org/10.1145/357172.357176
https://doi.org/10.2507/28th.daaam.proceedings.146
https://doi.org/10.2507/28th.daaam.proceedings.146
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00015
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00015
http://www.noql.com
https://doi.org/10.1007/978-3-662-03526-9{_}5

BIOTC 2021, July 8–10, 2021, Ho Chi Minh City, Vietnam Madhwal et al.

[27] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption
Function. In Conference on the theory and application of cryptographic techniques.
Springer, Berlin, Heidelberg, 369–378. https://doi.org/10.1007/3-540-48184-2{_}32

[28] Muhammad Muzammal, Qiang Qu, and Bulat Nasrulin. 2019. Renovating
blockchain with distributed databases: An open source system. Future Gen-
eration Computer Systems 90 (1 2019), 105–117. https://doi.org/10.1016/j.future.
2018.07.042

[29] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.
www.bitcoin.org (2008), 1–9. https://bitcoin.org/bitcoin.pdf

[30] Marc Pilkington. 2016. Blockchain Technology: Principles and Applications.
In Research Handbook on Digital Transformations. Springer, 225 – 253. https:
//doi.org/10.4337/9781784717766.00019

[31] Qiuyun Shang and Allison Price. 2019. A Blockchain-Based Land Titling Project
in the Republic of Georgia: Rebuilding Public Trust and Lessons for Future Pilot
Projects. Innovations: Technology, Governance, Globalization 12, 3-4 (1 2019),
72–78.

[32] Melanie Swan. 2015. Blueprint for a new economy. Vol. 58. Cambridge University
Press, Cambridge. 152 pages. https://doi.org/10.1017/CBO9781107415324.004

[33] Michael Szydlo. 2004. Merkle Tree Traversal in Log Space and Time. In Advances
in Cryptology - EUROCRYPT 2004, Christian Cachin and Jan L Camenisch (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 541–554. https://doi.org/10.1007/
978-3-540-24676-3{_}32

[34] Hien Thi Thu Truong, Miguel Almeida, Ghassan Karame, and Claudio Soriente.
2019. Towards Secure and Decentralized Sharing of IoT Data. In 2019 IEEE
International Conference on Blockchain (Blockchain). IEEE, 176–183. https://doi.
org/10.1109/Blockchain.2019.00031

[35] Manisha Verma and Debasis Ganguly. 2019. LiRME: Locally interpretable ranking
model explanation. In SIGIR 2019 - Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval. 1281–1284.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

[36] Tommy van der Vorst. 2017. Catena: a distributed database based on a blockchain,
accessible using SQL. https://github.com/pixelspark/catena

[37] Yury Yanovich, Igor Shiyanov, Timur Myaldzin, Ivan Prokhorov, Darya Ko-
repanova, and Sergey Vorobyov. 2018. Blockchain-Based Supply Chain for
Postage Stamps. Informatics 5, 4 (11 2018), 42. https://doi.org/10.3390/
informatics5040042

75

https://doi.org/10.1007/3-540-48184-2{_}32
https://doi.org/10.1016/j.future.2018.07.042
https://doi.org/10.1016/j.future.2018.07.042
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.4337/9781784717766.00019
https://doi.org/10.4337/9781784717766.00019
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1007/978-3-540-24676-3{_}32
https://doi.org/10.1007/978-3-540-24676-3{_}32
https://doi.org/10.1109/Blockchain.2019.00031
https://doi.org/10.1109/Blockchain.2019.00031
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/pixelspark/catena
https://doi.org/10.3390/informatics5040042
https://doi.org/10.3390/informatics5040042

	Abstract
	1 Introduction
	2 Related Work
	2.1 Databases inside Blockchains
	2.2 Databases with Built-in Blockchains

	3 PREREQUISITE: MERKLE AND PATRICIA TREES
	3.1 Merkle Tree
	3.2 Patricia Tree

	4 PROTOTYPE IMPLEMENTATION
	4.1 Implementation of Merkle Tree
	4.2 Implementation of Patricia Tree
	4.3 Data Storage

	5 EXPERIMENTS
	5.1 Transaction Request
	5.2 Transaction Processing
	5.3 Balance Request
	5.4 Memory Usage

	6 Conclusion
	References

