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Abstract

We propose polynomial-time algorithms for finding nontrivial zeros of quadratic forms
with four variables over rational function fields of characteristic 2. We apply these results to
find prescribed quadratic subfields of quaternion division division algebras and zero divisors
in M2(D), the full matrix algebra over a division algebra, given by structure constants. We
also provide an implementation of our results in MAGMA which shows that the algorithms
are truly practical.

1 Introduction

The theory of quadratic spaces has a long history in mathematics and has applications in topol-
ogy, number theory, algebraic geometry and in many other areas of mathematics. Two quadratic
forms are equivalent if there is an invertible linear change of variables transforming one form
into the other one (or alternatively, there exists an vector space isomorphism between their cor-
responding quadratic spaces that also respects the quadratic structure). The theory of quadratic
forms is vastly different in characteristic 2 and in any other characteristic. Nevertheless, the
concept of equivalence is key in both cases. A quadratic form is called isotropic if it admits a
nontrivial zero and is called anisotropic otherwise. Quadratic spaces have a well-known decom-
position into the direct sum of special quadratic subspaces containing isotropic vectors (called
hyperbolic planes) and an anisotropic part. This somehow motivates the fact that computing
isotropic vectors is useful in determining equivalence of quadratic forms.

Let K = Fq(t) be the rational function field in one variable, where q is an odd prime power.
In [9] the authors describe a polynomial-time algorithm that decides whether two quadratic
forms over K are equivalent, and if so, finds an explicit equivalence between them. The key
tool is a subroutine that finds isotropic vectors of the form. The algorithm doesn’t naturally
generalize to field extensions and doesn’t work when q is a power of 2. Computing isotropic
vectors of quadratic forms in odd characteristic function fields (i.e., finite extensions of Fq(t))
is considered in [11]. The algorithm works for any extensions but is not claimed to run in
polynomial time. Furthermore, as demonstrated in [9], quadratic form algorithms can be used
to find zero divisors in quaternion algebras over quadratic field extensions.

The only known quadratic form algorithm in the characteristic 2 case comes from the well-
known correspondence between quaternion algebras and ternary quadratic forms. Since in [8]
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the main algorithm can find zero divisors in quaternion algebras it can be used to find non-
trivial zeros of ternary quadratic forms. In this work we consider the algorithmic problem of
finding nontrivial zeros of quadratic forms over F2k(t) in 4 variables. Our contributions are the
following:

• We propose a polynomial-time algorithm that decides whether a four-variable form is
isotropic or not. If it is, it also outputs a nontrivial zero.

• We provide a Magma implementation for finding zeros of ternary quadratic forms. Even
though the algorithm is not novel it hasn’t been implemented before.

• An implementation of our main algorithm in Magma [1].

The paper is structured as follows. In Section 2 we recall theoretical and algorithmic prelim-
inaries. In Section 3 we describe our algorithm for finding nontrivial zeros. We also provide
some applications of this result, such constructing quaternion algebras with prescribed Hasse
invariants, finding zero divisors in M2(D) where D is a quaternion algebra over F2k(t) and
finding prescribed maximal subfields in quaternion algebras. In Section 4 we provide de-
tails about our Magma implementation of our main algorithm. For the implementation, see
https://github.com/Char2QuadForms/Char2QuadForms. In Appendix A we give pseudo-code
algorithms for the main subroutines necessary for algorithm 1.

2 Preliminaries

2.1 Number theory background

We end this section by stating some classical results independent of the characteristic (even
though we only use them in characteristic 2).

In this section we collect the background we need from Number theory. The following
discussion is independent of the characteristic.

We are going to use the following higher dimensional variant of Hensel’s lemma. Let O
be a complete discrete valuation ring with maximal ideal P. Given a multivariate polyno-

mial f (x1, . . . , xn) ∈ O[x1, . . . , xn] such that the gradient ( ∂ f
∂x1

, . . . ,
∂ f

∂xn
) is nonzero modulo P

at a modulo P solution (u1, . . . , un) then this lifts to a solution in O. However, the lift is not
unique in general: using the one-variable Hensel’s lemma one can even choose an arbitrary lift

of u1, . . . , uj−1, uj+1, . . . , un for any 1 ≤ j ≤ n with
∂ f
∂x j

(u1, . . . , un) 6≡ 0 (mod P).

We state a variant of the Hasse–Minkowski theorem over the field F(t) of rational functions
over a finite field F [12, Chapter VI, 3.1]. It was proved by Hasse’s doctoral student Herbert
Rauter in 1926 [14].

Theorem 2.1. A non-degenerate quadratic form over F(t) is isotropic over F(t) if and only if it is
isotropic over every completion of F(t).

For ternary quadratic forms there exists a slightly stronger version of this theorem which is
a consequence of the product formula for quaternion algebras or Hilbert’s reciprocity law [12,
Chapter IX, Theorem 4.6]:

Theorem 2.2. Let Q be a ternary non-degenerate quadratic form over F(t). Then if it is isotropic in
every completion except maybe one then it is isotropic over F(t).

Finally, we need the following version (extract) of the local reciprocity law for function fields.
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Theorem 2.3 (Thm. I.1.1, Cor. I.1.2, Prop. III.1.2 in [13]). Let K be a nonarchimedean local field.
Then the map L 7→ NL/K(L×) is a bijection from the set of finite abelian extensions L of K to the norm
subgroups in K×. Further, for any abelian extension L|K we have Gal(L/K) ∼= K×/NL/K(L×). If
L/K is unramified then we have NL/K(O

×
L ) = O

×
K . Here OK (resp. OL) denotes the valuation ring in

K (resp. in L).

2.2 Algorithmic preliminaries

Quadratic form algorithms Quadratic forms over fields of characteristic different from 2 have
a long algorithmic history. When char(K) 6= 2, then the theory of ternary quadratic forms
has a close connection to quaternion algebras over Q. Namely finding a nontrivial zero of the
quadratic form ax2 + by2 − cz2 (where c 6= 0) is equivalent to finding a zero divisor in the

quaternion algebra ( a
c , b

c ). This algorithmic correspondance is exploited in [10] to provide an
algorithm for finding zeros of indefinite rational ternary quadratic forms. In [4] a more direct
approach is followed which is also used by [5] in the case where K is a rational function field.
Every approach uses lattice reduction in some fashion. None of these approaches generalize to
extension fields (even quadratic extensions).

In [15] Simon proposes an algorithm which finds nontrivial zeros of quadratic forms in four
or more variables. The main idea of the algorithm is the following. Let Q1 be a quadratic
form in 4 variables. Then one first finds a quadratic form Q2 of dimension 2 such that the
orthogonal sum of the corresponding quadratic spaces results ina hyperbolic space (direct sum
of hyperbolic planes). Then one can use the algorithm from [16] to compute a maximal isotropic
subspace of the new quadratic space (which will have dimension 3 in this case). This will have
a nontrivial intersection with the original 4-dimensional quadratic space and the intersection
can be computed efficiently. Any nonzero element in the intersection corresponds to nontrivial
zero. The main algorithmic tool in finding the suitable form Q2 is the computation of the 2-
Sylow part of a certain class group of an imaginary quadratic field. The algorithm requires an
oracle for factoring the discriminant of the form which was known to be necessary for forms
with 4 variables. Interestingly, under GRH, Castel [2] showed that when the number of variables
is at least 5, then one can adapt Simon’s algorithm in a way that a factoring oracle is no longer
necessary. The case of finding nontrivial zeros over rational function fields with arbitrary many
variables was considered in [9]. The main idea of this algorithm is quite simple: split the 4-
variable form into two binary forms and find a common value they both represent. The main
theoretical tool here is the local global principle and the following efficient formula for the
number of monic irreducible polynomials in a given residue class of a given degree [18]:

Lemma 2.4. Let a, m ∈ Fq[t] be such that deg(m) > 0 and the gcd(a, m) = 1. Let N be a positive
integer and let

SN(a, m) = #{ f ∈ Fq[t] monic irred. | f ≡ a (mod m), deg( f ) = N}.

Let M = deg(m) and let Φ(m) denote the number of polynomials in Fq[t] relative prime to m whose
degree is smaller than M. Then we have the following inequality:

|SN(a, m)−
qN

Φ(m)N
| ≤

1

N
(M + 1)q

N
2 .

The algorithm could be adapted to the rational setting but it will become heuristic as there
is no such efficient formula in the rational case.
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Splitting quaternion algebras in characteristic 2 In characteristic 2 (to the best of our knowl-
edge) there is no direct algorithm for finding nontrivial zeros of ternary quadratic forms. How-
ever, there is a similar relation between split quaternion algebras and quadratic forms with
nontrivial zeros. In [8] the authors study the problem of finding primitive idempotents in full
matrix algebras over Fq(t) given by a structure constant representation. In particular this en-
compasses the case of quaternion algebras over function fields of characteristic 2. The main
idea of the algorithm is the following. One computes two maximal orders, one over Fq[t] and
one over the ring of rational functions whose denominator has degree larger than the degree
of the numerator (the maximal order corresponding to the degree valuation). This intersection
can be computed using lattice reduction techniques. The intersection will be finite algebra over
the base field Fq which contains a rank 1 element from the large algebra which can be retrieved
by computing the structure of this algebra. This algorithm runs in polynomial-time but has not
been implemented so far.

3 Finding nontrivial zeros of quadratic forms over F2k(t)

In this section we concentrate on the case of characteristic 2. In subsection 3.1 we recall some
basic facts on quadratic forms and quaternion algebras in characteristic 2. Then subsection 3.2
is devoted to developing local criteria for the existence of nontrivial zeros of quadratic forms
using Hensel’s lemma. In section 3.3 with the help of these criteria we propose an algorithm
that decides whether or not a quadratic form is isotropic globally and if so the algorithm finds
a nontrivial zero. We give an example in subsection 3.3.1. Finally, in section 3.4 we apply the
results in the previous section to finding a zero divisor in split quaternion algebras defined over
quadratic extensions. Using the construction of quaternion algebras with given local splitting
conditions this leads to finding, in polynomial time, zero divisors in degree two matrix rings
over nonsplit quaternion algebras defined over the ground field.

3.1 Quadratic forms and quaternion algebras in characteristic 2

In this subsection we recall important facts about quadratic forms and quaternion algebras in
characteristic 2. Our main source is [17, Chapter 6]. From here on F will always denote a field
with characteristic 2.

Lemma 3.1. [17, Chapter 6] For every quaternion algebra A over F there exists an F-basis 1, i, j, k of A
such that

i2 + i = a, j2 = b, and k = ij = j(i + 1)

where a, b ∈ F.

We denote the quaternion algebra over F with parameters a, b as
[

a,b
F

)

. We recall some facts

about quadratic forms over fields of characteristic 2.

Definition 3.2. A quadratic form over F is a homogeneous polynomial Q of degree two in n variables
x1, . . . , xn for some n. We say that Q is isotropic if there exist a1, . . . , an ∈ F not all zero such that
Q(a1, . . . , an) = 0. If Q is not isotropic, we say that Q is anisotropic.

We can also view a quadratic form Q with n variables over F as a Q : Fn → F function. This
motivates the following definition.

Definition 3.3. We say that two quadratic forms Q1 and Q2 are isometric if there exists a ϕ : Fn → Fn

invertible linear map such that Q1 ◦ ϕ = Q2.
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Definition 3.4. Let Q1 and Q2 be diagonal quadratic forms in n variables. We call Q1 and Q2 similar
if there exist a quadratic form Q′ that is isometric to Q2 and such that Q′ can be obtained from Q1 by
multiplication of Q1 by a non-zero g ∈ F.

Even though if char F = 2, not all quadratic forms can be diagonalized (we get ax2 + axy +
by2 as the general form), the following can be said about quadratic forms in four variables.

Lemma 3.5. [6, Cor. 7.32] Every regular quadratic form in four variables over F is equivalent to a
quadratic form in the form of

a1x2
1 + x1x2 + b1x2

2 + a3x2
3 + x3x4 + b2x2

4

where a1, a3, b1, b2 ∈ F.

Corollary 3.6. Every regular quadratic form in four variables over F is equivalent to a quadratic form
in the form of

a1x2
1 + a1x1x2 + a1a2x2

2 + a3x2
3 + a3x3x4 + a3a4x2

4

where a1, a2, a3, a4 ∈ F.

Proof. We start from the canonical form described in Lemma 3.5.After substituting x2 ← a1x2

and x4 ← a3x4, we get that a1x2
1 + a1x1x2 + a2

1b1x2
2 + a3x2

3 + a3x3x4 + a2
3b2x2

4. After setting a2 =

a1b1 and a4 = a3b2 we arrive to the form a1x2
1 + a1x1x2 + a1a2x2

2 + a3x2
3 + a3x3x4 + a3a4x2

4.

The following lemma [17, Theorem 6.4.11] highlights a connection between the isotropy of
quadratic forms and the splitting of quaternion algebras:

Lemma 3.7 (Hilbert equation). A quaternion algebra
[

a,b
F

)

is split if and only if bx2 + bxy+ aby2 = 1

has a solution with x, y ∈ F.

Now if X2 + X + a has a solution in F (in this case put Ka := F) then the form x2 + xy + ay2

is equivalent to x2 + xy which represents all elements in F. Otherwise let α be a root of the
polynomial X2 + X + a in a quadratic extension Ka/F. Then x2 + xy + ay2 = NK/F(x + yα) is
the norm form. Therefore in case F is a local field of characteristic 2, we may apply Thm. 2.3 to
deduce

Lemma 3.8. Assume F is a local field of characteristic 2. Then we have F×/NKa/F(K
×
a )
∼= Gal(Ka/F)

is cyclic of order at most 2. The subgroup NKa/F(K
×
a ) ≤ F× is uniquely determined by the extension

Ka/F. In particular, the regular quadratic form

a1x2
1 + a1x1x2 + a1a2x2

2 + a3x2
3 + a3x3x4 + a3a4x2

4

has no nontrivial solutions in F if and only if Ka2 = Ka4 is a quadratic extension of F such that exactly one
of a1 and a3 is represented by the form x2 + xy+ a2y2. We have Ka2 = Ka4 if and only if x2 + x+ a2 + a4

splits in F.

Proof. If Ka2 6= Ka4 then the intersection a1NKa2
/F(K

×
a2
)∩ a3NKa4

/F(K
×
a4
) is a full coset of NKa2

/F(K
×
a2
)∩

NKa4
/F(K

×
a4
) and is therefore nonempty. The last statement follows from Artin–Schreier the-

ory.

In order to handle quadratic forms, just like in odd characteristics, we will need to introduce
a quadratic residue symbol. If F is a finite field of characteristic 2 and π is an irreducible poly-
nomial in F[t], then every element in F[t]/(π) will be a square (as the factor ring is a finite field
of characteristic 2), so the definition will need to differ slightly. The following definition and
lemma with proof can be found in [3].
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Definition 3.9. For a monic irreducible π in F[t] and any f ∈ F(t) that has no pole at π, let

[ f , π) :=

{

0, if f ≡ x2 + x (mod π) for some x ∈ F[t]

1, otherwise

If [ f , π) = 0, we say that f is a quadratic residue modulo π. Similarly, for the place at ∞ we define

[ f , ∞) :=

{

0, if f ≡ x2 + x (mod t−1) for some x ∈ F[t−1]

1, otherwise

whenever f ∈ F(t) has no pole at ∞ (ie. deg( f ) ≤ 0). If f has a pole at the (finite or infinite) place π
then [ f , π) has no meaning.

Lemma 3.10. The symbol [ f , π) has the following properties:

1. if f1 ≡ f2 (mod π), then [ f1, π) = [ f2, π),

2. [ f , π) ≡ f + f 2 + . . . + f qdegπ /2 (mod π), where q = |F|,

3. [ f1 + f2, π) = [ f1, π) + [ f2, π),

4. [ f 2 + f , π) = 0.

3.2 Local lemmas

We denote by v f the f -adic valuation on F2k(t) for a (finite or infinite) prime f ∈ F2k(t), by

F2k(t)( f ) the f -adic completion, and by F2k(t)+( f )
:= {u ∈ F2k(t)( f ) | v f (u) ≥ 0} its valuation

ring.
We are interested in the range of the quadratic form x2 + xy + ay2 for some a ∈ F2k(t).

Note that this is the norm form of the quadratic Artin–Schreier extension adjoining the root of
X2 + X + a.

Definition 3.11. For a ∈ F2k(t) we call the quadratic form x2 + xy + ay2 minimal if all the poles of a
(including ∞) have odd multiplicity.

Note that for a finite prime f the multiplicity of the the pole of a is by definition the exponent
of f in the denominator of a. The multiplicity of the pole of a at ∞ is the degree of a if it is positive
and 0 otherwise. The only elements a ∈ F2k(t) that have no poles are the constants a ∈ F2k in
which case the form x2 + xy + ay2 is minimal. The fact that each norm form is equivalent to a
minimal follows easily from Artin–Schreier theory. We include an algorithmic proof as we need
its running time.

Lemma 3.12. Any quadratic form x2 + xy + ay2 with is equivalent to a minimal form. The equivalent
minimal form can be found in polynomial time.

Proof. Assume a = g1

f 2rh1
with f ∤ g1, h1 for some finite prime f . Since F2k [t]/( f ) is a finite

field of characteristic 2, the 2-Frobenius is bijective on F2k [t]/( f ). In particular, there exists a

polynomial g ∈ F2k [t] such that f | g2h1 + g1 (one can find g by squaring
g1
h1

k deg( f )− 1-times

modulo f ). So we may replace the variable x by x1 = x + gy
f r to obtain

x2 + xy + ay2 = x2
1 +

g2y2

f 2r
+ x1y +

gy2

f r
+

g1y2

f 2rh1
=

= x2
1 + x1y +

g2h1 + g1 + f rh1g

f 2rh1
y2

6



and a′ := g2h1+g1+ f rh1g
f 2rh1

has one less f in the denominator. Repeating the process for all finite

primes in the denominator of a we are reduced to handle the case of the infinite prime. This
is entirely analogous: assume we have a = g1

h1
with 2r := deg g1 − deg h1 even and positive.

Since the leading coefficient of a is a square in F2k , there exists 0 6= c ∈ F2k such that deg(g1 +
c2t2rh1) < deg g1. Therefore putting x1 = x + ctry we obtain the form

x2 + xy + ay2 = x2
1 + c2t2ry2 + x1y + ctry2 +

g1

h1
y2 =

= x2
1 + x1y +

h1ctr + h1c2t2r + g1

h1
y2

such that a′ = a + ctr + c2t2r =
h1ctr+h1c2t2r+g1

h1
has smaller degree than a. Repeating this step

several times we deduce the statement.

Remark 3.13. The above proof also shows that the minimal form of x2 + xy + ay2 is unique up
to an additive constant of the form α2 + α with α ∈ F2k .

By the local-global principle (Theorem 2.1) we are reduced to identifying the range of a
minimal quadratic form x2 + xy + ay2 locally at each place f of F2k(t). We may apply Lemma
3.8, however, for our purposes we need to identify explicit congruence conditions on c being
in the range. Put Ka, f for the splitting field of the polynomial X2 + X + a over F2k(t) f . We
distinguish two cases whether or not a has a pole at f , ie. whether or not the splitting field of
X2 + X + a ramifies at f . At first we treat the case when a is an f -adic integer.

Lemma 3.14. Assume v f (a) ≥ 0.

1. If v f (c) is even then the equation x2 + xy + ay2 = c has a solution in F2k(t)( f ).

2. If v f (c) is odd then the equation x2 + xy + ay2 = c has a solution in F2k(t)( f ) if and only if

[a, f ) = 0.

Proof. Note that by Hensel’s lemma the extension Ka, f /F2k(t) f is unramified. Therefore by

Thm. 2.3 the image of the norm map NKa, f /F
2k (t) f

: K×a, f → F2k(t)×f contains the group of units

(F2k(t)+f )
× in the ring of integers. Further, NKa, f /F

2k (t) f
is onto if and only if Ka, f = F2k(t) f . The

latter is equivalent to [a, f ) = 0.

Lemma 3.15. Let a1, a3 ∈ F2k [t] be square-free polynomials with gcd(a1, a3) = 1 and a2, a4 ∈ F2k(t).
Let f be a place, ie. either a monic irreducible polynomial or f = ∞ such that v f (a1a3) is odd. Assume

that neither a2 nor a4 has a pole at f . Then the equation a1x2
1 + a1x1x2 + a1a2x2

2 + a3x2
3 + a3x3x4 +

a3a4x2
4 = 0 has a nontrivial solution in F2k(t)( f ) if and only if at least one of the two conditions holds:

1. [a2, f ) = 0

2. [a4, f ) = 0

Proof. This is a combination of Lemmas 3.8 and 3.14.

Now we turn our attention to the case when a has a pole at f (ie. Ka, f ramifies). Note that
unlike in the case of characteristic 0 there exist infinitely many ramified quadratic extensions of
local fields of characteristic 2. By Lemma 3.12 the pole must be of odd degree 2r + 1 therefore
the following lemma is relevant. In this case it is more convenient to multiply by f 2r+1 and put

7



b = a f 2r+1 which is an f -adic unit. Note that c is in the range of the quadratic form x2 + xy+ ay2

if and only if so is cd2 for all 0 6= d ∈ F2k(t) therefore we may rescale c by a square element as
convenient.

Lemma 3.16. Let b, c be in F2k(t)( f ) such that v f (b) = 0 (ie. b is an f -adic unit) and v f (c) = 0 or 1.
Then the equation

f 2r+1x2 + f 2r+1xy + by2 = c f 2r

has a solution in F2k(t)( f ) if and only if it has a solution modulo f 4r+3. All such solutions lie in the

valuation ring F2k(t)+( f )
.

Proof. ⇒: Suppose we have a solution (u, v) ∈ F2k(t)( f ). Assume for contradiction that one of

u and v is not in F2k(t)+( f )
. Multiplying by the square of the common denominator f l of u and

v we obtain u1 = f lu, v1 = f lv ∈ F2k(t)+( f )
such that f 2r+2l | f 2r+1u2

1 + f 2r+1u1v1 + bv2
1 but f

does not divide at least one of u1 and v1. Since f ∤ b we obtain f 2r+1 | v2
1 whence f r+1 | v1. So

we deduce f 2r+2 | f 2r+1u1v1 + bv2
1 and f 2r+2 | f 2r+1u2

1 contradicting to f ∤ u1. Hence we may

reduce the equality f 2r+1u2 + f 2r+1uv + bv2 = c f 2r modulo f 4r+3.
⇐: Assume we have u0, v0 ∈ F2k(t)+( f )

such that

c0 f 2r := f 2r+1u2
0 + f 2r+1u0v0 + bv2

0 ≡ c f 2r (mod f 4r+2) .

Then we must have f r | v0 and put v0 = f rv1 so dividing by f 2r we deduce

c0 = f u2
0 + f r+1u0v1 + bv2

1 ≡ c (mod f 2r+2)

Since f 2 ∤ c at least one of u0 and v1 is not divisible by f . Putting c1 := c−c0

f 2r+2 , we look for the

solution of the original equation in the form x = u0 + f r+1x1, and y = v0 + f 2r+1y1. So we are
reduced to solving the equation

f 2r+1(u0 + f r+1x1)
2 + f 2r+1(u0 + f r+1x1)( f rv1 + f 2r+1y1)+

+b( f rv1 + f 2r+1y1)
2 = f 2r(c0 + f 2r+2c1) .

Using the equation for c0 and dividing by f 4r+2 we obtain the equivalent equation

f x2
1 + x1v1 + u0y1 + f r+1x1y1 + by2

1 = c1 . (1)

Now note that Hensel’s lemma applies to (1) since the gradient

(

∂

∂x1
( f x2

1 + v0x1 + u0y1 + f x1y1 + by2
1 − c1),

∂

∂y1
( f x2

1 + v0x1 + u0y1 + f x1y1 + by2
1 − c1)

)

=

= (v1 + f r+1y1, u0 + f r+1x1) ≡ (v1, u0) (mod f )

is nonzero modulo f . Therefore (u0, v1) lifts to a solution modulo f 4r+3⇔ (1) has a solution

modulo f
Hensel
⇔ (1) has a solution in F2k(t)( f )⇔ (u0, v0) lifts to a solution of f 2r+1x2 + f 2r+1xy+

by2 = c f 2r in F2k(t)( f ).
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3.3 Finding nontrivial zeros

Let Q(x1, x2, x3, x4) = a1x2
1 + a1x1x2 + a1a2x2

2 + a3x2
3 + a3x3x4 + a3a4x2

4 where aiF2k(t). In this
section we provide an algorithm for deciding whether Q admits a nontrivial zero and if so,
returns a nontrivial zero (x1, x2, x3, x4). The main idea is similar to the main algorithm of [9].
We replace Q with a similar form Q′ and then decide whether Q′ has a nontrivial zero using
the local-global principle. If so, then we look for a common c ∈ F2k(t) which is represented
by both a1x2

1 + a1x1x2 + a1a2x2
2 and a3x2

3 + a3x3x4 + a3a4x2
4 and then solve the equations a1x2

1 +

a1x1x2 + a1a2x2
2 = c and a3x2

3 + a3x3x4 + a3a4x2
4 = c separately. Solving these equations is

equivalent to finding zero divisors in quaternion algebras over F2k(t). This is a special case of
the main algorithm from [8, Section 4].

Theorem 3.17. Let Q(x1, x2, x3, x4) = a1x2
1 + a1x1x2 + a1a2x2

2 + a3x2
3 + a3x3x4 + a3a4x2

4 where
ai ∈ F2k(t). Then there exists a polynomial-time algorithm which decides whether Q is isotropic and if
so it finds a nontrivial zero of Q.

Proof. By rescaling and dividing by common factors we can assume that a1, a3 ∈ F2k [t] and
gcd(a1, a3) = 1. We look for a common c ∈ F2k [t] which is represented by both a1x2

1 + a1x1x2 +

a1a2x2
2 and a3x2

3 + a3x3x4 + a3a4x2
4. Note that c is represented by both these forms if and only if

it is represented by both forms locally at each place f . By Lemma 3.12 we may assume that both
a1x2

1 + a1x1x2 + a1a2x2
2 and a3x2

3 + a3x3x4 + a3a4x2
4 are minimal (in the sense of Definition 3.11).

Denote by S the set of places where at least one of the following holds:

1. a2 has a pole at f ;

2. a4 has a pole at f ;

3. v f (a1a3) is odd.

We look for c in the form c = f1 f2 · · · fmh where f1, . . . , fm ∈ S are monic irreducible polynomi-
als and h is irreducible. If f /∈ S, then v f (a1) and v f (a3) have the same parity. Since a1 and a3 are

coprime polynomials, their valuations must actually be even. If v f (c) = 0 the forms represent c
locally at f by Lemma 3.14(1). On the other hand, if f ∈ S then we distinguish two cases.

First assume that neither a2 nor a4 has a pole at f (whence v f (a1a3) is odd). Then whether or

not a square-free polynomial c is represented by the form a1x2
1 + a1x1x2 + a1a2x2

2 (resp. a3x2
3 +

a3x3x4 + a3a4x2
4) depends only on the class of c modulo f 2. So we may decide by checking all

the residue classes modulo f 2 whether there is a common value c of the two forms. If there is
no common value then we are done (the 4-variable form is not isotropic). By Lemma 3.15 this
happens if and only if [a2, f ) = [a4, f ) = 1. We put f among f1, . . . , fm if all the common square-
free values of the two forms are divisible by f . Either way, there possibly appears a condition
on c modulo f 2 (which we shall encode in the choice of h).

Now assume that either a2 or a4 has a pole at f . We use Lemma 3.8 in order to decide
whether there is a common value of the forms a1x2

1 + a1x1x2 + a1a2x2
2 and a3x2

3 + a3x3x4 + a3a4x2
4

locally at f : If a2 + a4 has a pole of odd degree at f then x2 + x + a2 + a4 does not split in
F2k(t)( f ) hence there exist common values. We reduce the poles at f in a2 + a4 of even degree

by adding elements of the form d2

t2s +
d
ts (d ∈ F2k [t]). If all the poles are removed then we

check whether x2 + x + a2 + a4 splits by computing the symbol [a2 + a4, f ) as in the previous
case. Finally, for finding common values we use random values c modulo f 4r+3 by Lemma 3.16
where 2r + 1 := max(−v f (a2),−v f (a4)) is the bigger order of the pole at f of a2 and a4. Again,

if v f (c) is odd then we put f into the finite set { f1, . . . , fm}.

9



Finally, if f = ∞ ∈ S then the congruence condition on c involves a condition on the parity
of the degree of c, as well as a condition modulo a power of t. Even if ∞ /∈ S then the condition
v∞(c) = 0 means the degree of c must be even.

Now if none of the above congruence conditions were contradictory then we deduce that the
4-variable form is isotropic by Theorem 2.1. So we proceed with finding a nontrivial zero look-
ing for c = f1 · · · fmh where the monic irreducible polynomials f1, . . . , fm ∈ S are determined
above and we choose h irreducible satisfying all the above congruence conditions (including
possibly a condition at ∞ if it belongs to S). This is possible by Lemma 2.4. By construction, c
is a common value of a1x2

1 + a1x1x2 + a1a2x2
2 and a3x2

3 + a3x3x4 + a3a4x2
4 locally at all places in

S. Further, if g 6= h is a (finite or infinite) place not in S then c is also a common value locally at
g, so the only exception could be at h. However, by Hilbert’s reciprocity law (Theorem 2.2) c is
also a common value locally at h.

Remark 3.18. The case f = ∞ can be treated like the case f = t after applying the automorphism

fixing F2k and sending t to 1
t . It is necessary to multiply the equation by a power of t to nor-

malize it, and to check that if the new a2 or a4 have a pole at t, it has an odd order (otherwise
one may apply again the algorithm from lemma 3.12). When checking a candidate polynomial
for this condition, one should be careful to normalize it with a power of t of the same parity
as the one used to derive the condition. The condition on the degree of h then is the one that
allows h to have the prescribed valuation at the place t after applying the automorphism and
normalizing.

3.3.1 An example

We give a short example of how the algorithm works. Let K = F2(t) and consider the form
a1x2

1 + a1x1x2 + a1a2x2
2 + a3x2

3 + a3x3x4 + a3a4x2
4 where a1 = t2 + t + 1, a2 = t, a3 = 1, a4 = 1.

We have to look at f -adic solvability for f = t2 + t + 1 and f = ∞ as these are the places for
which the f -adic valuation of a1a3 is odd or a2 has pole (a4 is regular everywhere).

One has [a2, t2 + t + 1) = 1 and [a4, t2 + t + 1) = 0 which implies that the (t2 + t + 1)-
adic valuation of a common value c of (t2 + t + 1)(x2

1 + x1x2 + tx2
2) and x2

3 + x3x4 + x2
4 must

be odd. Therefore we need to look for c in form of c = (t2 + t + 1)h where h is an irreducible
polynomial over F2. Further, h = x2

1 + x1x2 + tx2
2 admits a nonzero solution modulo (t2 + t + 1)

if h ≡ t (mod t2 + t + 1). On the other hand, v∞((t2 + t + 1)h) = deg((t2 + t + 1)h) must be
even in order for x2

3 + x3x4 + x2
4 = (t2 + t + 1)h to be solvable at ∞ since the extension by a

root of X2 + X + 1 is unramified at ∞. Putting z = 1/t this boils down to the solvability of
zx2

1 + zx1x2 + x2
2 = zh in F2[[z]] which is equivalent to h ≡ 1 (mod z2) by Lemma 3.16. After

rescaling h so that it is a polynomial in t our condition is that the coefficient of t2n−1 is zero in h
where deg(h) = 2n.

Finally, a little computation shows that h(t) = t6 + t + 1 satisfies

1. h ≡ t (mod t2 + t + 1)

2. deg(h) = 2n is even

3. the coefficient of t2n−1 in h is zero

So we are reduced to finding a solution to the following two equations globally:

1. x2
1 + x1x2 + tx2

2 = (t2 + t + 1)(t6 + t + 1)

2. x2
3 + x3x4 + x2

4 = t6 + t + 1

10



Input: a1, a3 ∈ F2k [t] and a2, a4 ∈ F2k(t)× such that a1 and a3 are coprime, and every
pole of a2 (resp. a4) has an odd order.

Output: h ∈ F2k [t] such that h is represented by both binary quadratic forms
Q1(x, y) = a1(x2 + xy + a2y2) and Q2(x, y) = a3(x2 + xy + a4y2), or ⊥ if no
such h exists.

Conds← [ ];
c← 1;
for g ∈ Poles(a2) ∪ Poles(a4) do

/* Apply lemmas 3.16 and 3.14 to find hg */

if ∃hg ∈ F2k [t], N ∈ N | νg(hg) ≤ 1 and ∀h ∈ F2k(t)(g), h is represented by Q1 and Q2 if

h = hg mod gN then

Append(Conditions, (hg, gN));

c← c× gνg(hg) mod 2;

end
else

return ⊥
end

end
for g ∈ F2k(t) irreducible, such that νg(a1a3) is odd and g /∈ Poles(a2) ∪ Poles(a4) do

/* Apply lemmas 3.14 and 3.15 to find νg */

if ∃ν ∈ {0, 1} | ∀h ∈ F2k(t)(g), h is represented by Q1 and Q2 if νg(h) = ν mod 2 then

c← c× gν;
end
else

return ⊥
end

end
i← F2k -automorphism of F2k(t) sending t to 1/X;
ν∞ ← max(deg(a1), deg(a3));
/* Use remark 3.18 to find h∞ and N∞ */

if ∃h∞ ∈ F2k [t], N∞ ∈N | ∀h ∈ F2k(t)(t), h is represented by Q1 and Q2 if

∃N ∈ N, t2N+ν∞i(h) = h∞ mod tN∞ then
return cg : g ∈ F2k [X] is irreducible, deg (cg) = ν∞ + deg (h∞) mod 2,

∀(h, f ) ∈ Conditions, cg = h mod f and ∃n ∈ Z | t2n+ν∞i(cg) = h∞ mod tN∞

end
else

return ⊥
end

Algorithm 1: SplitQuaternaryForm
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Running the known algorithms for binary forms we find x1 = t3 + t2 + 1, x2 = t, x3 = t4 + 1,
x4 = t3.

3.4 Applications

In this subsection we give two applications of our results and methods. One is to finding sepa-
rable quadratic extensions L of F2k(t) inside a quaternion algebra that is split by L. The other is
constructing quaternion algebras over F2k(t) with prescribed Hasse invariants.

Theorem 3.19. Let L be a separable quadratic extension of F2k(t) and let B be a quaternion algebra over
F2k(t) which is split by L. Then there exists a polynomial-time algorithm which finds a subfield of B
isomorphic to L.

Proof. If B is split, then one can find a explicit isomorphism between B and M2(F2k(t)) in poly-
nomial time using the main algorithm from [8, Section 4] (the algorithm also decides whether B
is split or not). From such an isomorphism a suitable maximal subfield can be constructed eas-
ily (by constructing a matrix whose minimal polynomial corresponds to a defining polynomial
of L).

Now suppose that B is a division algebra. In that case B contains a maximal subfield isomor-
phic to L [17, Lemma 6.4.12]. Let L = F2k(t)(s) where s2 + s = c and c ∈ F2k(t). If we find an
element u ∈ B such that u2 + u = c, then u + s is a zero divisor as u is not in the center. Suppose
that B has the following quaternion basis:

i2 + i = a

j2 = b

ij = j(i + 1)

Let us look for u in the form of u = λ1 + λ2i + λ3 j + λ4ij, where λi ∈ F2k(t).

u2 + u = λ2
1 + λ2

2a + λ2
3b + λ2

4ab + λ3λ4b+

+λ1 + i(λ2
2 + λ2) + j(λ2λ3 + λ3) + ij(λ2λ4 + λ4)

For this to be in F2k [t], λ2 = 1 must hold. Now we investigate if the following equation has a
non-trivial solution:

λ2
1 + λ2

3b + λ2
4ab + λ3λ4b + λ1 + a + c = 0 (2)

Let µ2 equal to the product of the denominators of all λi, µ1 := λ1µ2, let us introduce new
variables µ3 := λ3µ2 and µ4 := λ4µ2. Then multiplying (2) by µ2

2 gives

µ2
1 + µ1µ2 + (a + c)µ2

2 + bµ2
3 + bµ3µ4 + abµ2

4 = 0 (3)

where µ1, µ2, µ3, µ4 ∈ F2k [t]. Now we find a solution to the above equation using the algorithm
from Theorem 3.17 ([17, Lemma 6.4.12] guarantees the existence of a solution) which returns
u. The algorithm of Theorem 3.17 runs in polynomial time which implies the statement of the
theorem.

Remark 3.20. The main motivation behind studying this algorithm is that in can be used to find
zero divisors in split quaternion algebras over L. Namely, one frst constructs a subalgebra B
of the large algebra A that is a quaternion algebra over F2k(t). If this algebra is not split, then
it contains a subfield isomorphic to L which is generated by some quaternion element x. Let
L = F2k(t)(s). Then x + s will be a zero divisor.

12



The next proposition shows how to construct a quaternion division algebra with given Hasse
invariants.

Proposition 3.21. Let v1, . . . , vl be places of F2k(t) such that l is even. Then there exists a polynomial-
time algorithm which constructs a quaternion algebra over F2k(t) which is ramified exactly at v1, . . . , vl .

Proof. Let f1, . . . fm be the finite places amongst the vi. First we find a monic irreducible poly-
nomial in b ∈ F2k [t] such that [b, fi) = 1. This can be accomplished in the following way. One

finds quadratic non-square ri modulo every fi (Fq[t]/( fi) is finite field of cardinality 2deg( f i)k)
and then obtains a residue class r modulo f1 · · · fm such that r ≡ ri (mod fi) by Chinese re-
maindering. Then using Lemma 2.4 one finds an irreducible polynomial of suitably large de-
gree which is congruent to r mod f1 · · · fm by choosing random elements from the residue class
until an irreducible is found.

Let a = f1 · · · fm. We show that the quaternion algebra A = [a, b) ramifies at every fi. The
algebra A ramifies at fi if and only if the quadratic form ax2 + axy + aby2 + z2 has a nontrivial
zero in F2k(t)( f i)

. Since the form is homogeneous, it is enough to show that it does not admit
an integral zero. The variable z must be divisible by fi since a is divisible by fi. Now setting
z = fiz

′ and dividing by fi we get the following equation:

a/ fix
2 + a/ fixy + a/ fiby2 + fiz

′2 = 0

Suppose this equation has a nontrivial solution (x0, y0, z0). One may assume that fi does not
divide x0, y0 and z0 simultaneously. Then the following congruence condition holds:

a/ fix
2
0 + a/ fix0y0 + a/ fiby2

0 ≡ 0 (mod fi)

Since a/ fi is coprime to fi one can divide the congruence by a/ fi. If y0 is not divisible by fi,
then b is a quadratic residue mod fi which is a contradiction. If y0 is divisible by fi, then so
is x0. However, if x0 and y0 are both divisible by fi, then z0 is not divisible by fi and then
a/ fix

2
0 + a/ fix0y0 + a/ fiby2

0 + fiz
2
0 is not divisible by f 2

i which is a contradiction.

The algebra A is split at b since the equation ax2 + axy+ aby2 + z2 = 0 has a solution modulo
b (setting z = 0 and x = y = 1) which can be lifted by Hensel’s lemma. A is clearly split at
all the other finite places and has the required splitting condition at ∞ by Hilbert reciprocity
(Theorem 2.2).

Corollary 3.22. Let D be a quaternion division algebra over F2k(t) and let A be an algebra isomorphic
to M2(D) given by structure constants. Then one can find a zero divisor in A in polynomial time.

Proof. We compute the local indices of A using the algorithm [7, Proposition 6.5.3.] and then use
Proposition 3.21 to compute a division quaternion algebra D0 with those exact invariants. Since
we have constructed a structure constant representation of D0, we can construct a structure con-
stant representation of M2(D0) by considering the basis where the matrix has one nonzero entry
and that runs through the basis of D0. Then as stated previously, one can construct an explicit
isomorphism between A and M2(D0) from an explicit isomorphism between Aop ⊗ M2(D0)
and M16(F2k(t)) in polynomial time using the main algorithm from [8, Section 4]. Finally, the

preimage of the matrix

(

1 0
0 0

)

is a zero divisor.
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4 Implementation

In this section, we give details about our implementation1 of the algorithm in the Magma lan-
guage [1]. We then provide details on the practical efficiency of our implementation and discuss
the computational bottlenecks.

4.1 Implementation details

The core of our code is a practical implementation of algorithm 1. Our first step is to take as
an input a quaternary quadratic form as a degree 4 square matrix with coefficients in F2k(t). If
Q is the input quadratic form, we apply successively the reductions from lemma 3.5, corollary
3.6 and lemma 3.12 to obtain coefficients a1, a2, a3, a4 ∈ F2k(t) which follow the hypotheses of
theorem 3.17, and such that the quadratic form a1(x2

1 + x1x2 + a2x2
2) + a3(x2

3 + x3x4 + a4x2
4) is

similar to Q. In addition, we make coefficients a1 and a3 square-free, as it simplifies computation
and does not affect the place of the zeros.

Our implementation of algorithm 1 follows the structure of the pseudo-code representation.
See appendix A for more details on the subroutines for each case. Once all the conditions for
a common value have been established, we randomly generate polynomials that satisfy said
conditions until we find a prime polynomial. Because of the bound given in lemma 2.4, finding
one such a polynomial can be done in probabilistic polynomial time. Once we find a prime
polynomial which satisfies every condition, we move to the last step of the implementation.

We independently solve equations a1(x2
1 + x1x2 + a2x2

2) = ch and a3(x2
1 + x1x2 + a3x2

2) = ch.
Both these equations directly reduce to a Hilbert equation, and then by lemma 3.7 the problem
reduces to finding an explicit isomorphism between a given quaternion algebra and the degree
2 matrix algebra. In practice, we solve the equation a1(x2

1 + x1x2 + a2x2
2) = c by computing

an explicit isomorphism between A =

[

a2,a1/c
F

2k (t)

)

and M2 (F2k(t)). It follows from [17, equation

6.4.5] that in A, nrd(x + yj + zk) = x2 + a1
c (y

2 + yz + a2z2). We therefore find a singular matrix

which pulls back to a quaternion of the form x + yj + zk with x 6= 0, and then we set x1 = y
x

and x2 = z
x .

We use the main algorithm from [8] to compute the explicit isomorphism between A and
M2 (F2k(t)). Since, to the best of our knowledge, it has not been implemented yet, we provide
an implementation in Magma which may be of independent interest.

4.2 Computational data

In table 1 we show the running time for some executions of algorithm 1. This running time does
not include solving the resulting ternary forms, which we will discuss separately. The tests were
executed on the online Magma calculator2 with randomly generated polynomials. The degree
of the input polynomials were not randomly chosen, but they were affected by the steps of
minimization of the coefficients. We give the degrees of the coefficients after the minimisation
steps. By the degree of a rational function we mean the maximal of the degrees of its numerator
and of its denominator. The column deg h refers to the degree of the value represented by both
binary forms, that is the output of algorithm 1. The column q refers to the cardinal of the finite
field underlying our rational function field. The running times are given in seconds. We note
that all running times here are given for input corresponding to an isotropic quadratic form. In

1https://github.com/Char2QuadForms/Char2QuadForms
2http://magma.maths.usyd.edu.au/magma/
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deg a1 deg a2 deg a3 deg a4 deg h q Running time
83 71 7 93 384 2 0.570

204 211 1048 211 604 2 4.680
21 25 121 25 75 210 6.090
15 21 102 21 64 220 29.520

Table 1. Running times of algorithm 1

deg a deg h Running time
1 4 2.390
1 8 20.360
5 14 311.460

Table 2. Running time for solving x2 + xy + ay2 = h

general, it is faster for the algorithm to recognize an anisotropic form than to split an isotropic
one.

The last part of our implementation is the main algorithm from [8] (see the discussion in
subsection 4.1). A subroutine for this algorithm is the computation of a maximal order in a
quaternion algebra. Since this subroutine was not implemented in Magma for algebras over
fields of characteristic 2, we gave our own implementation using the polynomial time algorithm
given in [8, subsection 3.2]. Our implementation of this algorithm runs significantly slower than
the Magma built-in function for maximal order computation in odd characteristic. As a result,
we do not draw conclusions regarding the running time for this part of the implementation.

However, the implementation is still practical for small input. In table 2 we give running
time for our function solving equations of the form x2 + xy + ay2 = h. Every line refers to a
computation done over F2(t).
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A Algorithm subroutines

Input: a1, a3, f ∈ F2k [t], a2, a4 ∈ F2k(t) such that a1 and a3 are nonzero coprime
polynomials, each pole of a2 and a4 has an odd multiplicity, and f is an
irreducible polynomial which is a pole of a2 or a4.

Output: h f ∈ F2k [t], n ∈N such that for all h ∈ F2k [t], if h = h f mod f n, then h is

represented by both binary forms a1(x2 + xy + a2y2) and a3(x2 + xy + a4y2)
over F2k(t)( f ). Outputs ⊥ instead if such a tuple does not exist.

N ← 2 max(−ν f (a2),−ν f (a4)) + 1;

K2 ← F2k(t)/(t2 + t + a2);

K4 ← F2k(t)/(t2 + t + a4);

K6 ← F2k(t)/(t2 + t + a2 + a4);

if (not K6 = F2k(t)) or a1
a3
∈ NK2/F

2k (t)(K
×
2 ) then

repeat

c
Random
←−−−− F2k [t]/( f N);

until ν f (c) ≤ 1 and c ∈ NK2/F
2k (t)(K

×
2 ) ∩ NK4/F

2k (t)(K
×
4 );

return c,N
end
else

return ⊥
end

Algorithm 2: CommonValuePole
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Input: a1, a3, f ∈ F2k [t], a2, a4 ∈ F2k(t) such that a1 and a2 are nonzero coprime
polynomials, each pole of a2 and a4 has an odd multiplicity, and f is an
irreducible polynomial which is not a pole of a2 or a4 but such that ν f (a1a3) is
odd.

Output: ν ∈ {0, 1} such that a polynomial h ∈ F2k [t] is represented by both binary
quadratic forms a1(x2 + xy + a2y2) and a3(x2 + xy + a4y2) over F2k(t)( f ) if

ν f (h) = ν mod 2. Outputs ⊥ if there is no such ν.

if [a1, f ) = [a3, f ) = 1 then
return ⊥

end
else if [a1, f ) = ν f (a1) mod 2 then

return 1
end
else

return 0
end

Algorithm 3: CommonValueOdd
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Input: a1, a3 ∈ F2k [t], a2, a4 ∈ F2k(t) such that a1 and a3 are nonzero coprime
polynomials, and each pole of a2 and a4 has an odd multiplicity.

Output: h∞ ∈ F2k [t], N∞ ∈ N such that a polynomial h ∈ F2k [t] is represented by both
binary forms a1(x2 + xy + a2y2) and a3(x2 + xy + a4y2) over the completion of
F2k(t) at the infinite place if deg(h) = νt(h∞) mod 2 and
∃n ∈ Z | x2n+ν∞i(cg) = h∞ mod N∞, with ν∞ = max (deg a1, deg a3).

i← F2k -automorphism of F2k(t) sending t to 1/t;
ν∞ ← −maxi∈{1,3}deg(ai);

ia1 ← i(xν∞ a1), ia3 ← i(xν∞ a3);
ia2 ← i(a2), ia4 ← i(a4);
/* By minimalise we mean to apply the algorithm described in the proof of

lemma 3.12 */

minimalise(ia2);
minimalise(ia4);
if t ∈ Poles(ia2) ∪ Poles(ia4) then

Res← CommonValuePole(ia1, ia2, ia3, ia4, t);
if Res = ⊥ then

return ⊥
end
else

(h∞, N∞)← Res;
end

end
else if νt(ia1ia3) = 1 mod 2 then

Res← CommonValueOdds(a1, a2, a3, a4, f );
if Res = ⊥ then

return ⊥
end
else

h∞ ← tRes;
N∞ ← 0;

end

end
else

h∞ ← 1;
N∞ ← 0;

end
return (h∞, N∞)

Algorithm 4: CommonValueInf
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