
HAL Id: hal-03788409
https://inria.hal.science/hal-03788409

Submitted on 26 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast High-Resolution Drawing of Algebraic Curves
Nuwan Herath Mudiyanselage, Guillaume Moroz, Marc Pouget

To cite this version:
Nuwan Herath Mudiyanselage, Guillaume Moroz, Marc Pouget. Fast High-Resolution Drawing of
Algebraic Curves. ISSAC 2022 - International Symposium on Symbolic and Algebraic Computation,
Jul 2022, Villeneuve-d’Ascq France, France. pp.449-458, �10.1145/3476446.3535483�. �hal-03788409�

https://inria.hal.science/hal-03788409
https://hal.archives-ouvertes.fr

Fast High-Resolution Drawing of Algebraic Curves
Nuwan Herath Mudiyanselage

nuwan.herath-

mudiyanselage@inria.fr

Université

de Lorraine, CNRS, Inria, LORIA

Nancy, France

GuillaumeMoroz

guillaume.moroz@inria.fr

Université

de Lorraine, CNRS, Inria, LORIA

Nancy, France

Marc Pouget

marc.pouget@inria.fr

Université

de Lorraine, CNRS, Inria, LORIA

Nancy, France

ABSTRACT
Weaddress the problemof computing a drawing of high resolution of

a plane curve defined by a bivariate polynomial equation 𝑃 (𝑥,𝑦)=0.
Given a grid of fixed resolution, a drawing is a subset of pixels. Our

goal is to compute an approximate drawing that (i) contains all the

parts of the curve that intersect the pixel edges, (ii) excludes a pixel

when the evaluation of 𝑃 with interval arithmetic on each of its four

edges is far from zero.

Oneof thechallenges forcomputingdrawingsonahigh-resolution

grid is to minimize the complexity due to the evaluation of the input

polynomial. Most state-of-the-art approaches focus on bounding

the number of independent evaluations. Using state-of-the-art Com-

puter Algebra techniques, we design new algorithms that amortize

the evaluations and improve the complexity for computing such

drawings.

Our main contribution is to use a non-uniform grid based on

the Chebyshev nodes to take advantage of multipoint evaluation

techniques via the Discrete Cosine Transform. We propose two new

algorithms that compute drawings and compare them experimen-

tally on several classes of high degree polynomials. Notably, one of

those approaches is faster than state-of-the-art drawing software.

CCS CONCEPTS
• Theory of computation→Computational geometry.

KEYWORDS
curve drawing, high degree algebraic curve, discrete cosine trans-

form, numerical error analysis, fast multipoint evaluation

ACMReference Format:
Nuwan Herath Mudiyanselage, Guillaume Moroz, and Marc Pouget. 2022.

Fast High-Resolution Drawing of Algebraic Curves. In Proceedings of the 47th
ACM Symposium on Symbolic and Algebraic Computation.ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION
In several engineering applications such as mechanism design or

control theory, it is important to visualize curves given by implicit

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-8688-3/22/07. . . $15.00

https://doi.org/10.1145/XXXXXX.XXXXXX

equations of the form 𝑃 (𝑥,𝑦) =0. Being able to draw them quickly

with a good resolution is also an advantage in an interactive inter-

face when the designer of a robotic mechanismwants to visualize

different implicit curves associated to different design parameters.

In most state-of-the-art approaches computing the implicit curve

solution of 𝑃 (𝑥,𝑦) =0 [3, 32, 38], the authors analyze and optimize

their algorithms while assuming that the cost of evaluating the func-

tion 𝑃 is constant. On the other hand, in some applications, the

function 𝑃 can be a polynomial of degree 20 for example, with more

than 200 terms, and evaluating it is not a negligible constant. When

𝑃 is a polynomial, we will present two methods to speed up the com-

putation of the drawing of the implicit curve 𝑃 (𝑥,𝑦)=0, notably by
amortizing the cost of the evaluations of 𝑃 . Experimentally, we show

that one of those methods computes the drawing an order of mag-

nitude faster than state-of-the-art implicit-plot software. Moreover,

our approach provides guarantees on the output drawing.

State of the art. The first efficient algorithm to visualize such an

object was the marching cube [26], and was enhanced with variants

such as surface nets [12] and dual contouring [20]. These algorithms

are based on the evaluation of the function 𝑃 on a regular grid.When

the curve is smooth and the grid resolution is not fixed a priori, in-
terval analysis can be used with a recursive subdivision of the input

domain to guarantee a topologically correct reconstruction of the

curve [3, 8, 10, 25, 32, 38]. Another approach [40] uses subdivision

to exclude large parts of the domain and reduce the number of eval-

uations. When the resolution of the grid is fixed a priori, there is
no hope to capture the topology of the curve but interval analysis

can still be used to determine an enclosure: a set of pixels whose

union contains the curve [40]. Another approach is the so-called

predictor-corrector continuation that follows the curve by stepping

in the tangent direction and correcting by projecting back to the

curve via a Newton operator [13, Chapter 6]. The main problems are

then to find starting points on the curve and make sure not to jump

between different branches of the curve. For a singular curve, the

topology can be computedwhen 𝑃 is a polynomial, using symbolical

approaches based notably on Cylindrical Algebraic Decomposition

([1, 2, 9, 11, 22] and references therein). The complexity of these

methods is highwith respect to the degree of𝑃 [22], and in practice it

cannot handle randombivariate polynomials of degree 100. Sincewe

work within a grid of fixed resolution and with a fixed precision, our

approach does not compute the topology of the curve. We instead

focus on reducing the cost of the evaluations of the polynomial 𝑃

when the resolution is high and the precision is fixed.

Contribution. Our contribution focuses on the case where 𝑃 is a

polynomial of degree 𝑑 and the input grid is of high resolution 𝑁 .

The main idea to speed up the implicit drawing computation is to

take advantage of fast multipoint evaluation from computer algebra.

https://orcid.org/0000-0001-8085-4134
https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France. Nuwan HerathMudiyanselage, GuillaumeMoroz, andMarc Pouget

Indeed, a polynomial of degree 𝑑 can be evaluated at one value in

linear arithmetic complexity using the Horner algorithm. The naive

evaluation at 𝑑 values is thus quadratic in 𝑑 . The fast multipoint

evaluation algorithm improves the complexity of these𝑑 evaluations

to soft-linear in 𝑑 (that is𝑂 (𝑑polylog(𝑑))) [44, chapter 10]. On the
other hand, fast multipoint evaluation algorithms have a bit com-

plexity quadratic in 𝑑 if we work with a fixed constant precision

lower than𝑑 [23, 41]. If we restrict ourmultipoint evaluation on a set

of Chebyshev nodes (see Section 2.1), we can then use the Discrete

Cosine Transform (DCT), in the same way as the Discrete Fourier

Transform (DFT) can be used for multipoint evaluation on the roots

of unity in the complex field [44, §8.2]. In this case, the bit complexity

is linear in𝑑 , evenwith a precision lower than𝑑 [36, §3]. This special

multipoint evaluation inherits the numerical stability of the DCT

and we extend the error analysis already known for the DFT [5].

We derive this idea with two algorithm variants. First, in Sec-

tion 4.1, we design an algorithm that evaluates the input polynomial

𝑃 on all nodes of a grid using the DCT both in 𝑥 and in𝑦. This con-

strains us to use a non-uniform grid aligned on Chebyshev nodes.

Although this grid is non-uniform, the distance between two con-

secutive nodes of such a grid of size 𝑁 × 𝑁 is always less than

𝜋/𝑁 , which makes it sufficiently dense for plotting. Then, writing

𝑃 (𝑋,𝑌)=∑𝑑
𝑖=0𝑝𝑖 (𝑋)𝑌 𝑗

, we can use the DCT on each 𝑝𝑖 , which leads

to𝑁 univariate polynomials 𝑞 𝑗 (𝑌) of degree𝑑 , that can also be eval-
uated using the DCT again. This can be done in a quasi-quadratic

number of arithmetic operations in 𝑁 if 𝑁≫𝑑 .

The second variant comes by mixing in an idea coming from in-

terval arithmetic. For the computation of implicit curves, interval

arithmetic combined with quad-tree subdivision approaches can

discard large parts of the plane with few evaluations and reduce the

number of evaluations required to plot the considered curve [32, 38].

In our case, we further improve this approach in Section 4.2 by first

evaluating all the 𝑝𝑖 using the DCT, and then we solve each polyno-

mial𝑞 𝑗 (𝑌) with a subdivision approach based on interval arithmetic.

If𝑁≫𝑑 , this leads toacomplexity in𝑂 (𝑑𝑁𝑇),where log(𝑁)<𝑇 <𝑁

is themaximumnumber of nodes in the considered subdivision trees.

In Section 5, we show that this approach performs well in practice.

Finally, even thoughweuse fast evaluation techniques fordrawing

implicit curves, the drawing returned by our algorithms are crossing-

edge approximations as defined in Definition 4.3. In particular, we

guarantee thatwe don’tmiss any intersection point of the curvewith

the underlying grid and that we exclude pixels when the evaluation

of 𝑃 on their edges is far from zero. Such guarantees are obtained

using a combination of interval arithmetic and a careful analysis of

the numerical error of the DCT algorithm in Section 3. One of the

difficulties we encountered is that even though this analysis of the

DCT allows us to bound the values of a polynomial on the Cheby-

shev nodes, it cannot bound its values on small intervals around the

Chebyshev nodes.We solve this problem by using Taylor approxima-

tions of order𝑚 with a bound on the remainder, where𝑚 is a small

constant, say 2 or 3. The Taylor approximations at all the Chebyshev

nodes can be efficiently computed using the DCT algorithm𝑚 times.

We implemented our two approaches in Python. In Section 5, we

remark that the timingsmatch the complexity analysis.We also com-

pare our implementations with state-of-the-art software, and show

that for high resolutions, the approach based on a mixed strategy

using fast multipoint evaluations and subdivision proves to be the

fastest.

2 FASTMULTIPOINT EVALUATION
OF POLYNOMIALS ONCHEBYSHEVNODES

We first recall the definitions of Chebyshev polynomials and nodes,

and the Inverse Discrete Cosine Transform (IDCT). We then show

that the IDCT enables a fast multipoint evaluation of a polynomial

at the Chebyshev nodes. Section 2.3 introduces notation for interval

arithmetic.

2.1 Chebyshev
nodes, Chebyshev basis and IDCT

Chebyshev polynomials can be defined as the unique sequence of

polynomials (𝑇𝑛)𝑛∈N satisfying

𝑇𝑛 (cos𝜃)=cos(𝑛𝜃) . (1)

For 𝑁 ∈N, the Chebyshev nodes (𝑐𝑘)𝑘∈J0,𝑁−1K are the roots of𝑇𝑁 :

𝑐𝑘 =cos

(
2𝑘+1
2𝑁

𝜋

)
for 𝑘 ∈ J0,𝑁 −1K. (2)

The Chebyshev polynomials𝑇𝑘 for 𝑘 ≤𝑑 form a basis of the polyno-

mials of degree at most 𝑑 . The relation between the monomial and

the Chebyshev bases is given by [28, section 2.3.1]:

𝑥𝑘 =21−𝑘
⌊𝑘/2⌋∑′

𝑖=0

(
𝑘

𝑖

)
𝑇𝑘−2𝑖 (𝑥),

where the prime symbol denotes that the term𝑇0 (𝑥), if there is one,
is to be halved.

Lemma 2.1. For a polynomial of degree 𝑑 , the change-of-basis ma-
trix from the monomial basis to the Chebyshev basis is 𝐵 = (𝐵𝑖, 𝑗) ∈
R(𝑑+1)×(𝑑+1) where

𝐵𝑖, 𝑗 =


2
−𝑗 (𝑗

𝑗

2

)
if 𝑖 =0 and 𝑗 is even,

2
1−𝑗 (𝑗

𝑗−𝑖
2

)
if ∃𝑘,𝑖 = 𝑗−2𝑘 and 𝑖 ≤ 𝑗,

0 otherwise.

(3)

Performingachangeofbasis is amultiplicationof a (𝑑+1)×(𝑑+1)-
matrix by a (𝑑+1)-vector. Thus, given a polynomial of degree 𝑑 in

the monomial basis, computing its coefficients in the Chebyshev

basis can be done in 𝑂 (𝑑2𝑝 log(𝑝)) bit-operations in precision-𝑝

arithmetic. Remark that it is also possible to do the change of basis

in 𝑂 (𝑑 polylog(𝑑)) arithmetic operations [4, 31], however those

methods are based on Taylor shift operations that requires a number

of bit operations quadratic in 𝑑 [43].

Definition 2.2. Given 𝑑,𝑁 ∈N∗ with 𝑑 +1 ≤ 𝑁 and (𝑋𝑖)𝑖∈J0,𝑑K a

sequence of real numbers, the Inverse Discrete Cosine Transform

IDCT((𝑋𝑖)𝑖∈J0,𝑑K,𝑁) is the sequence (𝑥𝑘)𝑘∈J0,𝑁−1K defined by

∀𝑘 ∈ J0,𝑁 −1K,𝑥𝑘 =
1

𝑁

(
1

2

𝑋0+
𝑑∑
𝑖=1

𝑋𝑖cos

(
𝑖 (2𝑘+1)

2𝑁
𝜋

))
. (4)

When input and output sizes match, it is omitted: IDCT((𝑋𝑖)𝑖∈J0,𝑑K)
denotes IDCT((𝑋𝑖)𝑖∈J0,𝑑K,𝑑+1).

Fast High-Resolution Drawing of Algebraic Curves ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France.

2.2 Fast multipoint evaluation FME

Let 𝑃 be a polynomial of degree 𝑑 given in the Chebyshev basis

𝑃 (𝑥)=∑𝑑
𝑖=0𝑎𝑖𝑇𝑖 (𝑥). Using Eq. (1), the evaluation of𝑃 at a Chebychev

node 𝑐𝑘 of𝑇𝑁 for 𝑁 >𝑑 satisfies ∀𝑘 ∈ J0,𝑁 −1K

𝑃 (𝑐𝑘)=
𝑑∑
𝑖=0

𝑎𝑖𝑇𝑖

(
cos

(
2𝑘+1
2𝑁

𝜋

))
=

𝑑∑
𝑖=0

𝑎𝑖cos

(
𝑖 (2𝑘+1)

2𝑁
𝜋

)
=
𝑎0

2

+
[
𝑎0

2

+
𝑑∑
𝑖=1

𝑎𝑖cos

(
𝑖 (2𝑘+1)

2𝑁
𝜋

)]
.

All the evaluations can thus be expressed using the IDCT as

(𝑃 (𝑐𝑖))𝑖∈J0,𝑁−1K=𝑁 ·IDCT((𝑎𝑖)𝑖∈J0,𝑑K,𝑁)+
1

2

(𝑎0,...,𝑎0) . (5)

When the polynomial 𝑃 is given in the monomial basis, one has

to first perform a change of basis to take advantage of themultipoint

evaluation via the IDCT. The Fast Multipoint Evaluation operator

FME is the composition of these operations.

Definition 2.3. For a polynomial 𝑃 =
∑𝑑
𝑖=0 𝛼𝑖𝑥

𝑖
, let us define

FME((𝛼𝑖)𝑖∈J0,𝑑K,𝑁) theFastMultipointEvaluationof𝑃 at theCheby-

shev nodes (𝑐𝑘)𝑘∈J0,𝑁−1K computed by a change of basis and Eq. (5).

Using the Fast Fourier Transform, the complexity of the IDCT is

𝑂 (𝑁 log
2
(𝑁)). Together with Lemma 2.1, this gives the complexity

of the FME.

Lemma 2.4. The computation of the FME has complexity𝑂 (𝑑2+
𝑁 log

2
(𝑁)).

2.3 Interval arithmetic
We use interval representations for all data in our algorithms and

use interval arithmetic for the computations. We denote the set of

intervals ofR by IR. Given a function 𝑓 :R→R, we call inclusion of
𝑓 , a function□𝑓 : IR→ IR such that the set 𝑓 (𝐼)= {𝑓 (𝑥) |𝑥 ∈ 𝐼 } is con-
tained in □𝑓 (𝐼), for all 𝐼 ∈ IR. These definitions naturally extend to
the multivariate setting and we refer to [29] for details. In particular,

the arithmetic operations have natural extensions to intervals. Using

such interval operations to evaluate a polynomial 𝑃 with a given

scheme gives an inclusion function □𝑃 for 𝑃 . Several techniques

exist to enclose the evaluation of a function on an interval, such as

the Horner scheme, the compensated Horner scheme, the centered

form, the extended Horner scheme ([30, Chapter 2], [39, Chapter

3], [14]), or more recently using recursive Lagrange interpolation

when the evaluations are done within a dichotomic algorithm [17].

In our work, for a given integer𝑚, we use the Taylor form of order

𝑚 ([33, Definition 3.3], [17]) and we recall the error bounds based

on Taylor-Lagrange inequality in Section 3.4.

3 NUMERICAL ERRORBOUNDS
In this section, we derive numerical error bounds for the fast mul-

tipoint evaluation used in Algorithms 1 and 3, and for the Taylor

approximation used in Algorithm 1. In Section 3.1, we recall how the

IDCT is computed via the InverseDiscrete Fourier Transform (IDFT).

In Section 3.1.3, we recall previous work on the IFFT error where the

IFFT is an algorithm computing the IDFT in quasi-linear number of

operations. In Section 3.1.4, we derive an error bound for the IDCT

when performing operations in precision-𝑝 arithmetic. Analysing

(𝑋𝑘) (𝑉𝑘) (𝑣𝑘) (𝑥𝑘)
Eq. 7

IDFT
Eq. 8

IDCT

Figure 1: Fast IDCT procedure with an IDFT on 𝑁 real points

(𝑋𝑘) (𝑉𝑘) (𝑇𝑘) (𝑡𝑘) (𝑣𝑘) (𝑥𝑘)
Eq. 7 Eq. 9

IDFT
Eq. 10 Eq. 8

IDCT

Figure 2: Fast IDCT procedure with an IDFT on 𝑁 /2 complex
points.

the numerical error due to the change from the monomial basis to

the Chebyshev basis, we obtain the numerical error for the FME (Sec-

tion3.2) and its interval version□FME(Section3.3). In Section3.4,we

bound the error produced by using a low degree Taylor approxima-

tion of a high degree polynomial that is instrumental in Algorithm 1.

We assume without loss of generality that 𝑁 =2𝑛 is a power of 2.

Let 𝑗 be such that 𝑗2=−1. The IDFT is defined for a complex vector

𝑧= (𝑧𝑘)𝑘∈J0,𝑁−1K by

𝐼𝐷𝐹𝑇 (𝑧)=
(
1

𝑁

𝑁−1∑
𝑖=0

𝑧𝑘𝑒
𝑗 2𝜋
𝑁
𝑖𝑘

)
𝑘∈J0,𝑁−1K

(6)

3.1 Fast IDCT error bound
3.1.1 Reduction of the IDCT to 𝑁 -points IDFT. This section recalls
how the fast IDCT is computed byMakhoul [27]. The goal is to re-

duce the computation of (𝑥𝑘), the IDCT of (𝑋𝑘), to the computation

of (𝑣𝑘), the IDFT of (𝑉𝑘)(Figure 1).
Let 𝜔𝑀 = 𝑒−𝑗2𝜋/𝑀 . Given (𝑋𝑘)𝑘∈J0,𝑁−1K and 𝑋𝑁 = 0, (𝑉𝑘) is

defined by

𝑉𝑘 =
1

2

𝜔−𝑘
4𝑁 [𝑋𝑘− 𝑗𝑋𝑁−𝑘], 0≤𝑘 ≤𝑁 −1, (7)

and (𝑥𝑘) is retrieved from{
𝑥
2𝑘 =𝑣𝑘 , 0≤𝑘 ≤ ⌊𝑁−1

2
⌋,

𝑥
2𝑘+1=𝑣𝑁−𝑘−1, 0≤𝑘 ≤ ⌊𝑁

2
⌋−1.

(8)

3.1.2 Reduction of the IDCT to (𝑁 /2)-points IDFT. We can further

reduce the size of the sequence computed through IDFT. Since (𝑉𝑘)
is a Hermitian symmetric sequence, the number of points for the

IDFT can be divided by 2 (Figure 2).

(𝑇𝑘) is computed following the flow graph in Figure 3, for 0≤𝑘 ≤
⌊𝑁 /4⌋, where • denotes the complex conjugate (see Figure 3):

𝑇𝑘 =
1

2

[(
𝑉𝑘 +𝑉𝑁

2
−𝑘

)
+ 𝑗𝜔−𝑘𝑁

(
𝑉𝑘−𝑉𝑁

2
−𝑘

)]
,

𝑇𝑁
2
−𝑘 =

1

2

[(
𝑉𝑘 +𝑉𝑁

2
−𝑘

)
− 𝑗𝜔−𝑘𝑁

(
𝑉𝑘−𝑉𝑁

2
−𝑘

)]
.

(9)

The (N/2)-point IDFT of (𝑇𝑘) gives (𝑡𝑘). The sequence (𝑣𝑘) is ob-
tained thanks to

𝑣
2𝑘 =𝑅𝑒 (𝑡𝑘)

𝑣
2𝑘+1= 𝐼𝑚(𝑡𝑘)

(10)

ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France. Nuwan HerathMudiyanselage, GuillaumeMoroz, andMarc Pouget

−1 𝑗𝜔−𝑘
𝑁

−1
1

2
𝑉𝑁

2
−𝑘

1

2
𝑉𝑘 𝑇𝑘

𝑇𝑁
2
−𝑘

Figure 3: Flow graph to compute (𝑇𝑘) from (𝑉𝑘).

3.1.3 IFFT error bound. Based on the error bound given in Brise-

barre et al. [5, Theorem 3.3 and 3.4] on the FFT, we canwrite a bound

on the Inverse FFT in Corollary 3.1.

Corollary3.1. Assumeradix-2,precision-parithmetic,with round-
ing unit𝑢 =2−𝑝 . Let 𝑧̂ be the computed 2𝑛-point IFFT of 𝑍 ∈C2𝑛 and
let 𝑧 be the exact value. Then

∥𝑧̂−𝑧∥
2
≤ ∥𝑧∥

2

[
(1+𝑢)𝑛 (1+𝑔)𝑛−2−1

]
with

𝑔=

√
2

2

𝑢+𝜌×

(
1+
√
2

2

𝑢

)
𝜌×=

{
𝑢
√
5 naive multiplication,

2𝑢 multiplication with fused multiply-add instruction.

For our application, we actually want to bound ∥𝑧̂−𝑧∥∞. Using
classical results on the equivalence between norms, and the equality

∥𝑍 ∥
2
=
√
𝑁 ∥𝑧∥

2
, we deduce Corollary 3.2, where

∥𝑍 ∥⊥∞= max

𝑖∈J0,𝑁−1K
{max(|𝑅𝑒 (𝑍𝑖) |,|𝐼𝑚(𝑍𝑖) |)}.

Corollary3.2. Assumeradix-2,precision-parithmetic,with round-
ing unit𝑢=2−𝑝 . Let 𝑧̂ be then computed 2𝑛-point IFFT of𝑍 ∈C2𝑛 and
let 𝑧 be the exact value. Then

∥𝑧̂−𝑧∥⊥∞ ≤ ∥𝑍 ∥⊥∞
√
2

[
(1+𝑢)𝑛 (1+𝑔)𝑛−2−1

]
.

3.1.4 Fast IDCT error bound. Using the notation of Section 3.1,

Theorem 3.3 shows that the absolute error ∥𝑥−𝑥 ∥∞ on the output

of the fast IDCT can be bounded with respect to 𝑢, 𝑔 (defined in

Corollary 3.1) and ∥𝑋 ∥∞.

Theorem 3.3. Assume radix-2, precision-p arithmetic, with round-
ing unit𝑢=2−𝑝 . Let 𝑥 be the computed 2𝑛-point fast IDCT of𝑋 ∈C2𝑛

and let 𝑥 be the exact value. Then

∥𝑥−𝑥 ∥∞
≤
√
2∥𝑋 ∥∞

[√
2(1+𝑢)3 (1+𝑔)2

(
(1+𝑢)𝑛−1 (1+𝑔)𝑛−3−1

)
+(1+𝑢)3 (1+𝑔)2−1

]
.

Proof. The computation of the IDCT corresponds to the oper-

ations from𝑋𝑘 to 𝑥𝑘 in Table 1 where the relative error for the norm

∥·∥⊥∞ is bounded for each step in the last column.

Let𝑇 (resp. 𝑡̂) be the computed value of the first two (resp. three)

steps in Table 1, assuming precision-𝑝 arithmetic. Let us define

𝑡∗ = 𝐼𝐷𝐹𝑇 (𝑇) and 𝑡 = 𝐼𝐷𝐹𝑇 (𝑇) the exact values. Taking into ac-

count the relative error at each step and using Cor. 3.2, we have

∥𝑥−𝑥 ∥∞=

̂𝑡−𝑡

⊥∞ ≤

̂𝑡−𝑡∗

⊥∞+

𝑡∗−𝑡

⊥∞
≤

𝑇

∞

√
2

(
(1+𝑢)𝑛−1 (1+𝑔)𝑛−3−1

)
+

𝑇 −𝑇

∞
.

Moreover,

𝑇

∞
≤ ∥𝑇 ∥∞ (1+𝑢)3 (1+𝑔)2

and

𝑇 −𝑇

∞
≤ ∥𝑇 ∥∞ ((1+𝑢)3 (1+𝑔)2−1).

We can also prove that ∥𝑇 ∥∞ ≤
√
2∥𝑋 ∥∞, so

∥𝑥−𝑥 ∥∞
≤
√
2∥𝑋 ∥∞

[√
2(1+𝑢)3 (1+𝑔)2

(
(1+𝑢)𝑛−1 (1+𝑔)𝑛−3−1

)
+(1+𝑢)3 (1+𝑔)2−1

]
.

□

The ratio ∥𝑥−𝑥 ∥∞/∥𝑋 ∥∞ is computed for high resolutions in

Table 2 and it does not exceed 10
−13

.

3.2 FME error bound
For the fast multipoint evaluation, the polynomial is written in the

Chebyshev basis and then the IDCT is applied on these coefficients.

The change of basis introduces an error which has to be added to the

error from the IDCT to get a bound for the FME in Theorem 3.4.

Theorem 3.4. Assume radix-2, precision-p arithmetic, with round-
ing unit 𝑢 = 2

−𝑝 . Let 𝑧̂ be the computed 2𝑛-point fast evaluation on
Chebyshev nodes of the polynomial whose coefficients are𝑎 ∈R𝑑+1 and
let 𝑧 be the exact value. Then

∥𝑧−𝑧̂∥∞ ≤ (𝑑+1)∥𝑎∥∞
[
(𝑑+1)𝛾+(1+𝛾)

(
𝑁𝛽 (1+𝑢)+

(
𝑑+ 3

2

)
𝑢

)]
where

𝛾 =
(𝑑+1)𝑢

1−(𝑑+1)𝑢 ,

𝛽 =
√
2

[√
2(1+𝑢)3 (1+𝑔)2

(
(1+𝑢)𝑛−1 (1+𝑔)𝑛−3−1

)
+(1+𝑢)3 (1+𝑔)2−1

]
.

Proof. The FME computation consists essentially in writing the

input polynomial in the Chebyshev basis using Eq. (3), and then

computing an IDCT. For the error bound on the change of basis, we

use a classical bound on the inner product [16, §3.1]. For the IDCT

we use the bound in Theorem 3.3. □

3.3 FMEwith interval coefficients
In the case where the input polynomial has interval coefficients,

we need to compute the interval enclosure of its evaluation on the

Chebyshev nodes. This leads to a function denoted by □FME that

takes as input a polynomial with interval coefficients, and returns a

list of intervals that each contain the evaluation of the input polyno-

mial on a Chebyshev node. The function □FME is computed in two

steps. First we compute the change of basis through a multiplication

with the matrix given in Equation 3. Then we compute the IDCT on

Fast High-Resolution Drawing of Algebraic Curves ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France.

Table 1: Summary of the operations for the IDCT and their relative errors.

Operations Floating point relative errors

𝑋𝑘→𝑉𝑘 𝑉𝑘 =
1

2
𝜔−𝑘
𝑁
(𝑋𝑘− 𝑗𝑋𝑁−𝑘) 𝑔 (since𝑋𝑘 real)

𝑉𝑘→𝑇𝑘

𝑇𝑘 = 1

2
((𝑉𝑘 +𝑉𝑁

2
−𝑘)+ 𝑗𝜔

−𝑘
𝑁
(𝑉𝑘−𝑉𝑁

2
−𝑘))

𝑇𝑁
2
−𝑘 = 1

2
((𝑉𝑘 +𝑉𝑁

2
−𝑘)− 𝑗𝜔

−𝑘
𝑁
(𝑉𝑘−𝑉𝑁

2
−𝑘))

(1+𝑔) (1+𝑢)3−1

𝑇𝑘→𝑡𝑘 𝑡𝑘 = 𝐼𝐹𝐹𝑇 (𝑇)𝑘
√
2((1+𝑢)𝑛−1 (1+𝑔)𝑛−3−1)

Cor. 3.2 for
𝑁
2
=2𝑛−1 points

𝑡𝑘→𝑣𝑘
𝑣
2𝑘 = 𝑅𝑒 (𝑡𝑘)

𝑣
2𝑘+1 = 𝐼𝑚(𝑡𝑘)

0

𝑣𝑘→𝑥𝑘
𝑥
2𝑘 = 𝑣𝑘

𝑥
2𝑘+1 = 𝑣𝑁−𝑘−1

0

N 1024 2048 4096 8192 16384 32768

∥𝑥−𝑥 ∥∞/∥𝑋 ∥∞ 7.97e-15 8.84e-15 9.72e-15 1.06e-14 1.15e-14 1.23e-14

Table 2: IDCTerror bounds for 𝑝 =53 (double precision) using
Theorem 3.3.

a vector of intervals. A challenge is to keep a tight inclusion and a

complexity quasi-linear in 𝑁 .

Definition 3.5. Let𝐴∈ IR𝑑+1 be the interval coefficients of a poly-

nomial of degree 𝑑 and let𝑋 = (𝑋0,...,𝑋𝑑)=𝐵𝐴where 𝐵 is defined in

Equation (3). Let𝑥 ∈R𝑑+1 be the vector of the centers of the intervals
of𝑋 and 𝑟 be themaximumof the radii of these intervals. Let𝑥 be the

result of the fast 𝐼𝐷𝐶𝑇 computation applied on 𝑥 , and 𝑒 be the bound

on the error given in Theorem 3.3. We also let 𝐸 ∈ IR𝑁 be a vector

where all the entries are [−𝑒− 𝑑+1
𝑁

𝑟,𝑒+ 𝑑+1
𝑁

𝑟]. Finally, we define

□FME(𝐴)=𝑁 · (𝑥+𝐸)+ 1
2

(𝑋0,...,𝑋0).

As a corollary of Theorem 3.3 on the error bound on the IDCT,

we deduce a bound on the error of the FME function.

Corollary 3.6. The function □FME is an inclusion of the function
FME and requires𝑂 (𝑁 log

2
(𝑁)+𝑑2) arithmetic operations.

Proof. First, let 𝑌 ∈ IR𝑁 be the vector of the interval ranges

IDCT(𝑋). Using interval arithmetic, we have FME(𝐴) ⊂ 𝑁 · 𝑌 +
1

2
(𝑋0,...,𝑋0) by definition of the FME operator in Section 2.2. Then,

since the IDCT is linear, we have IDCT(𝑋)= IDCT(𝑥)+IDCT(𝑋−𝑥).
FromTheorem 3.3, we have IDCT(𝑥) ⊂𝑥+𝑒 . And since all the entries
of𝑋 −𝑥 are bounded by 𝑟 , using the explicit formula for the IDCT

given in Definition 2.2, we bound the absolute value of each entry

of IDCT(𝑋 −𝑥) by 𝑑+1
𝑁

𝑟 . With the notation of Definition 3.5, this

implies IDCT(𝑥)+IDCT(𝑋 −𝑥) ⊂𝑥 +𝐸, which concludes the proof
for the bound. For the complexity, the dominating parts are the com-

putation of the fast IDCT in 𝑂 (𝑁 log
2
(𝑁)) arithmetic operations

and the change of basis in𝑂 (𝑑2) operations. □

3.4 Boundwith Taylor approximation
The Taylor-Lagrange inequality states that for a function 𝑓 and two

reals 𝑎,𝑏 ∈ 𝐼 ,�����𝑓 (𝑏)− 𝑚∑
𝑘=0

1

𝑘!
(𝑏−𝑎)𝑘 𝑓 (𝑘) (𝑎)

�����≤max

𝐼

���𝑓 (𝑚+1) ��� |𝑏−𝑎 |𝑚+1(𝑚+1)! .

[𝑐4,𝑐3]×[𝑐3,𝑐2]

𝑐0

𝑐0

𝑐1

𝑐1

𝑐2

𝑐2

𝑐3

𝑐3

𝑐4

𝑐4

𝑐5

𝑐5

𝑐6

𝑐6

𝑐7

𝑐7

𝑐8

𝑐8

𝑐9
𝑐9

•
(𝑐6,𝑐3)

(𝑐3,[𝑐6,𝑐5])

Figure 4: Chebyshev grid for 𝑁 = 10, vertical segment
(𝑐3,[𝑐6,𝑐5]) and pixel [𝑐4,𝑐3]×[𝑐3,𝑐2].

In Algorithm 1, the derivatives are evaluated using the □FME

operator at the Chebyshev nodes. It then remains to use the Taylor-

Lagrange inequality to bound the values in a neighborhood of each

Chebyshev node. Theorem 3.7 provides two bounds, the second one

is better for points close to −1 or 1.

Theorem 3.7. For a polynomial 𝑃 =
∑𝑑
𝑖=0𝑎𝑖𝑋

𝑖 , 𝑐 ∈ [−1,1] and
𝑟 ∈ [−𝑅,𝑅]�����𝑃 (𝑐+𝑟)− 𝑚∑

𝑘=0

1

𝑘!
𝑟𝑘𝑃 (𝑘) (𝑐)

�����≤ max

𝑖∈J0,𝑑K
|𝑎𝑖 |𝑅𝑚+1

(
𝑑+1
𝑚+2

)
.

and if |𝑐±𝑅 |<1�����𝑃 (𝑐+𝑟)− 𝑚∑
𝑘=0

1

𝑘!
𝑟𝑘𝑃 (𝑘) (𝑐)

�����≤ max

𝑖∈J0,𝑑K
|𝑎𝑖 |

𝑅𝑚+1

(1−|𝑐 |−𝑅)𝑚+2

4 FAST CURVE ENCLOSURE
This section details our two algorithms for computing drawings of a

polynomial curve 𝑃 (𝑋,𝑌)=0. Both algorithms take advantage of the

fast multipoint evaluation (□FME of Definition 3.5) with guaranteed

error to partially evaluate the polynomial 𝑃 (𝑋,𝑌) with respect to

the𝑋 variable. Then the fibers𝑋 =𝑐𝑖 , that is the vertical lines, are

processed either using the fast multipoint evaluation again together

with a Taylor approximation (Algorithm 1 in Section 4.1), or using

a classical subdivision algorithm (Algorithm 3 in Section 4.2). The

input of our algorithms is a bivariate polynomial given in the mono-

mial basis 𝑃 (𝑋,𝑌) = ∑𝑑
𝑖=0

∑𝑑
𝑗=0𝑎𝑖, 𝑗𝑋

𝑖𝑌 𝑗
, and a Chebyshev grid of

ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France. Nuwan HerathMudiyanselage, GuillaumeMoroz, andMarc Pouget

size 𝑁 ×𝑁 illustrated in Figure 4. Note that the Chebyshev nodes

(Eq. (2)) are naturally indexed in decreasing order, so that the domain

covered by the grid is the square [𝑐𝑁−1,𝑐0]2 ⊊ [−1,1]2. To describe
the output, we define segments on the Chebyshev grid.

Definition 4.1. A vertical, resp. horizontal, segment is defined by a

scalar and an interval, resp. by an interval and a scalar. For instance,

Figure 4 displays the vertical segment (𝑐3,[𝑐6,𝑐5]).

Definition4.2. Let𝐸=6(𝑑+1)𝑒 (∥𝑃 ∥∞,𝑑,𝑁 ,𝑝),with𝑒 (∥𝑃 ∥∞,𝑑,𝑁 ,𝑝)
the bound given in Theorem 3.4. A segment 𝑆 between two consec-

utive nodes of the grid is called:

• crossed segment if the curves intersects 𝑆 ,
• candidate segment if 0∈□𝑃 (𝑆)+[−𝐸,𝐸].

Definition 4.3. A set of pixels is a crossing-edge approximation if
the set of edges of its pixels contains all the crossed segments and

is contained in the set of candidate segments.

1-pass version algorithms.The output of Algorithms 1 and 3 is

a set of vertical segmentswith endpoints on thegrid, that contains all

the vertical crossed segments, and is contained in the set of vertical

candidate segments, according to Lemma 4.4 and 4.6

2-pass version algorithms. We define the 2-pass versions of
Algorithm1or3as theprocedure running this algorithmasoriginally

specified and then running it again switching the roles of𝑋 and𝑌 .

One then obtains vertical and horizontal segments enclosing the

intersections between the curve and all the lines of the grid. We

call a pixel of the grid a rectangle defined by successive Chebyshev
nodes, that is of the form [𝑐𝑖+1,𝑐𝑖] × [𝑐 𝑗+1,𝑐 𝑗] for 𝑖, 𝑗 ∈ {0,...,𝑁 −2},
see Figure 4. The output of the 2-pass algorithms is the set of pixels

that have (at least) a side covered by the above-mentioned set of

vertical and horizontal segments. Our drawing thus is a crossing-

edge approximation defined in Definition 4.3 that ensures that the

2-pass versions only miss small parts of the curve included in the

interior of a pixel.

4.1 Multipoint partial
evaluation and fast Taylor approximation

Algorithm 1 first uses the□FME (Definition 3.5) to partially evaluate

the polynomial 𝑃 (𝑋,𝑌) with respect to the𝑋 variable at all Cheby-

shev nodes (𝑐𝑖) (for loop of Line 3). The resulting univariate interval
polynomials 𝑃 (𝑐𝑖 ,𝑌) take the error generated by the finite precision
arithmetic into account. Each vertical fiber𝑋 =𝑐𝑖 is then processed

separately. The univariate polynomial 𝑃 (𝑐𝑖 ,𝑌) and its derivatives
up to order𝑚 are evaluated at all Chebyshev nodes (𝑐 𝑗) using again
the □FME operator (for loop of Line 9). These data thus define a

Taylor approximation of 𝑃 (𝑐𝑖 ,𝑌) in a vertical neighborhood of each
Chebyshev node 𝑐 𝑗 (Line 15). Finally, a bound on the values of 𝑃 in

this neighborhood is computed by the interval evaluation of this

Taylor approximation together with Theorem 3.7 (Lines 16 to 18).

When this interval evaluation contains the value 0, the algorithm

outputs a vertical segment that may contain a true 0 value of 𝑃 , that

is an intersection with the curve 𝑃 (𝑋,𝑌)=0 (Line 19).

Lemma 4.4. The set of vertical segments returned by Algorithm 1
contains all the vertical crossed segments, and is contained in the set
of candidate segments.

Proof. The correctness of Algorithm 1 follows from the error

analysis in Theorem 3.4 of the FME operator and the use of interval

arithmetic in all the computations. □

Theorem 4.5. The number of operations of Algorithm 1 is𝑂 (𝑁𝑑2+
𝑁 2

log
2
(𝑁)+𝑑3).

Proof. The partial evaluation of 𝑃 (𝑋,𝑌)=∑𝑑
𝑗=0 (

∑𝑑
𝑖=0𝑎𝑖, 𝑗𝑋

𝑖)𝑌 𝑗

in𝑋 is the evaluation of the 𝑑+1 polynomials

∑𝑑
𝑖=0𝑎𝑖, 𝑗𝑋

𝑖
. In Line 4,

each of these polynomials is evaluated via the□FME at all the Cheby-

shevnodes. The cost is𝑑+1 times the cost of one□FMEof size𝑁 , that

is𝑂 (𝑑 (𝑑2+𝑁 log
2
(𝑁))) according to Lemma 2.4. In the for loop of

Line 9, for each of the𝑁 vertical fibers, the data for the degree𝑚 Tay-

lor approximations are computed at all Chebyshev nodes using the

□FMEagain for a complexity of𝑂 (𝑁𝑚(𝑑2+𝑁 log
2
(𝑁)))=𝑂 (𝑁 (𝑑2+

𝑁 log
2
(𝑁))) assuming𝑚 constant. In Line 13, the computation of the

maximum absolute value of the coefficients of 𝑃 (𝑐𝑖 ,𝑌) is in𝑂 (𝑑) and
thus𝑂 (𝑑𝑁) forallfibers. In the for loopofLine14, foreach𝑐𝑖 andeach
𝑐 𝑗 , the degree𝑚 Taylor approximation is evaluated by interval arith-

metic on the correspondingvertical neighborhoodand theerror from

Theorem3.7 is added.All these operations are linear in𝑚, this gives a

total complexity of𝑂 (𝑚𝑁 2)=𝑂 (𝑁 2). The total complexity of Algo-

rithm 1 is thus𝑂 (𝑁𝑑2+𝑁 2
log

2
(𝑁)+𝑑3) sincewe assume𝑑 <𝑁 . □

4.2 Multipoint
partial evaluation and subdivision

Thefirst part ofAlgorithm3 is the sameasAlgorithm1,□FME is used

for partial evaluations. In each vertical fiber𝑋 =𝑐𝑖 , we need to iden-

tify the vertical segments that enclose the intersection of the curve

𝑃 (𝑋,𝑌)=0with thefiber.This isdoneusingAlgorithm2,which isone

variant of the different root isolation algorithms in the literature that

can handle polynomials with interval coefficients [6, 7, 21, 34, 35].

Lemma 4.6. The set of vertical segments returned by Algorithm 3
contains all the vertical crossed segments, and is contained in the set
of candidate segments.

Proof. The correctness of Algorithm 3 follows from the error

analysis in Theorem 3.4 of the FME operator and the use of interval

arithmetic in all the computations. □

The complexity of the subdivision in Algorithm 2 depends on the

size of its subdivision tree, whose depth is bounded in our variant by

log
2
(𝑁). We are thus aiming at a complexity for Algorithm 3 that

is output sensitive in 𝑇 , the total number of nodes for the largest

subdivision tree during the execution of the algorithm, that is over

all the vertical fibers. In practice, one can expect that a curve crosses

each fiber a constant number of times. If there is not many false

positive segments in the output,𝑇 =𝑂 (log
2
(𝑁)). In the worst case,

one may have𝑇 =𝑂 (𝑁).

Theorem 4.7. The number of operations of Algorithm 3 is𝑂 (𝑑3+
𝑑𝑁 log

2
(𝑁)+𝑑𝑁𝑇), where𝑇 is the maximum number of nodes of the

subdivision trees over all vertical fibers.

Proof. As in the proof of Theorem 4.5, the partial evaluations

of for loop of Line 3) has complexity𝑂 (𝑑3+𝑑𝑁 log
2
(𝑁)). In Line 8,

in each vertical fiber, the subdivision Algorithm 2 performs𝑂 (𝑇)
interval evaluations of the partially evaluated univariate polynomial

Fast High-Resolution Drawing of Algebraic Curves ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France.

Algorithm 1 Multipoint partial evaluation with Taylor approxi-

mation

Input: A bivariate polynomial 𝑃 (𝑋, 𝑌) =
∑
𝑖, 𝑗 𝑎𝑖, 𝑗𝑋

𝑖𝑌 𝑗
with

a ∈ R(𝑑+1)×(𝑑+1) , a Chebyshev grid resolution integer

𝑁 >4𝑑 >0 and the order𝑚 of the Taylor approximation.

Output: A set of vertical segments containing all the vertical

crossed segments and contained in the set of candidate segments

(Definition 4.2)

1: procedure Taylor(P, 𝑁 ,𝑚)

2: d∈ IR𝑁×(𝑑+1)
3: for 𝑗←0 to𝑑 do ⊲ Partial evaluations

∑𝑑
𝑗=0𝑑𝑖, 𝑗𝑌

𝑗 =𝑃 (𝑐𝑖 ,𝑌)
4: 𝑑0, 𝑗 ,...,𝑑𝑁−1, 𝑗←□FME((𝑎0, 𝑗 ,...,𝑎𝑑,𝑗),𝑁) ⊲

𝑁 -point evaluation (Def. 3.5)

5: end for
6: S←∅
7: q∈ IR𝑑+1,p∈ IR(𝑚+1)×𝑁
8: for 𝑖←0 to 𝑁 −1 do ⊲ Processing vertical fiber𝑋 =𝑐𝑖
9: for 𝑘←0 to𝑚 do
10:

∑𝑑−𝑘
𝑗=0 𝑞 𝑗𝑌

𝑗←diff (∑𝑑
𝑗=0𝑑𝑖, 𝑗𝑌

𝑗 ,𝑘) ⊲∑𝑑−𝑘
𝑗=0 𝑞 𝑗𝑌

𝑗 = 𝜕𝑘

𝜕𝑘
𝑌

𝑃 (𝑐𝑖 ,𝑌)
11: 𝑝𝑘,0,...,𝑝𝑘,𝑁−1←□FME((𝑞0,...,𝑞𝑑−𝑘),𝑁) ⊲

𝑝𝑘,𝑗 =
𝜕𝑘

𝜕𝑘
𝑌

𝑃 (𝑐𝑖 ,𝑐 𝑗)
12: end for
13: 𝑑𝑖,𝑚𝑎𝑥←max

0≤ 𝑗≤𝑑
��𝑑𝑖, 𝑗 ��

14: for 𝑗←0 to 𝑁 −1 do
15: 𝑇←∑𝑚

𝑙=0

𝑝𝑙,𝑗
𝑙 !
𝑌 𝑙 ⊲

Degree𝑚 Taylor approximation at (𝑐𝑖 ,𝑐 𝑗)
16: if 𝑗 <𝑁 /2 then𝑅← 𝑐 𝑗−𝑐 𝑗+1

2
else𝑅← 𝑐 𝑗−1−𝑐 𝑗

2
end if

17: 𝛽←𝑑𝑖,𝑚𝑎𝑥𝑅
𝑚+1

min

{
1

(1−|𝑐 𝑗 |−𝑅)𝑚+2 ,
(𝑑+1
𝑚+2

)}
⊲

see Thm. 3.7

18: 𝐼←□𝑇 ([−𝑅,𝑅])+[−𝛽,𝛽]
19: if 0∈ 𝐼 then
20: Add (𝑐𝑖 ,[𝑐 𝑗+1,𝑐 𝑗−1]) toS
21: end if
22: end for
23: end for
24: returnS
25: end procedure

of degree 𝑑 . Using a classical Horner evaluation, each evaluation is

in𝑂 (𝑑). The complexity for all the fibers is thus𝑂 (𝑁𝑑𝑇). □

5 EXPERIMENTS
Wepresent experiments for the 2-pass versionsof our twoalgorithms

for the drawing of algebraic curves (Section 5.1) and compare them

to state-of-the-art software (Section 5.2).

Our algorithms are implemented in Python and use the interval

arithmeticofArb [19] forPython.Wefix𝑚=3 inAlgorithm1.Among

the state-of-the-art implementations for drawing implicit curves,

we have selected ImplicitEquations [18], the marching squares from

Algorithm 2 Isolation function with subdivision

Input: A univariate polynomial 𝑃 , a Chebyshev grid resolution

integer 𝑁 and two integers 0≤ 𝑖 < 𝑗 ≤𝑁 −1.
Output: Set of intervals [𝑐𝑘+1,𝑐𝑘] containing all the roots of 𝑃 in

[𝑐 𝑗 ,𝑐𝑖], with (𝑐𝑘)𝑘=0,...,𝑁−1 the Chebyshev nodes.
1: function isolate_1d(𝑃 , 𝑁 , 𝑖 , 𝑗)

2: if □𝑃 ([𝑐 𝑗 ,𝑐𝑖]) contains 0 then
3: if 𝑖+1< 𝑗 then ⊲ Split in two subintervals

4: 𝑘 =

⌊
𝑖+𝑗
2

⌋
5: S1← isolate_1d(𝑃 , 𝑁 , 𝑖 , 𝑘)

6: S2← isolate_1d(𝑃 , 𝑁 , 𝑘+1, 𝑗)
7: returnS1∪S2
8: else
9: return {[𝑐𝑖+1,𝑐𝑖]}
10: end if
11: else
12: return ∅
13: end if
14: end function

Algorithm 3Multipoint partial evaluation with subdivision

Input: A bivariate polynomial 𝑃 (𝑋,𝑌) = ∑
𝑖, 𝑗 𝑎𝑖, 𝑗𝑋

𝑖𝑌 𝑗
with a ∈

R(𝑑+1)×(𝑑+1) and a Chebyshev grid resolution integer𝑁 >𝑑 >0.

Output: A set of vertical segments containing all the vertical

crossed segments and contained in the set of candidate segments

(Definition 4.2)

1: procedure Subdivision(𝑃 , 𝑁)

2: d∈ IR𝑁×𝑑
3: for 𝑘←0 to𝑑 do ⊲ Partial evaluations

∑𝑑
𝑗=0𝑑𝑖, 𝑗𝑌

𝑗 =𝑃 (𝑐𝑖 ,𝑌)
4: 𝑑

0,𝑘 ,...,𝑑𝑁−1,𝑘←□FME((𝑎
0,𝑘 ,...,𝑎𝑑,𝑘),𝑁) ⊲

𝑁 -point evaluation (Def. 3.5)

5: end for
6: S←∅
7: for 𝑖←0 to 𝑁 −1 do ⊲ Subdivision in vertical fibers𝑋 =𝑐𝑖
8: 𝑆𝑌← isolate_1d(

∑
𝑘𝑑𝑖,𝑘𝑌

𝑘
, 𝑁 , 0, 𝑁 −1)

9: for 𝐼𝑌 ∈𝑆𝑌 , Add (𝑐𝑖 ,𝐼𝑌) toS
10: end for
11: returnS
12: end procedure

scikit and the implicit function plotting of MATLAB. ImplicitEqua-

tions is based on an algorithm of Tupper [40] and returns an en-

closure of the algebraic curve. Contrary to our algorithm it misses

no component. It distinguishes pixels where there is no solution,

pixels where there is at least one solution and pixels where there

may or may not be solutions (undecided by the algorithm). An im-

plementation of the marching squares algorithm [26] is provided by

skimage.measure.find_contours [42]. It takes as input the evalu-
ations on the grid that we compute using polyval1d from the numpy
package [15]. We also examine the behavior of fimplicit from the

MATLAB, for which we were not able to find a documentation on

the algorithm. All the measures are CPU times in seconds.

Our dataset is composed of weighted random polynomials of

the form

∑
0≤𝑖+𝑗≤𝑑𝑤𝑖, 𝑗𝑎𝑖, 𝑗𝑋

𝑖𝑌 𝑗
of total degree 𝑑 where the 𝑎𝑖, 𝑗 are

ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France. Nuwan HerathMudiyanselage, GuillaumeMoroz, andMarc Pouget

0 1,000 2,000 3,000 4,000

10
−2

10
−1

10
0

10
1

resolution of the grid

t
i
m
e
(
s
)

20

30

40

50

100

Horner

FME

Figure 5: Computation times of the □FME and the interval
Horner evaluation for the partial evaluation step. The color
in the legend indicates thedegreeofKacpolynomials.Dotted
lines correspond to the □FME and solid lines to the interval
Horner scheme.

uniformly distributed in [−100,100] and the weights are 𝑤𝑖, 𝑗 = 1

for Kac polynomials, 𝑤𝑖, 𝑗 =

√
𝑑!

𝑖!𝑗 !(𝑑−𝑖−𝑗)! for the Kostlan-Shub-

Smale (KSS) polynomials [37]. Our input polynomials are named

random_d_weight where 𝑑 is the total degree and weight is either
"kac" or "kss" depending on the family of the polynomial.

5.1 Comparison of our two approaches
Figure 5 experimentally verifies the relevance of the FME, it displays

the computation times of the certified partial evaluation of our poly-

nomials using FME, with a complexity of𝑂 (𝑑3+𝑑𝑁 log
2
(𝑁)), and

using Horner’s method, with a complexity of𝑂 (𝑑2𝑁). For the range
of values we are interested in, specifically 10≤𝑑 ≤ 100 and 500<𝑁

the FME is always faster. This justifies the use of the FME despite

the preliminary costly change of basis.

Figures 6 show log-log graphs for different input polynomials for

Algorithm 1with Taylor approximation and Algorithm 3with subdi-

vision that both share a common partial evaluation step. The slopes

of these plots give the power in the complexitieswith respect to𝑁 . In

these examples, the subdivision is faster than the Taylor approxima-

tion. Moreover, the slopes are around 2 for Algorithm 1 and around 1

for Algorithm 3. This confirms the expected result from the complex-

ity analysis of Theorems 4.5 and 4.7, indeedwith𝑑2<𝑁 log
2
(𝑁) and

𝑇 =𝑂 (log
2
(𝑁)), the complexities are respectively𝑂 (𝑁 2

log
2
(𝑁))

and𝑂 (𝑑𝑁 log
2
(𝑁)).

5.2 Comparison
to state-of-the-art implementations

For our measures we choose to compute and save the results in PNG

files. In Tables 6 and 7, all the implementations are tested on ran-
dom_20_kac and random_100_kac. The methods ImplicitEquations,

Taylor and Subdivision, which provide some guarantees are high-

lighted in orange. For ImplicitEquations and MATLAB, we stopped

the computation after 900 seconds. Aswe already saw,Algorithm1 is

slower than Algorithm 3. Moreover, in these tables, the subdivision

is slightly faster than scikit up to a resolution of 1024, despite the

fact that our code may be slowed by Python limitations. Tables 8, 9

128 256 512 1024 2048 4096
2
−5

0.25

2

16

128

resolution of the grid

t
i
m
e
(
s
)

partial evaluation

subdivision

taylor approx

(a) random_20_kac

128 256 512 1024 2048 4096

2
−4

0.25

1

4

16

resolution of the grid

t
i
m
e
(
s
)

partial evaluation

subdivision

taylor approx

(b) random_20_kss

Figure 6: Cumulative time for a polynomial of total degree
20 weighted according to the two families.

and 10, for random_20_kss, random_40_kac and random_40_kss lead
to the same conclusions.

Figure 8 presents the plots of random_20_kac with Algorithm 3

and ImplicitEquations. Our algorithm returns a tighter enclosure.

Figure 7 presents the plots of the KSS polynomial random_20_kss for
all implementations, except ImplicitEquations, at a higher resolution

of 𝑁 =1024. Compared to the plots of Figure 8, the non-uniformity

of the Chebyshev grid is no longer visible at this resolution and the

outputs look similar.

The marching squares from scikit and Algorithm 3 are the fastest

for all the resolutions that we have tested. So, we test them for even

higher resolutions in Tables 3 and 4. For Kac polynomials, the two

methods are comparable up to a resolution of 8162 and our method

becomes faster for higher resolutions.On theother hand, ourmethod

faces stability issues for KSS polynomials when the resolution and

the degree increase: degree 20 and 30 polynomials are computed

faster, but not the degree 40 one. This is explained by the sensitivity

of the IDCT to the size of the input coefficients. The error bound pre-

sented in Table 2 becomes insufficient to control the drawing. Indeed,

for random_40_ksswith 𝑁 =8192, Theorem 3.4 yields ∥𝑥−𝑥 ∥∞ ≲ 1,
because the magnitude of the coefficients ranges from 1 to 10

19
due

to the KSS weights. For completeness, we also included in Table 5

the timings for Isotop,
1
a state-of-the-art software based onCAD [9],

that computes a drawing with a guaranteed topology and a low-

resolution. We have also tested the curve dfold8,1 from Challenge

13 from Oliver Labs [24]. It contains an 8-fold singularity and has

high tangencies between branches. For this curve, Isotop takes about

one second while our subdivision method takes 10𝑠 , 39𝑠 and 193𝑠 for

respective resolutions of 1024, 4096 and 16384, in particular, it fails

to discard pixels around the singularity.

Our approach combining FME and subdivision proves to be com-

petitive in our experiments. Even though our guarantee is a weaker

than the one provided by ImplicitEquations, our algorithm is faster.

For all polynomials but random_40_kss, it is also significantly faster
than the marching squares from scikit for high resolutions (𝑁 ≥
16384), and has similar timings for the lower resolutions. The speed

limitation of our implementation could be due to the Python lan-

guage. We also think that the techniques that we presented could

be used to speed-up existing algorithms such as marching squares

or subdivision approaches.

1
https://isotop.gamble.loria.fr

Fast High-Resolution Drawing of Algebraic Curves ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France.

REFERENCES
[1] Eric Berberich, Pavel Emeliyanenko, Alexander Kobel, and Michael Sagraloff.

Exact symbolic–numeric computation of planar algebraic curves. Theoretical Com-
puter Science, 491:1–32, 2013. URL: https://www.sciencedirect.com/science/article/

pii/S0304397513002983, doi:https://doi.org/10.1016/j.tcs.2013.04.014.
[2] Jean-Daniel Boissonnat andMonique Teillaud, editors. Effective Computational

Geometry for Curves and Surfaces. Springer-Verlag,Mathematics andVisualization,

2006.

[3] Jean-Daniel Boissonnat andMathijs Wintraecken. The topological correctness

of pl approximations of isomanifolds. Foundations of Computational Mathematics,
Jul 2021. doi:10.1007/s10208-021-09520-0.

[4] Alin Bostan, Bruno Salvy, and Éric Schost. Power series composition and change

of basis. In Proceedings of the Twenty-First International Symposium on Symbolic
and Algebraic Computation, ISSAC ’08, page 269–276, New York, NY, USA, 2008.

Association for Computing Machinery. doi:10.1145/1390768.1390806.
[5] Nicolas Brisebarre, Mioara Joldes, Jean-Michel Muller, Ana-Maria Nanes, and

Joris Picot. Error analysis of some operations involved in the cooley-tukey

fast fourier transform. ACM Trans. Math. Softw., 46(2):11:1–11:27, 2020.
doi:10.1145/3368619.

[6] M Burr, F Krahmer, and Chee Yap. Continuous amortization: A non-probabilistic

adaptive analysis technique. In Electronic colloquium on computational complexity
(ECCC), TR09 (136), 2009.

[7] Michael A. Burr. Continuous amortization and extensions: With applications to

bisection-based root isolation. Journal of Symbolic Computation, 77:78–126, 2016.
URL: https://www.sciencedirect.com/science/article/pii/S0747717116000080,

doi:https://doi.org/10.1016/j.jsc.2016.01.007.
[8] Michael A. Burr, Shuhong Gao, and Elias Tsigaridas. The complexity of an

adaptive subdivision method for approximating real curves. In Proceedings
of the 2017 ACM on International Symposium on Symbolic and Algebraic
Computation, ISSAC ’17, pages 61–68, New York, NY, USA, 2017. ACM. URL:

http://doi.acm.org/10.1145/3087604.3087654, doi:10.1145/3087604.3087654.
[9] Jinsan Cheng, Sylvain Lazard, Luis Peñaranda, Marc Pouget, Fabrice Rouillier, and

Elias Tsigaridas. On the topology of real algebraic plane curves. Mathematics in
Computer Science, 4(1):113–137, Nov 2010. doi:10.1007/s11786-010-0044-3.

[10] Felipe Cucker, Alperen A. Ergür, and Josue Tonelli-Cueto. Plantinga-vegter al-

gorithm takes average polynomial time. In Proceedings of the 2019 on International
Symposium on Symbolic and Algebraic Computation, ISSAC ’19, pages 114–121,

NewYork,NY,USA, 2019.ACM. URL: http://doi.acm.org/10.1145/3326229.3326252,

doi:10.1145/3326229.3326252.
[11] Pavel Emeliyanenko, Eric Berberich, and Michael Sagraloff. Visualizing arcs of

implicit algebraic curves, exactly and fast. In Proceedings of the 5th International
Symposium onAdvances in Visual Computing: Part I, ISVC ’09, page 608–619, Berlin,

Heidelberg, 2009. Springer-Verlag. doi:10.1007/978-3-642-10331-5_57.
[12] Sarah F. F. Gibson. Constrained elastic surface nets: Generating smooth surfaces

from binary segmented data. In William M. Wells, Alan Colchester, and Scott

Delp, editors, Medical Image Computing and Computer-Assisted Intervention —
MICCAI’98, pages 888–898, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[13] A. Gomes, I. Voiculescu, J. Jorge, B. Wyvill, and C. Galbraith. Implicit Curves and
Surfaces: Mathematics, Data Structures and Algorithms. Springer London, 2009.
URL: https://books.google.fr/books?id=mEmzjKMDlcAC.

[14] Stef Graillat and Valérie Ménissier-Morain. Compensated Horner scheme in

complex floating point arithmetic. In Proceedings, 8th Conference on Real Numbers
and Computers, pages 133–146, Santiago de Compostela, Spain, July 2008. URL:

https://hal.archives-ouvertes.fr/hal-01300860.

[15] Charles R. Harris, K. Jarrod Millman, Stéfan J. van derWalt, Ralf Gommers, Pauli

Virtanen,DavidCournapeau,EricWieser, JulianTaylor, SebastianBerg,Nathaniel J.

Smith, Robert Kern,Matti Picus, StephanHoyer,MartenH. vanKerkwijk,Matthew

Brett, AllanHaldane, Jaime Fernández del Río, MarkWiebe, Pearu Peterson, Pierre

Gérard-Marchant, Kevin Sheppard, Tyler Reddy, WarrenWeckesser, Hameer Ab-

basi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy.

Nature, 585(7825):357–362, September 2020. doi:10.1038/s41586-020-2649-2.
[16] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for

Industrial and Applied Mathematics, second edition, 2002. URL: https://epubs.

siam.org/doi/abs/10.1137/1.9780898718027, arXiv:https://epubs.siam.org/
doi/pdf/10.1137/1.9780898718027, doi:10.1137/1.9780898718027.

[17] Kai Hormann, Lucas Kania, and Chee Yap. Novel range functions via taylor

expansions and recursive lagrange interpolation with application to real root

isolation. In Proceedings of the 2021 on International Symposium on Symbolic
and Algebraic Computation, ISSAC ’21, page 193–200, New York, NY, USA, 2021.

Association for Computing Machinery. doi:10.1145/3452143.3465532.
[18] ImplicitEquations: Julia package to facilitate graphing of implicit equations and

inequalities. https://github.com/jverzani/ImplicitEquations.jl.

[19] F. Johansson. Arb: a C library for ball arithmetic. ACM Communications in
Computer Algebra, 47(4):166–169, 2013.

[20] Tao Ju, Frank Losasso, Scott Schaefer, and JoeWarren. Dual contouring of hermite

data. In Proceedings of the 29th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’02, pages 339–346, New York, NY, USA, 2002.

Association for Computing Machinery. doi:10.1145/566570.566586.
[21] Alexander Kobel, Fabrice Rouillier, and Michael Sagraloff. Computing real

roots of real polynomials ... and now for real! In Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation, ISSAC ’16,

page 303–310, New York, NY, USA, 2016. Association for Computing Machinery.

doi:10.1145/2930889.2930937.
[22] Alexander Kobel and Michael Sagraloff. On the complexity of com-

puting with planar algebraic curves. J. Complex., 31(2):206–236, 2015.

doi:10.1016/j.jco.2014.08.002.
[23] Alexander Kobel and Michael Sagraloff. Fast approximate polynomial multipoint

evaluation and applications, 2016. arXiv:https://arxiv.org/abs/1304.8069v2
[cs.NA]. arXiv:1304.8069.

[24] O. Labs. A list of challenges for real algebraic plane curve visualization software.

In Nonlinear Computational Geometry, volume IMA 151, pages 137–164. Springer,

2009.

[25] Long Lin and Chee Yap. Adaptive isotopic approximation of nonsingular curves:

the parameterizability and nonlocal isotopy approach. Discrete & Computational
Geometry, 45(4):760–795, Jun 2011. doi:10.1007/s00454-011-9345-9.

[26] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolu-

tion 3d surface construction algorithm. SIGGRAPH Comput. Graph.,
21:163–169, August 1987. URL: http://doi.acm.org/10.1145/37402.37422,

doi:http://doi.acm.org/10.1145/37402.37422.
[27] J. Makhoul. A fast cosine transform in one and two dimensions. IEEE

Transactions on Acoustics, Speech, and Signal Processing, 28(1):27–34, 1980.
doi:10.1109/TASSP.1980.1163351.

[28] J.C. Mason and D.C. Handscomb. Chebyshev Polynomials. CRC Press, 2003.

[29] Ramon EMoore, R Baker Kearfott, andMichael J Cloud. Introduction to interval
analysis. Siam, 2009.

[30] Arnold Neumaier. Interval methods for systems of equations. Cambridge University

Press, 1990. URL: http://www.loc.gov/catdir/toc/cam041/89070812.html.

[31] V.Y. Pan. New fast algorithms for polynomial interpolation and evaluation on the

chebyshev node set. Computers &Mathematics with Applications, 35(3):125–129,
1998. URL:https://www.sciencedirect.com/science/article/pii/S0898122197002836,

doi:https://doi.org/10.1016/S0898-1221(97)00283-6.
[32] Simon Plantinga and Gert Vegter. Isotopic approximation of implicit curves and

surfaces. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing, SGP ’04, pages 245–254,NewYork,NY,USA, 2004.ACM. URL:

http://doi.acm.org/10.1145/1057432.1057465, doi:10.1145/1057432.1057465.
[33] H. Ratschek and J. Rokne. Computer Methods for the Range of Func-

tions. Computers and Their Applications. E. Horwood, 1984. URL:

https://books.google.fr/books?id=v18ZAQAAIAAJ.

[34] Michael Sagraloff. A general approach to isolating roots of a bit-

stream polynomial. Mathematics in Computer Science, 4(4):481, Oct 2011.

doi:10.1007/s11786-011-0071-8.
[35] Michael Sagraloff and Kurt Mehlhorn. Computing real roots of real

polynomials. Journal of Symbolic Computation, 73:46–86, 2016. URL:

https://www.sciencedirect.com/science/article/pii/S0747717115000292,

doi:https://doi.org/10.1016/j.jsc.2015.03.004.
[36] Arnold Schönhage. Asymptotically fast algorithms for the numerical multipli-

cation and division of polynomials with complex coefficients. In Jacques Calmet,

editor, Computer Algebra, pages 3–15, Berlin, Heidelberg, 1982. Springer Berlin
Heidelberg.

[37] Michael Shub and Steve Smale. Complexity of bezout’s theorem ii volumes and

probabilities. In Frédéric Eyssette and André Galligo, editors, Computational
Algebraic Geometry, pages 267–285, Boston, MA, 1993. Birkhäuser Boston.

[38] John M. Snyder. Interval analysis for computer graphics. SIGGRAPH Comput.
Graph., 26(2):121–130, July 1992. URL: http://doi.acm.org/10.1145/142920.134024,

doi:10.1145/142920.134024.
[39] Volker Stahl. Interval Methods for Bounding the Range of Polynomials and Solving

Systems of Nonlinear Equations. PhD thesis, Johannes Kepler University, Linz,

Austria, 1995.

[40] Jeff Tupper. Reliable two-dimensional graphing methods for mathematical

formulae with two free variables. In Proceedings of the 28th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, page

77–86, New York, NY, USA, 2001. Association for Computing Machinery.

doi:10.1145/383259.383267.
[41] Joris van der Hoeven. Fast composition of numeric power series. Technical Report

2008-09, Université Paris-Sud, Orsay, France, 2008.

[42] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François

Boulogne, Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu, and

the scikit-image contributors. scikit-image: image processing in Python. PeerJ,
2:e453, 6 2014. doi:10.7717/peerj.453.

[43] Joachim von zur Gathen and Jürgen Gerhard. Fast algorithms for taylor shifts and

certain difference equations. In Proceedings of the 1997 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’97, page 40–47, New York, NY, USA,

1997. Association for Computing Machinery. doi:10.1145/258726.258745.
[44] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.

Cambridge University Press, 3 edition, 2013. doi:10.1017/CBO9781139856065.

https://www.sciencedirect.com/science/article/pii/S0304397513002983
https://www.sciencedirect.com/science/article/pii/S0304397513002983
https://doi.org/https://doi.org/10.1016/j.tcs.2013.04.014
https://doi.org/10.1007/s10208-021-09520-0
https://doi.org/10.1145/1390768.1390806
https://doi.org/10.1145/3368619
https://www.sciencedirect.com/science/article/pii/S0747717116000080
https://doi.org/https://doi.org/10.1016/j.jsc.2016.01.007
http://doi.acm.org/10.1145/3087604.3087654
https://doi.org/10.1145/3087604.3087654
https://doi.org/10.1007/s11786-010-0044-3
http://doi.acm.org/10.1145/3326229.3326252
https://doi.org/10.1145/3326229.3326252
https://doi.org/10.1007/978-3-642-10331-5_57
https://books.google.fr/books?id=mEmzjKMDlcAC
https://hal.archives-ouvertes.fr/hal-01300860
https://doi.org/10.1038/s41586-020-2649-2
https://epubs.siam.org/doi/abs/10.1137/1.9780898718027
https://epubs.siam.org/doi/abs/10.1137/1.9780898718027
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898718027
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1145/3452143.3465532
https://github.com/jverzani/ImplicitEquations.jl
https://doi.org/10.1145/566570.566586
https://doi.org/10.1145/2930889.2930937
https://doi.org/10.1016/j.jco.2014.08.002
https://arxiv.org/abs/1304.8069v2
http://arxiv.org/abs/1304.8069
https://doi.org/10.1007/s00454-011-9345-9
http://doi.acm.org/10.1145/37402.37422
https://doi.org/http://doi.acm.org/10.1145/37402.37422
https://doi.org/10.1109/TASSP.1980.1163351
http://www.loc.gov/catdir/toc/cam041/89070812.html
https://www.sciencedirect.com/science/article/pii/S0898122197002836
https://doi.org/https://doi.org/10.1016/S0898-1221(97)00283-6
http://doi.acm.org/10.1145/1057432.1057465
https://doi.org/10.1145/1057432.1057465
https://books.google.fr/books?id=v18ZAQAAIAAJ
https://doi.org/10.1007/s11786-011-0071-8
https://www.sciencedirect.com/science/article/pii/S0747717115000292
https://doi.org/https://doi.org/10.1016/j.jsc.2015.03.004
http://doi.acm.org/10.1145/142920.134024
https://doi.org/10.1145/142920.134024
https://doi.org/10.1145/383259.383267
https://doi.org/10.7717/peerj.453
https://doi.org/10.1145/258726.258745
https://doi.org/10.1017/CBO9781139856065

ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France. Nuwan HerathMudiyanselage, GuillaumeMoroz, andMarc Pouget

Table 5: Computation times of Isotop for different families of
polynomials.

random_20_kac 2.3 random_100_kac >2000

random_30_kac 18 random_20_kss 12

random_40_kac 81 random_30_kss 183

random_50_kac 1603 random_40_kss 688

(a) Subdivision (b) Taylor

(c) MATLAB (d) scikit

Figure 7: random_20_kss,𝑁 =1024

Table 3: Computation times of our subdivision algorithm for
different families of polynomials with respect to the resolution.

N 128 256 512 1024 2048 4096 8192 16384 32768

random_20_kac 3.9 4.2 4.4 4.9 6.0 8.1 13 21 40

random_30_kac 4.1 4.1 4.3 4.7 5.5 7.3 11 18 33

random_40_kac 4.1 4.2 4.5 5.0 6.0 8.3 13 22 42

random_50_kac 5.3 4.2 4.4 5.1 6.2 8.5 13 23 44

random_100_kac 4.6 4.8 5.0 5.7 7.1 9.7 16 28 53

random_20_kss 4.1 4.3 4.4 5.2 6.1 9.2 15 26 48

random_30_kss 4.2 4.4 4.7 5.5 7.2 11 18 33 67

random_40_kss 4.2 4.5 5.1 6.2 8.7 15 36 145 718

Table 4: Computation times of scikit for different families of
polynomials with respect to the resolution.

N 128 256 512 1024 2048 4096 8192 16384 32768

random_20_kac 5.9 5.8 5.8 5.9 6.2 7.2 11 29 83

random_30_kac 6.6 5.8 5.8 5.9 6.2 7.4 12 32 100

random_40_kac 6.5 5.9 5.8 5.8 6.3 7.6 12 35 116

random_50_kac 6.5 5.7 5.7 5.9 6.2 7.8 13 36 132

random_100_kac 6.4 5.7 5.8 6.0 6.5 8.5 17 49 232

random_20_kss 6.6 5.8 5.9 5.8 6.2 7.3 11 29 78

random_30_kss 6.7 5.9 5.8 5.8 6.3 7.4 12 32 102

random_40_kss 6.6 5.9 5.9 5.6 6.3 7.7 12 35 114

Table 6: Computation times for random_20_kac (in seconds), with
our implementations highlighted in orange.

N 128 256 512 1024 2048 4096

M
e
t
h
o
d

scikit 5.8 5.7 5.8 5.9 6.3 7.3

MATLAB 12 19 49 167 636 >900

ImplictEquations 281 599 >900 >900 >900 >900

taylor 4.5 5.8 11 26 87 332

subdivision 3.7 4.2 4.4 4.9 5.9 8.1

Table 7: Computation times for random_100_kac (in seconds), with
our implementations highlighted in orange.

N 128 256 512 1024 2048 4096

M
e
t
h
o
d

scikit 6.2 5.7 5.8 6.2 6.6 9.4

MATLAB 79 283 >900 >900 >900 >900

ImplicitEquations >900 >900 >900 >900 >900 >900

taylor 7.4 11 20 46 128 413

subdivision 6.1 4.7 5.1 5.7 7.0 9.8

Table 8: Computation times for random_20_kss (in seconds), with
our implementations highlighted in orange.

N 128 256 512 1024 2048 4096
M
e
t
h
o
d

scikit 5.8 5.8 5.8 5.9 6.2 7.1

MATLAB 11 18 48 165 638 >900

ImplictEquations 693 >900 >900 >900 >900 >900

taylor 4.5 5.8 10 26 86 324

subdivision 4.1 4.2 4.4 5.1 6.5 9.1

Table 9: Computation times for random_40_kac (in seconds), with
our implementations highlighted in orange.

N 128 256 512 1024 2048 4096

M
e
t
h
o
d

scikit 5.8 6.0 6.0 6.1 6.3 7.5

MATLAB 20.3 48.7 169 651 >900 >900

ImplicitEquations >900 >900 >900 >900 >900 >900

taylor 5.0 6.6 12 30 94 345

subdivision 4.0 4.2 4.5 5.0 6.1 8.4

Table 10: Computation times for random_40_kss (in seconds), with
our implementations highlighted in orange.

N 128 256 512 1024 2048 4096

M
e
t
h
o
d

scikit 5.8 5.8 5.8 6.0 6.3 7.6

MATLAB 19 50 171 656 >900 >900

ImplicitEquations >900 >900 >900 >900 >900 >900

taylor 5.0 6.7 12 30 96 349

subdivision 4.2 4.4 5.0 6.2 8.7 15

(a) Subdivision (b) ImplicitEquations, where red
pixels are undecided.

Figure 8: random_20_kac,𝑁 =128

	Abstract
	1 Introduction
	2 Fast multipoint evaluation of polynomials on Chebyshev nodes
	2.1 Chebyshev nodes, Chebyshev basis and IDCT
	2.2 Fast multipoint evaluation `3́9`42`"̇613A``45`47`"603AFME
	2.3 Interval arithmetic

	3 Numerical error bounds
	3.1 Fast IDCT error bound
	3.2 `3́9`42`"̇613A``45`47`"603AFME error bound
	3.3 `3́9`42`"̇613A``45`47`"603AFME with interval coefficients
	3.4 Bound with Taylor approximation

	4 Fast curve enclosure
	4.1 Multipoint partial evaluation and fast Taylor approximation
	4.2 Multipoint partial evaluation and subdivision

	5 Experiments
	5.1 Comparison of our two approaches
	5.2 Comparison to state-of-the-art implementations

	References

