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ABSTRACT
Given an autonomous first order algebraic ordinary differential

equation 𝐹 (𝑦,𝑦′) = 0, we provide algorithms for computing for-

mal Puiseux series solutions of 𝐹 (𝑦,𝑦′) = 0 with real or rational

coefficients. For this purpose we give necessary and sufficient con-

ditions on the existence of such solutions by combining classical

methods from algebraic geometry and the study of an associated dif-

ferential equation. Since all formal Puiseux series solutions of such

differential equations are convergent in a certain neighborhood,

the solutions also define real solution functions.

CCS CONCEPTS
•Mathematics of computing → Ordinary differential equa-
tions; Solvers.
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1 INTRODUCTION
Let K be a field such that Q ⊆ K ⊆ C, and let us consider first order
autonomous algebraic ODEs (shortly AODEs)

𝐹 (𝑦,𝑦′) = 0 where 𝐹 ∈ K[𝑦, 𝑝] . (1)

In this paper, we are interested in computing the Puiseux series so-

lutions of (1) with coefficients in certain field extension ofK, where
“computing” means to represent the set of Puiseux series solutions,

in one-to-one correspondence, by means of a set of truncations.

Rational and algebraic solutions of (1) have been studied in [11,

12] and [2] by using an algebraic-geometric approach. In the current

paper, where Puiseux series solutions are studied, we follow an

adapted version of this approach. More precisely, we use the well-

known theory on local parametrizations (see e.g. [9]) for deriving
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an associated differential equation which can be solved, for example,

by the Newton polygon method [5]. In the current work, the bounds

on local parametrizations presented in [9] are generalized to the

non-monic case.

In [6] we have proved that every formal Puiseux series solution

of (1) is convergent. Moreover, under the assumption that K is

computable, [6] shows how these solutions can be algorithmically

found. Alternatively, one can find several papers in the literature

for computing series solutions by means of the construction of the

Newton polygon, e.g. [4, 14, 21]. All these works have in common

that they are not completely algorithmic and do not have a-priori

bounds on the number of terms which have to be determined to en-

sure that the solution truncations are in one-to-one correspondence

with the series solutions. This is a major difference to [6].

Similarly as in the theory of rational parametrizations (see e.g. [20]),

the question of finding optimal field extensions of K, where the
Puiseux series solutions can be expressed, arises. Furthermore, mo-

tivated by the potential applications, the study and determination

of the Puiseux series solutions with coefficients in a real field ex-

tension of K turn to be specially interested. Observe that formal

Puiseux series with a positive radius of convergence locally define

solution functions. Moreover, if the coefficients of the series are real,

then the image of the solution function is real as well and hence

of major interest in applications. The smoothness of the solution

functions can be read off the exponents of the series. Let us note

that the classical methods for computing real solution functions

such as the Picard-Lindelöf Theorem typically fail for the differen-

tial equations treated here. More recently, a theory for analyzing

dynamical systems related to the given differential equations, also

applicable to AODEs [18], has been developed. At singular curve

points, however, the method is, in principle, not algorithmic either.

In [6], the first initial steps for the optimal field extension prob-

lem have been achieved. Nevertheless, the problem remains open, in

particular, the reality issue. This is where the current paper focuses.

Let L be either Q or R. So, K is from now assumed to be real. In this

paper, we further analyze the results of necessary field extensions

and focus on the solution set to Puiseux series with coefficients

in L, called L-Puiseux series. For this purpose, several aspects and
results of various different areas of mathematics are required. The

main contribution of this paper can be seen in the adaptation of

these techniques and the results in [6] to the differential problem

studied here. We give some new, linking results and show neces-

sary and sufficient conditions for the existence of L-Puiseux series
solutions. In addition, we provide algorithms for computing formal

Puiseux series solutions of (1) with real or rational coefficients. An

implementation of this work is described in [3].

The structure of the paper is as follows. Section 2 is devoted to

the preliminary theory on real and algebraic curve points and local
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parametrizations. Rational curve points can be computed when the

associated curve has genus zero or one. Real curve points can be

represented by the topological graph of the curve. Section 2.2 is

devoted to local parametrizations. In particular, rational Puiseux

parametrizations are introduced, where the least number of field

extensions is necessary for the local description of the algebraic

curve. Algorithmically the singular part of the rational Puiseux

parametrization is important, which is bounded in Proposition 2.9.

In Section 3 it is shown that every non-constant L-Puiseux series
solution defines a place of the associated curve such that its equiva-

lent rational Puiseux parametrization has coefficients in L, which is

an effective necessary condition on a place of the curve to contain

L-Puiseux series solutions of the original differential equation (see

Proposition 3.4 and Corollary 3.5). Sufficient conditions for deciding

the existence of L-Puiseux series solutions are given in Theorem 3.7,

Theorem 3.8 and, if the curve is of genus zero, in Theorem 3.10.

These theorems are new and give an algorithmic procedure for

finding L-Puiseux series solutions. Algorithms for computing L-
Puiseux series solutions with L ∈ {R,Q} are presented in Section 4

and illustrated by examples.

2 PRELIMINARIES
Let us introduce the type of differential equations treated within

this paper. We assume that the coefficients of the equation (1) are

rational, so K = Q, or a number field K = Q(𝜈1, . . . , 𝜈𝑚) ⊂ Rwhere

𝜈1, . . . , 𝜈𝑚 are algebraic numbers. In the latter case, by the primitive

element theory (see [24]), we can assume without loss of generality

that𝑚 = 1. Additionally, we assume that 𝐹 is square-free and has

no factor in K[𝑦] or K[𝑦′], where K denotes the algebraic closure

of K. Let L be a field extension of K. Associated to the differential

equation, we denote by CL (𝐹 ) the algebraic set

CL (𝐹 ) = {(𝑎, 𝑏) ∈ L2

∞ | 𝐹 (𝑎, 𝑏) = 0},

where L∞ is the one-point compactification of L. Note that for

L = C we obtain the algebraic curve defined by 𝐹 and for L ⊂ C
the set CL (𝐹 ) could be finite or even empty.

We use the notations L[[𝑥]] for the ring of formal power series,

L((𝑥)) for its fraction field and L⟨⟨𝑥⟩⟩ =
⋃
𝑚≥1
L((𝑥1/𝑚)) for

the field of formal Puiseux series (expanded around zero) with

coefficients in L. We call the minimal natural number 𝑚 ∈ Z>0

such that 𝑦 (𝑥) belongs to L((𝑥1/𝑚)) the ramification index of 𝑦 (𝑥).
Moreover, for non-zero 𝑦 (𝑥) =

∑
𝑗≥𝑘 𝑎 𝑗 𝑥

𝑗/𝑚
with 𝑎 𝑗0 ≠ 0 we

define the order of 𝑦 (𝑥) as 𝑗0/𝑚, denoted by ord𝑥 (𝑦 (𝑥)). For 𝑦 (𝑥) =
0 we set ord𝑥 (𝑦 (𝑥)) = ∞.

Let us fix 𝑦0 ∈ L∞ and let us seek for L-Puiseux series solutions
of (1) with 𝑦 (0) = 𝑦0. Since 𝐹 is independent of the 𝑥-variable,

the solutions expanded around zero can be shifted to solutions

expanded around any other finite point 𝑥0 ∈ L. In the case of infinity
as expansion point, after the transformation 𝑥 = 1/𝑧 we obtain the

(non-autonomous) differential equation 𝐹 (𝑦 (𝑧),−𝑧2𝑦′ (𝑧)) = 0. In

order to deal with both cases in a unified way, equations of the type

𝐹 (𝑦, 𝜖𝑥ℎ𝑦′) = 0, (2)

where ℎ ∈ {0, 2}, 𝜖 ∈ {−1, 1}, and its L-Puiseux series solutions

expanded around zero are studied. Additionally, if𝑦 (𝑥) is a solution
of negative order, then𝑦 (𝑥) = 1/𝑦 (𝑥) is a solution of the numerator

of 𝐹 (1/𝑦,−𝑥ℎ𝑦′/𝑦2) = 0, which is again of the form (2) and fulfills

𝑦 (0) = 0. Therefore, in the sequel, we assume that 𝑦0 ∈ L.
A necessary condition on solutions 𝑦 (𝑥) ∈ L⟨⟨𝑥⟩⟩ of (2) is that

((1−ℎ)𝑥ℎ𝑦′ (𝑥)) (0) = 𝑝0 must fulfill one of the following properties

(1) If 𝑝0 < ∞ then 𝐹 (𝑦0, 𝑝0) = 0;

(2) If 𝑝0 = ∞ then the leading coefficient of 𝐹 (𝑦, 𝑝) seen as

polynomial in 𝑝 , denoted by lc(𝐹 ) (𝑦0), is zero.
The condition 𝑝0 < ∞ is equivalent to ord𝑥 (𝑦 (𝑥) −𝑦0) ≥ 1. The de-

duction 𝐹 (𝑦0, 𝑝0) = 0 can be rephrased as (𝑦0, 𝑝0) ∈ CL(𝑝0 ) (𝐹 ), i.e.
(𝑦0, 𝑝0) is a L(𝑝0)-rational curve point. This particularly motivates

the study of rational and real curve points. In the following, the

tuple (𝑦0, 𝑝0) will be called an initial tuple (of 𝑦 (𝑥) or 𝐹 (𝑦,𝑦′) = 0,

respectively).

2.1 L-Rational Curve Points
In this section we study the points CL (𝐹 ), called L-rational curve
points. We focus on Q-rational curve points and R-rational curve
points, which are simply called rational curve points and real curve
points, respectively.

We distinguish between two types of curve points (𝑦0, 𝑝0) ∈
CL (𝐹 ), namely critical and non-critical curve points (see [6]). The

first is the finite collection of points obtained precisely in the fol-

lowing way.

• For 𝑝0 = 0 find the roots of 𝐹 (𝑦, 0) = 0 in L;
• For 𝑝0 = ∞ find the roots of lc(𝐹 ) (𝑦) = 0 in L;

• The common roots of 𝐹 (𝑦, 𝑝) and its separant
𝜕 𝐹
𝜕𝑝 (𝑦, 𝑝) =

𝑆𝐹 (𝑦, 𝑝) in L2
.

Curve points with𝑦0 = ∞ correspond to solutions of the differential

equation of negative order which are treated separately.

Remark 2.1. A curve point (𝑦0, 𝑝0) ∈ CL (𝐹 ) with 𝑆𝐹 (𝑦0, 𝑝0) ≠ 0

or 𝜕 𝐹
𝜕𝑦 (𝑦0, 𝑝0) ≠ 0 is called regular and non-regular curve points are

called singular. Singular curve points are critical, in the sense defined
above, but critical curve points are not necessarily singular.

Remark 2.2. As it is shown in [20, Theorem 5.4], for curves of
genus zero, there exists a regular L-rational curve point if and only if
there are infinitely many. In particular, CR (𝐹 ) (CQ (𝐹 )) is infinite if
and only if there exists a regular real (rational) curve point.

In the following sections we will give criteria for the existence

of infinitely many L-rational curve points when CC (𝐹 ) has positive
genus.

Throughout this paper we use a detailed version of Example 15

from [6] to illustrate the notions and results of the current work.

Example 1. Let us consider

𝐹 (𝑦, 𝑝) = ((𝑝 − 1)2 + 𝑦2)3 − 4(𝑝 − 1)2𝑦2 = 0.

For 𝑝0 = 0 we obtain the curve points (𝛼, 0) with 𝛼6+3𝛼4−𝛼2+1 = 0

which are regular. The common roots of 𝐹 (𝑦, 𝑝) = 0 and 𝑆𝐹 (𝑦, 𝑝) =
3((𝑝−1)2+𝑦2)2 (2𝑝−2) −8(𝑝−1)𝑦2 are (0, 1), ( 4𝛽

9
, 𝛾) where 𝛽2 = 3,

and 27𝛾2 − 54𝛾 + 19 = 0. The only curve point at infinity is (∞,∞).
Thus, the set of critical curve points is given by

B = {(0, 1), (𝛼, 0), ( 4𝛽

9

, 𝛾), (∞,∞)}.
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Rational Curve Points. The solution of equations in rational num-

bers is the object of diophantine analysis. In the case of one variable,

such as 𝐹 ∈ Q[𝑦, 𝑝] and 𝑦 = 𝑦0 ∈ Q is given, one can apply the

Rational Root Theorem for finding roots 𝑝0 ∈ Q. In the case where

𝑦0 is not given and 𝐹 is non-linear, due to the negative answer of

Hilbert’s tenth problem, it is in general algorithmically impossible

to even find one rational curve point. Depending on the genus of

the curve, however, all rational curve points can indeed be found

(cf. Remark 2.2).

Remark 2.3. Let us assume that CC (𝐹 ) is a curve of genus zero.
Thus, it has a rational parametrization 𝑃 (𝑡) ∈ C(𝑡)2. If the total
degree of 𝐹 is odd, a rational parametrization with only rational
coefficients can be found. If 𝐹 has even total degree there is a birational
parametrization 𝑃 (𝑡) ∈ Q(𝑡)2 if and only if CC (𝐹 ) has a rational
regular curve point (see [20, Corollary 5.9]). For 𝑃 (𝑡) ∈ Q(𝑡)2, CQ (𝐹 )\
𝑃 (Q) is finite and 𝑃 (Q) misses at most one point which is given as the
limit point. More details on the surjectivity of 𝑃 can be found in [19].
The computation of rational parametrizations in an optimal field is
algorithmic and presented in [20].

Remark 2.4. If CC (𝐹 ) is a smooth curve of genus one and contains
a rational point, the curve is called an elliptic curve. Elliptic curves
are well studied and their rational points form a finitely generated
abelian group [23].

Example. The algebraic curve CC (𝐹 ) is of genus zero and has the
birational parametrization

𝑃 (𝑡 ) =
( 8𝑡2 (50400𝑡4 − 13470𝑡3 + 1349𝑡2 − 60𝑡 + 1)
11543176𝑡6 − 4596840𝑡5 + 763428𝑡4 − 67680𝑡3 + 3378𝑡2 − 90𝑡 + 1

,

8532616𝑡6 − 3589736𝑡5 + 628788𝑡4 − 58688𝑡3 + 3078𝑡2 − 86𝑡 + 1

11543176𝑡6 − 4596840𝑡5 + 763428𝑡4 − 67680𝑡3 + 3378𝑡2 − 90𝑡 + 1

)
.

The rational curve points are 𝑃 (Q) ∪ {𝑝∞, (∞,∞)} where 𝑝∞ =

lim𝑡→∞ 𝑃 (𝑡) = ( 50400

1442897
, 1066577

1442897
).

Topological Graph. The topological graph displays the real curve

points CR (𝐹 ) and the real branches of a given curve CC (𝐹 ). In prin-

ciple, CR (𝐹 ) can either be the empty set, a finite collection of points

or an infinite set. If CR (𝐹 ) is finite, its points can be represented by

separated boxes with rational endpoints, or a symbolic description

can be used. In this case, the real points are singular curve points

and can be found by cylindrical algebraic decomposition [1].

If CR (𝐹 ) is infinite, we may speak about a real algebraic curve.

The topological graph is commonly used for representing its real

branches and singular curve points. There have been many papers

addressing the problem of computing the topology of real algebraic

plane curves, e.g. [7, 15]. Let us note that most works on this topic

assume that the coefficient field is K = Q, but the reasonings hold
for an algebraic extension field K = Q(𝜈) without problems.

The topological graph G of a real algebraic curve CR (𝐹 ) is a
topologically equivalent arrangement of polylines given as a graph

such that the edges and vertices fulfill the following.

• The vertices correspond to critical points, isolated points, or

ramification points of the curve which are real.

• Every edge corresponds to a real branch of the curve con-

necting two such curve points.

Here, ramification points are common roots of 𝐹 (𝑦, 𝑝), 𝑆𝐹 (𝑦, 𝑝) or
of 𝐹 (𝑦, 𝑝), 𝜕 𝐹𝜕𝑦 (𝑦, 𝑝). Differently to most works in the literature,

we additionally add the real critical curve points to the vertex set.

Adding real curve points to the vertex set does not change the

topology. Since the real critical curve points can be found similarly

to the singular curve points, the topological graph, as defined here,

can still be computed as described in [15, Algorithm 1].

Let us emphasize that the topological graph provides the set of

real critical curve points and the number of real curve branches

going through a curve point, which is of particular importance for

the computation of R-Puiseux series solutions of 𝐹 (𝑦,𝑦′) = 0.

Example. The polynomial 𝐹 (𝑦, 𝑝) defines a real algebraic curve
which is represented by the topological graph G (see Figure 1). The
vertices of G are the real points among the critical curve points B
together with the real solutions of 𝐹 (𝑦, 𝑝) = 0, 𝜕 𝐹𝜕𝑦 (𝑦, 𝑝) = 0, namely

{(0, 1), ( 4𝛽

9

, 𝛾), ( 2

√
2𝛽

9

, 𝛾), (∞,∞)}

where 27𝛾2 − 54𝛾 + 11 = 0. The curve point at infinity can be seen as
an isolated real curve point.

Figure 1: Left: the real part of the curve implicitly defined
by 𝐹 (𝑦, 𝑝) with the critical curve points in red; Right: The
topological graph G.

Alternatively to the topological graph, since CC (𝐹 ) is of genus zero,
the real curve points can be expressed via the rational parametrization
as 𝑃 (R) ∪ {𝑝∞, (∞,∞)}.

2.2 Local Parametrizations
In this section we recall some results from [9]. For a more algorith-

mic point of view we refer to [17]. In Duval’s work it is assumed

that the given polynomial 𝐹 ∈ K[𝑦, 𝑝] is monic (considered as poly-

nomial in 𝑝) and absolutely irreducible, i.e. irreducible inK[𝑦, 𝑝]. As
it is just indicated therein, the results similarly hold for square-free

𝐹 with no factor in K[𝑦] as it is assumed in (1). In Proposition 2.9,

we give a proof of the main theorem from [9] for this more general

setting.

A local parametrization of the curve CC (𝐹 ) is a pair (𝑎(𝑡), 𝑏 (𝑡)) ∈
C((𝑡))2\C2

such that 𝐹 (𝑎(𝑡), 𝑏 (𝑡)) = 0. The center of the parametriza-

tion is defined as (𝑎(0), 𝑏 (0)). Two parametrizations (𝑎1 (𝑡), 𝑏1 (𝑡)),
(𝑎2 (𝑡), 𝑏2 (𝑡)) are equivalent if there is some 𝑠 (𝑡) ∈ C[[𝑡]] with
ord𝑡 (𝑠 (𝑡)) = 1 such that

(𝑎1 (𝑠 (𝑡)), 𝑏1 (𝑠 (𝑡))) = (𝑎2 (𝑡), 𝑏2 (𝑡)) .
A local parametrization is said to be reducible if it is equivalent
to another one in C((𝑡𝑘 ))2

for some 𝑘 > 1. Otherwise, it is called
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irreducible. The equivalence class of an irreducible local parametriza-

tion 𝐴(𝑡) is called a place and denoted by [𝐴(𝑡)]. Since equivalent
local parametrizations have the same center point we may speak

about the center of a place. Additionally, a place lies above a point
𝑦0 ∈ C if the center of this place is (𝑦0, 𝑝0) for some 𝑝0 ∈ C∞.

Let 𝐹 ∈ K[𝑡, 𝑝] be square-free and 𝑑 = deg𝑝 (𝐹 (𝑡, 𝑝)). Due to

Puiseux’ Theorem, given 𝑦0 ∈ K, we obtain 𝑑-many Puiseux ex-
pansions 𝜑1 (𝑡), . . . , 𝜑𝑑 (𝑡) of 𝐹 expanded around 𝑦0. The Puiseux

expansions are of the form 𝜑 (𝑡) = ∑
𝑗≥𝑘 𝑐 𝑗 (𝑡 − 𝑦0) 𝑗/𝑚 with rami-

fication index equal to𝑚 ∈ Z>0 and coefficients 𝑐 𝑗 ∈ K. Classical
Puiseux parametrizations are obtained from such a Puiseux expan-

sion 𝜑 (𝑡) as
(𝑦0 + 𝑡𝑚,

∑︁
𝑗≥𝑘

𝑐 𝑗 𝑡
𝑗 ) ∈ C((𝑡))2 .

Note that for any equivalent local parametrization (𝑎(𝑡), 𝑏 (𝑡)) the
order ord𝑡 (𝑎(𝑡)−𝑎(0)) is equal to the ramification index of𝜑 . Hence,

we may speak indistinctly about the ramification index of a local

parametrization and of a place.

The Puiseux expansions and its corresponding places can be

grouped according to the field extensions they define. Let 𝜁𝑚𝑖
be a

primitive𝑚𝑖 -th root of unity. After the transformation 𝑡 = 𝑡 −𝑦0, a

monic polynomial 𝐹 (𝑡, 𝑝) can be factored as

𝐹 =

𝜌∏
𝑖=1

𝐹𝑖 with 𝐹𝑖 irreducible in K[[𝑡]] [𝑝]

𝐹𝑖 =

𝑓𝑖∏
𝑗=1

𝐹𝑖 𝑗 with 𝐹𝑖 𝑗 irreducible in K[[𝑡]] [𝑝]

𝐹𝑖 𝑗 =

𝑚𝑖−1∏
𝑘=0

(𝑦 − 𝜑𝑖 𝑗 (𝜁𝑘𝑚𝑖
𝑡1/𝑚𝑖 )) with 𝜑𝑖 𝑗 ∈ K((𝑡))

for some 𝜌, 𝑓𝑖 ,𝑚𝑖 ∈ Z>0. The 𝜑𝑖 𝑗𝑘 (𝑡) = 𝜑𝑖 𝑗 (𝜁𝑘𝑚𝑖
𝑡1/𝑚𝑖 ) are exactly

the Puiseux expansions of 𝐹 expanded around 𝑦0 and have ram-

ification index𝑚𝑖 . The {𝐹𝑖 𝑗 }1≤ 𝑗≤ 𝑓𝑖 have coefficients in a degree

𝑓𝑖 extension L𝑖 of K and they are conjugated by the action of the

Galois group of L𝑖/K (for details on Galois theory see e.g. [8]). We

call L𝑖 the residue field of 𝐹𝑖 and 𝑓𝑖 its residual degree. It holds that

𝑑 =
∑︁

1≤𝑖≤𝜌
𝑚𝑖 𝑓𝑖 . (3)

For non-monic 𝐹 (𝑡, 𝑝), the same factorization can be found with an

additional factor in 𝐹𝑖 𝑗 .

Definition 2.5. In the notation from above, a system of rational
Puiseux parametrizations (over K), lying above 𝑦0 ∈ K, is a set of
non-equivalent irreducible local parametrizations

{(𝑦0 + 𝛼𝑖 𝑡
𝑚𝑖 , 𝑏𝑖 (𝑡))}1≤𝑖≤𝜌 ⊂ L𝑖 ((𝑡))2

where𝑚𝑖 ∈ Z>0, 𝛼𝑖 ≠ 0.

The criterion that rational Puiseux parametrizations have coeffi-

cients in L𝑖 is usually not fulfilled for classical Puiseux parametriza-

tions where𝛼𝑖 = 1. Note that they are in one-to-one correspondence

by the reparametrization 𝑠𝑖 (𝑡) = 𝛼
−1/𝑚𝑖

𝑖
𝑡 .

Remark 2.6. The field extension L𝑖/K is minimal in the following
sense (see [9, Theorem 3 ff.]): For a rational Puiseux parametrization
𝐴(𝑡) over K with residual field L𝑖 and a local parametrization 𝐵(𝑡) ∈

[𝐴(𝑡)], where 𝐵(𝑡) ∈ L𝐵 ((𝑡))2, it holds that the degree of the field
extension L𝐵/K is at least the residual degree 𝑓𝑖 .

Definition 2.7. The regularity index of a Puiseux expansion
𝜑 (𝑡) = ∑

𝑗≥𝑘 𝑐 𝑗 𝑡
𝑗/𝑚 of 𝐹 (𝑡, 𝑝) is defined as the smallest number 𝑅 ∈

Z≥0, 𝑅 ≥ 𝑚 ·ord𝑡 (𝜑 (𝑡)), such that 𝜑 (𝑡) is the only Puiseux expansion
extending the truncation 𝜑̃ (𝑡) = ∑𝑅

𝑗=𝑘
𝑐 𝑗 𝑡

𝑗/𝑚 . The truncation 𝜑̃ (𝑡) is
then called the singular part of 𝜑 (𝑡).

Correspondingly, the regularity index of a classical Puiseux parametriza-
tion (𝑦0 + 𝑡𝑚, 𝜑 (𝑡𝑚)) is that of 𝜑 (𝑡) and its singular part is (𝑦0 +
𝑡𝑚, 𝜑̃ (𝑡𝑚)). The regularity index and singular part of a rational
Puiseux parametrization (𝑦0 + 𝛼 𝑡𝑚, 𝑏 (𝑡)) are defined as that of the
Puiseux expansion 𝜑 (𝑡) = 𝑏 (𝛼−1/𝑚𝑡1/𝑚).

The coefficients of a Puiseux expansion 𝜑 (𝑡) ∈ C⟨⟨𝑡⟩⟩ beyond
the singular part 𝜑̃ (𝑡) ∈ L(𝑡1/𝑚) can be computed by the implicit

function theorem up to an arbitrary degree [16, Corollaries 5.1, 5.2].

This implies that 𝜑 (𝑡) ∈ L((𝑡1/𝑚)). Consequently, the singular part
of a classical / rational Puiseux parametrization determines the

ramification index and the coefficient field.

Lemma 2.8. Let K ∈ {Q,R}. Let 𝐹 ∈ K[𝑦, 𝑝] and let 𝐴(𝑡) be
a rational Puiseux parametrization over K. Then the place [𝐴(𝑡)]
contains a local parametrization with coefficients in K if and only if
the coefficients of the singular part of 𝐴(𝑡) are in K.

Proof. Let L𝐴 be the residual field of𝐴(𝑡) and let 𝐵(𝑡) ∈ [𝐴(𝑡)]
be a local parametrization with coefficient field L𝐵 = K. Since the
degree of the field extension L𝐴/K is minimal (see Remark 2.6), it

follows that L𝐴 = K.
The converse direction follows from the fact that𝐴(𝑡) ∈ K((𝑡))2

if and only if the singular part of 𝐴(𝑡) has coefficients in K. □

Note that a rational Puiseux parametrization 𝐴(𝑡) ∈ R((𝑡))2
is

convergent and gives infinitely many real curve points in a certain

neighborhood of zero. In this way, infinitely many real curve points

can be found (cf. Remark 2.2).

From an algorithmic point of view, we have to bound the regu-

larity index. This is stated in [9, Lemma 2] for monic polynomials.

We generalize this result here.

Proposition 2.9. Let 𝐹 ∈ K[𝑡, 𝑝] be a square-free polynomial.
Then the regularity index of every Puiseux expansion of 𝐹 is bounded
by

𝑁 = 2(deg𝑝 (𝐹 ) − 1) deg𝑡 (𝐹 ) deg𝑝 (𝐹 ) + 1. (4)

Proof. Let 𝐹 (𝑡, 𝑝) =
∑

0≤𝑖≤𝑑 𝑎𝑖 (𝑡) 𝑝𝑖 with 𝑎𝑑 (𝑡) ≠ 0 and 𝑑 =

deg𝑝 𝐹 and 𝑟 = deg𝑡 𝐹 . Let 𝜈 = deg𝑡 (𝑎𝑑 ) and set

𝐺 (𝑡, 𝑧) = 𝑡𝜈 (𝑑−1)𝐹 (𝑡, 𝑡−𝜈𝑧) ∈ K[𝑡, 𝑧] .

The leading coefficient of 𝐺 (𝑡, 𝑧), as a polynomial in 𝑧, is of order

zero and deg𝑝 (𝐹 ) = deg𝑧 (𝐺), deg𝑡 (𝐺) ≤ deg𝑡 (𝐹 ) +𝜈 (𝑑 − 1). By [9,
Lemma 2], we obtain the bound on the regularity index 𝑅 of Puiseux

expansions of 𝐺 (𝑡, 𝑧)

𝑅 ≤ 2(deg𝑧 𝐺 − 1) deg𝑡 𝐺 + 1

≤ 2(deg𝑝 𝐹 − 1) (deg𝑡 𝐹 + 𝜈 (deg𝑝 𝐹 − 1)) + 1

≤ 2(𝑑 − 1)𝑟𝑑 + 1 = 𝑁 .
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A formal Puiseux series 𝑝 (𝑡) is a Puiseux expansion of 𝐹 (𝑡, 𝑝) if
and only if 𝑧 (𝑡) = 𝑡𝜈 𝑝 (𝑡) is a Puiseux expansion of 𝐺 (𝑡, 𝑧). In
particular, 𝑝 (𝑡) and 𝑧 (𝑡) have the same regularity index 𝑅. Since

𝑁 is independent of the chosen Puiseux expansion, the statement

follows. □

Given L ∈ {R,Q}, by Lemma 2.8 and Proposition 2.9, it can be

algorithmically checked whether there are local parametrizations

lying above a given 𝑦0 ∈ K with elements in L((𝑡))2
. Moreover,

this also determines the real curve branches lying above 𝑦0 in an

alternative way to that introduced for the topological graph.

Example. For 𝐹 (𝑡, 𝑝) and𝑦0 = 0 we obtain the Puiseux expansions

𝜑1 (𝑡 ) = 1 − 𝑡2

2

− 3𝑡4

16

+ O(𝑡6 ), 𝜑2 (𝑡 ) = 1 + 𝑡2

2

+ 3𝑡4

16

+ O(𝑡6 ) ∈ Q[ [𝑡 ] ],

𝜑3 (𝑡 ) = 1 +
√

2𝑖𝜁 𝑡1/2 + 3

√
2𝑖𝜁 𝑡3/2

8

+ O(𝑡5/2 ) ∈ Q(
√

2𝑖 ) [ [𝑡1/2 ] ],

𝜑4 (𝑡 ) = 1 +
√

2𝜁𝑡1/2 − 3

√
2𝜁𝑡3/2

8

+ O(𝑡5/2 ) ∈ Q(
√

2) [ [𝑡1/2 ] ]

where 𝜁 ∈ {−1, 1}. This leads to the system of rational Puiseux
parametrizations

{(𝑡, 𝜑1 (𝑡)), (𝑡, 𝜑2 (𝑡)),

(−2𝑡2, 𝜑3 (−2𝑡2)) = (−2𝑡2, 1 − 2𝑡 + 3𝑡3

2

+ O(𝑡5)),

(2𝑡2, 𝜑4 (2𝑡2)) = (2𝑡2, 1 + 2𝑡 − 3𝑡3

2

+ O(𝑡5))} ⊂ Q((𝑡))2 .

The regularity index of 𝜑1, 𝜑2 is two and that of 𝜑3, 𝜑4 is one.

3 L-PUISEUX SERIES SOLUTIONS
In this section we use the results from Section 2.1 in order to find

L-Puiseux series solutions, that are Puiseux series solutions with
coefficients in L, of a given differential equation (1). We focus on

the cases where L = R and L = Q.
First we show that it is sufficient to consider differential equa-

tions with coefficients in K in order to find Puiseux series solutions

with real coefficients such that our assumptions for (1) are legit.

Lemma 3.1. Let 𝐹 ∈ C[𝑦, 𝑝] be square-free and 𝑦 (𝑥) ∈ R⟨⟨𝑥⟩⟩
be a non-constant solution of 𝐹 (𝑦,𝑦′) = 0. Then 𝐹 has a factor in
R[𝑦, 𝑝].

Proof. From [6, Theorem 11] we know that 𝑦 (𝑥) ∈ R⟨⟨𝑥⟩⟩ is
convergent in a certain neighborhood𝑈 . Hence, there are infinitely

many real simple points of CC (𝐹 ) given by (𝑦 (𝑥𝑛), 𝑦′ (𝑥𝑛)) with
𝑥 ∈ 𝑈 ∩R, where 𝑛 is the ramification index of𝑦 (𝑥). Then, from [20,

Lemma 7.3] it follows that 𝐹 has a real factor. □

Lemma 3.2. Let 𝐹 ∈ Q(𝜈) [𝑦, 𝑝] be square-free with 𝜈 ∈ C alge-
braic over Q and let 𝑦 (𝑥) ∈ Q⟨⟨𝑥⟩⟩ be a non-constant solution of
𝐹 (𝑦,𝑦′) = 0. Then 𝐹 has a factor in Q[𝑦, 𝑝].

Proof. Similar as in the proof of Lemma 3.1, there are infinitely

many simple points in CQ (𝐹 ). Let 𝜈 be an algebraic number of

degree 𝑟 + 1. Then, 𝐹 can be expressed as 𝐹 = 𝐹0 + 𝜈 𝐹1 + · · · + 𝜈𝑟 𝐹𝑟
where 𝐹𝑖 ∈ Q[𝑦, 𝑝]. Since 𝐹 vanishes at infinitely many rational

points, 𝐹0, . . . , 𝐹𝑟 vanish also at infinitely many points. Therefore,

their greatest common divisor is non-constant and a factor of 𝐹 in

Q[𝑦, 𝑝]. □

Anecessary condition on anL-Puiseux series solution of 𝐹 (𝑦,𝑦′) =
0, as we have already seen in Section 2, is that the initial tuple

(𝑦0, 𝑝0) is an L-rational curve point.

Remark 3.3. If (𝑦0, 𝑝0) ∈ CL (𝐹 ) is a non-critical curve point, by a
version of the implicit function theorem [10], there is a (non-constant)
formal power series solution 𝑦 (𝑥) of 𝐹 (𝑦,𝑦′) = 0 with coefficients in
L. In fact, by [6, Theorem 10], there is no other Puiseux series solution
with initial tuple (𝑦0, 𝑝0).

In the following we will focus on solutions with initial tuples

corresponding to critical curve points. As a side-result we addition-

ally show that the solution at a non-critical curve point is unique.

For this purpose we use the approach from [6]. Let ℎ ∈ {0, 2}.
The case ℎ = 0 corresponds to Puiseux series solutions expanded

around zero and ℎ = 2 corresponds to solutions expanded around

infinity. Let us recall that a non-constant solution 𝑦 (𝑥) ∈ C⟨⟨𝑥⟩⟩
with ramification index 𝑛 defines an irreducible local parametriza-

tion 𝐴(𝑡) = (𝑦 (𝑡𝑛), (1 − ℎ)𝑡ℎ𝑛𝑦′ (𝑡𝑛)) ∈ C((𝑡))2
, called a solution

parametrization (corresponding to 𝑦 (𝑥)). The place [𝐴(𝑡)] is then
called solution place.

A necessary condition on a place [(𝑎(𝑡), 𝑏 (𝑡))] to be a solution

place is that

𝑛(1 − ℎ) = ord𝑡 (𝑎(𝑡) − 𝑎0) − ord𝑡 (𝑏 (𝑡)) . (5)

holds for some 𝑛 ∈ Z>0 and ℎ ∈ {0, 2}. In the affirmative case

we call the place [(𝑎(𝑡), 𝑏 (𝑡))] order-suitable (with 𝑛 and ℎ). For a

given order-suitable place [(𝑎(𝑡), 𝑏 (𝑡))], we have to analyze the

reparametrizations given as the solutions of the associated differen-
tial equation

𝑎′ (𝑠 (𝑡))𝑠′ (𝑡) = (1 − ℎ)𝑛𝑡𝑛 (1−ℎ)−1𝑏 (𝑠 (𝑡)) (6)

for 𝑠 (𝑡) ∈ C[[𝑡]] with ord𝑡 (𝑠 (𝑡)) = 1. For ℎ = 0 there are exactly

𝑛 solution parametrizations in a solution place as [6, Theorem 10]

shows. For ℎ = 2 the associated differential equation (6) has either

no solution or a family of solutions 𝑠 (𝑡) =
∑
𝑖≥1

𝜎𝑖𝑡
𝑖 ∈ C[[𝑡]]

involving a free parameter 𝜎𝑛 . In both cases all C-Puiseux series

solutions can be found.

By restricting the coefficients of the local parametrization and

the reparametrization to L, we obtain the following result.

Proposition 3.4. Let 𝐹 ∈ K[𝑦,𝑦′] be a square-free polynomial as
in (1), let (𝑎(𝑡), 𝑏 (𝑡)) ∈ L((𝑡))2 be an irreducible local parametriza-
tion, order-suitable with 𝑛 ∈ Z>0 and ℎ ∈ {0, 2}, and let 𝑠 (𝑡) ∈
L[[𝑡]] be a solution of the associated differential equation. Then
𝑎(𝑠 (𝑥 (1−ℎ)/𝑛)) ∈ L⟨⟨𝑥⟩⟩ is a solution of the differential equation
𝐹 (𝑦,𝑦′) = 0.

Proof. By [6, Proposition 3], since (𝑎(𝑡), 𝑏 (𝑡)) is order-suitable
and 𝑠 (𝑡) is a solution of the associated differential equation, 𝑦 (𝑥) =
𝑎(𝑠 (𝑥 (1−ℎ)/𝑛)) is indeed a solution of 𝐹 (𝑦,𝑦′) = 0 and the coeffi-

cients of 𝑦 (𝑥) are in L. □

As a consequence of Proposition 3.4 together with Lemma 2.8

we obtain the following necessary condition on the existence of

L-Puiseux series solutions given just in terms of algebraic geometry.

Corollary 3.5. Let L ∈ {R,Q}. Let 𝑦 (𝑥) ∈ L⟨⟨𝑥⟩⟩ be a non-
constant solution of (1). Then the solution place corresponding to
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𝑦 (𝑥) is represented by a rational Puiseux parametrization such that
the coefficients of the singular part are in L.

Based on Proposition 3.4 we can now find L-Puiseux series solu-
tions. An effective method for checking whether the reparametriza-

tion 𝑠 (𝑡) has coefficients in L is given as follows.

Remark 3.6. Let (𝑎(𝑡) = 𝑦0+𝑡𝑘 ·
∑
𝑖≥0

𝑎𝑖𝑡
𝑖 , 𝑏 (𝑡) = 𝑡𝑟 ·∑𝑖≥0

𝑏𝑖𝑡
𝑖 ) ∈

L((𝑡))2 be an order-suitable local parametrization with 𝑛 = 𝑘−𝑟
1−ℎ > 0

and 𝑎0𝑏0 ≠ 0. The coefficients of the solutions of the associated dif-
ferential equation 𝑠 (𝑡) = ∑

𝑖≥1
𝜎𝑖𝑡

𝑖 have the following dependencies.
The first coefficient fulfills

𝑎0 𝜎
𝑛 (1−ℎ)
1

− (1 − ℎ)𝑛 𝑏0 = 0.

For ℎ = 0 and a fixed 𝜎1, the coefficients 𝜎𝑖 , 𝑖 ≥ 2, are uniquely
determined and depend on 𝜎1, 𝑎0, . . . , 𝑎𝑖−1, 𝑏0, . . . , 𝑏𝑖−1 such that
𝑠 (𝑡) ∈ L(𝜎1) [[𝑡]]. Hence, 𝑠 (𝑡) ∈ L[[𝑡]] if and only if 𝜎1 ∈ L. For
solutions expanded around infinity (ℎ = 2), if there exists a solution
𝑠 (𝑡), it additionally has a free parameter 𝜎𝑛 . By choosing 𝜎𝑛 ∈ L,
𝑠 (𝑡) has coefficients in L if and only if 𝜎1 ∈ L.

Let L = R. If 𝑛 is odd, there is always a possible choice for 𝜎1

in R. If 𝑛 is even, there are two possible choices if (1 − ℎ)𝑎0𝑏0 > 0

and no real 𝜎1 if (1 − ℎ)𝑎0𝑏0 < 0. For L = Q the fraction (1−ℎ)𝑛𝑏0

𝑎0

,
after canceling out possible common factors, additionally must have
squares as numerator and denominator.

Let us note that due to the bound on the field extension 𝑓 of a

rational Puiseux parametrization (see equation (3)) and Remark 3.6,

all coefficients of a C-Puiseux series solution of (1) are algebraic

over Q with bounded degree 𝑓 + 𝑛.
An open question is whether Proposition 3.4 also gives a suffi-

cient condition. More concretely, for a given order-suitable local

parametrization (𝑎(𝑡), 𝑏 (𝑡)) ∈ L((𝑡))2
, is there a solution 𝑠 (𝑡) ∈

C[[𝑡]] \ L[[𝑡]] of the associated differential equation such that

(𝑎(𝑠 (𝑡)), 𝑏 (𝑠 (𝑡))) has coefficients in L? In almost all cases the an-

swer is negative as the following theorems show.

For this purpose, let us define the order of a place A centered

at a finite point (𝑦0, 𝑝0) as min({ord𝑡 (𝑎(𝑡)), ord𝑡 (𝑏 (𝑡))}) where
(𝑦0+𝑎(𝑡), 𝑝0+𝑏 (𝑡)) ∈ A is an arbitrary local parametrization. Note

that the order of a place is indeed independent of the representative.

Similarly as formula 3, the sum of the orders of places centered at

(𝑦0, 𝑝0) is equal to the multiplicity of CC (𝐹 ) at (𝑦0, 𝑝0). For more

details see [22, page 108ff.].

Theorem 3.7. Let 𝐹 ∈ K[𝑦,𝑦′] be as in (1), let L ∈ {R,Q} and let
A be an order-suitable place centered at (𝑦0, 𝑝0) ∈ CL (𝐹 ) such that
one of the following conditions hold

(1) (𝑦0, 𝑝0) is finite and the order of A is one;
(2) A is order-suitable with 𝑛 = 1.

Then there is an L-Puiseux series solution 𝑦 (𝑥) corresponding to A if
and only if the singular part of the rational Puiseux parametrization
(𝑎(𝑡), 𝑏 (𝑡)) ∈ A has coefficients in L, the associated differential
equation is solvable and the first coefficient of a solution is in L.

Proof. Assume that 𝑦 (𝑥) = 𝑎(𝑠 (𝑥1/𝑛)) is an L-Puiseux series

solution. Let (𝑎(𝑡), 𝑏 (𝑡)) ∈ A be a rational Puiseux parametrization.

Then there exists a solution 𝑠 (𝑡) = ∑
𝑖≥1

𝜎𝑖𝑡
𝑖 ∈ C[[𝑡]] of (6) such

that𝑦 (𝑥) = 𝑎(𝑠 (𝑥1/𝑛)). In both cases the components of (𝑎(𝑡), 𝑏 (𝑡))

have non-negative order and, by Corollary 3.5, its coefficients are in

L. Due to Lemma 2.8, the latter is the case if and only if its singular

part has coefficients in L.
Let us assume that item (1) holds and ord𝑡 (𝑎′ (𝑡)) = 0 or ord𝑡 (𝑏′ (𝑡)) =
0. If 𝑎′ (0) ≠ 0, since 𝑎(𝑡) is convergent in a certain neighborhood

and due to the inverse function theorem, there exists (locally) an

analytic inverse 𝑎−1 (𝑡) ∈ L[[𝑡]] and 𝑠 (𝑡) = 𝑎−1 (𝑦 (𝑡𝑛)). Since the
right hand side has coefficients in L, also 𝑠 (𝑡) ∈ L[[𝑡]]. If 𝑏′ (0) ≠ 0,

by a similar argument, 𝑠 (𝑡) = 𝑏−1 (𝑦′ (𝑡𝑛)) ∈ L[[𝑡]]. In both cases,

by Remark 3.6, this is the case if and only if 𝜎1 ∈ L and, if ℎ = 2,

we can additionally choose 𝜎𝑛 ∈ L.
Let us assume that item (2) holds. By Remark 3.6, 𝜎1 is uniquely

determined and in L.
For the reverse implication, by Lemma 2.8, (𝑎(𝑡), 𝑏 (𝑡)) ∈ L((𝑡))2

and, by Remark 3.6, there is a solution 𝑠 (𝑡) ∈ L[[𝑡]] of (6). Then
the statement follows from Proposition 3.4. □

Theorem 3.8. Let 𝐹 ∈ R[𝑦,𝑦′] be as in (1) and let A be a
real order-suitable place with odd 𝑛 > 0, centered at (𝑦0, 𝑝0) ∈
CR (𝐹 ). Then there is a non-constant R-Puiseux series solution 𝑦 (𝑥)
of 𝐹 (𝑦,𝑦′) = 0.

Proof. By Lemma 2.8, there exists a real rational Puiseux parametriza-

tion 𝐴(𝑡) = (𝑎(𝑡), 𝑏 (𝑡)) ∈ A. SinceA is order-suitable, there exists

a solution 𝑠 (𝑡) =
∑
𝑖≥1

𝜎𝑖𝑡
𝑖
of (6) and by Remark 3.6, there is at

least one solution with 𝜎1 ∈ R. Then the statement follows by

Theorem 3.7. □

Note that the assumptions in Theorem 3.8 are always fulfilled for

regular curve points with 𝑛 = 1. Hence, it generalizes Remark 3.3.

Remark 3.9. When finding rational curve points, the case where
CC (𝐹 ) is of genus zero is special (see Section 2.1). There exists a
birational parametrization 𝑃 (𝑡) = (𝑃1 (𝑡), 𝑃2 (𝑡)) with coefficients in
an optimal field L [20]. Let (𝑦0, 𝑝0) = 𝑃 (𝑡0) ∈ CL (𝐹 ) for some 𝑡0 ∈ L.
Then a local parametrizations centered at a curve point (𝑦0, 𝑝0) can
be found by expanding 𝑃1 (𝑡 − 𝑡0), 𝑃2 (𝑡 − 𝑡0) around 0. Assume that
its coefficients are in L ∈ {R,Q}. Then, by Lemma 2.8, the rational
Puiseux parametrizations centered at (𝑦0, 𝑝0) also has coefficients in
L and the above reasonings hold for 𝑃 (𝑡) as well, where computations
might simplify. We illustrate this in Section 4 by the ongoing example.

Let us note that, when CC (𝐹 ) is of genus zero, the associated differ-
ential equation (6) with 𝑛 = 1, ℎ = 0 is studied in [13] for computing
closed-form solutions of 𝐹 (𝑦,𝑦′) = 0. The case of rational solutions is
covered by [11, 12].

If the given algebraic curve has genus zero, another sufficient

condition on verifying the existence of L-Puiseux series solutions
than that in Theorem 3.7 can be shown.

Theorem 3.10. Let 𝐹 ∈ K[𝑦,𝑦′] be as in (1), let L ∈ {R,Q} and
let 𝑃 (𝑡) = (𝑃1 (𝑡), 𝑃2 (𝑡)) ∈ L(𝑡)2 be a birational parametrization of
CC (𝐹 ) with 𝑃 (𝑡0) = (𝑦0, 𝑝0) ∈ CL (𝐹 ) for some 𝑡0 ∈ L and 𝑃 (𝑡 − 𝑡0)
is order-suitable. Then there exists a corresponding L-Puiseux series
solution of 𝐹 (𝑦,𝑦′) = 0 with initial tuple (𝑦0, 𝑝0) if and only if the
associated differential equation (6) is solvable and the first coefficient
of a solution is in L.

Proof. Assume that 𝑦 (𝑥) = 𝑎(𝑠 (𝑥1/𝑛)) is an L-Puiseux series

solution. Then there exists a solution 𝑠 (𝑡) =
∑
𝑖≥1

𝜎𝑖𝑡
𝑖 ∈ C[[𝑡]]
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of (6) such that 𝑦 (𝑥) = 𝑃1 (𝑠 (𝑥1/𝑛) − 𝑡0). Following the construction
of the inverse in [20, Theorem 4.37], it directly follows that the

inverse rational parametrization 𝑄 (𝑦, 𝑝) of 𝑃 (𝑡) has coefficients in

L. Since 𝑃 (𝑠 (𝑡) − 𝑡0) = (𝑦 (𝑡𝑛), 𝑡ℎ𝑛𝑦′ (𝑡𝑛)), we obtain

𝑠 (𝑡) = 𝑄 (𝑦 (𝑡𝑛), 𝑡ℎ𝑛𝑦′ (𝑡𝑛)) + 𝑡0 ∈ L[[𝑡]] .

By Remark 3.6, this is the case if and only if 𝜎1 ∈ L and, if ℎ = 2,

we can additionally choose 𝜎𝑛 ∈ L. The reverse implication follows

as in Theorem 3.7. □

4 ALGORITHMS AND EXAMPLES
In this section we outline an algorithm that is derived from the

results in the previous sections. We describe an algorithmic method

that computes, for a given initial value 𝑦0 ∈ K, Puiseux series

solutions of the differential equation (1) with coefficients in L ∈
{R,Q}. For each Puiseux series solution we will provide a solution

truncation that can be extended uniquely to an L-Puiseux series

solution. The solution truncations are Puiseux polynomials, i.e.

elements in L[𝑥1/𝑛] [𝑥−1], where 𝑛 is the ramification index of the

corresponding Puiseux series solution.

The current work is partly implemented in the Maple package

FirstOrderSolve [3]. The package is available at the online repos-
itory https://risc.jku.at/sw/firstordersolve/. Although it is not ex-

plicitly mentioned within the documentation, the package already

uses rational Puiseux parametrizations because, empirically, com-

putations with rational Puiseux expansions are more efficient than

that with classical Puiseux expansions.

Algorithm 1 InitialValueSolve

Input: A first-order AODE 𝐹 (𝑦,𝑦′) = 0, where 𝐹 ∈ K[𝑦, 𝑝] is
square-free with no factor in K[𝑦] or K[𝑝] and an initial tuple

(𝑦 (0), 𝑦′ (0)) = (𝑦0, 𝑝0) ∈ CL (𝐹 ) for a number field K and

L ∈ {R,Q}.
Output: A set consisting ofL-Puiseux series solutions of 𝐹 (𝑦,𝑦′) =

0 fulfilling (𝑦 (0), 𝑦′ (0)) = (𝑦0, 𝑝0) which are represented by

Puiseux polynomials such that there is a one-to-one correspon-

dence between the truncations and the series.

1: If 𝑦0 = ∞, apply the following steps to the numerator of

𝐹 (1/𝑦,−𝑝/𝑦2).
2: Compute a system of rational Puiseux parametrizations A

centered at (𝑦0, 𝑝0).
3: For every rational Puiseux parametrization 𝐴(𝑡) =

(𝑎(𝑡), 𝑏 (𝑡)) ∈ A, check whether 𝐴(𝑡) is order-suitable

(with 𝑛 ∈ Z>0, ℎ ∈ {0, 2}) and the singular part of 𝐴(𝑡) has
coefficients in L.

4: In the affirmative case, compute the solution set S of the asso-

ciated differential equation (6).

5: Discard the 𝑠 (𝑡) ∈ S where the first coefficient is not in L.

6: Output 𝑎(𝑠 (𝑥 (1−ℎ)/𝑛)).

Let us give some remarks on Algorithm 1:

• In every step we compute only the first terms of the series

until the singular part is surpassed. A bound for this is given

by (4).

• The initial values (𝑦0, 𝑝0) are algebraic and may be given by

their minimal polynomials. Then the further computation

is done symbolically. In particular, the coefficients of 𝐴(𝑡)
may be expressed in terms of 𝑦0, 𝑝0 and the check whether

it has real coefficients is performed by cylindrical algebraic

decomposition [1].

• There are either no, one or two elements 𝑠 (𝑡) in S, possibly
depending on a free parameter, with coefficients in L (see
Remark 3.6).

• If (𝑦0, 𝑝0) fulfills the assumptions of Theorem 3.7 or The-

orem 3.10, then all L-Puiseux series solutions with initial

tuple (𝑦0, 𝑝0) are found.
• The assumption that (𝑦0, 𝑝0) ∈ CL (𝐹 ) could be neglected,

because if (𝑦0, 𝑝0) is not a curve point there is no local

parametrization centered at it and if𝑦0 or 𝑝0 is not in L∞, the

rational Puiseux paramerizations does not have coefficients

in L.

Algorithm 2 RealPuiseuxSolve

Input: A first-order AODE 𝐹 (𝑦,𝑦′) = 0, where 𝐹 ∈ K[𝑦, 𝑝] is
square-free with no factor in K[𝑦] or K[𝑝].

Output: A set consisting ofR-Puiseux series solutions of 𝐹 (𝑦,𝑦′) =
0 (expanded around zero and infinity) represented by their

solution truncations: The generic solution by 𝑦0 + 𝑝0𝑥 and

the topological graph G of CR (𝐹 ) describing the real curve

points (𝑦0, 𝑝0); and some particular solutions not covered by

the generic solution represented as Puiseux polynomials.

1: If (∞,∞) ∈ CR (𝐹 ), then perform the transformation 𝑦 = 1/𝑦
and apply Algorithm 1 to the numerator of 𝐹 (1/𝑦,−𝑝/𝑦2) and
(𝑦0, 𝑝0) = (0, 0).

2: If CR (𝐹 ) is infinite, compute its topological graph G. Otherwise

there is no generic real solution.

3: For every critical curve point (𝑦0, 𝑝0) ∈ CR (𝐹 ), apply Algo-

rithm 1 with L = R.

If a description of all rational curve points CQ (𝐹 ) is given, e.g. by
a rational parametrization 𝑃 (𝑡) ∈ Q(𝑡)2

, one can find all Q-Puiseux
series solutions of 𝐹 (𝑦,𝑦′) = 0 similarly as in Algorithm 2.

Example. Let us illustrate Algorithms 2 and 1 by the concurrent
example

𝐹 = ((𝑦′ − 1)2 + 𝑦2)3 − 4(𝑦′ − 1)2𝑦2 = 0.

The generic solution of 𝐹 (𝑦,𝑦′) = 0 is given by 𝑦 (𝑥 ;𝑦0) = 𝑦0 + 𝑝0𝑥 +
O(𝑥2) with (𝑦0, 𝑝0) ∈ CR (𝐹 ) \ B. The set CR (𝐹 ) \ B is given by the
topological graph G, displayed in Figure 1.

Let us now analyze the real critical curve points in B. In the system
of rational Puiseux parametrizations at (0, 1),

{(𝑡, 𝜑1 (𝑡)), (𝑡, 𝜑2 (𝑡)), (−2𝑡2, 𝜑3 (−2𝑡2)), (2𝑡2, 𝜑4 (2𝑡2))},
the first two local parametrizations are order-suitable with 𝑛 = 1

and the latter are order-suitable with 𝑛 = 2. The associated differen-
tial equation (6) corresponding to (2𝑡2, 𝜑4 (2𝑡2)) ∈ Q((𝑡))2 has the
solutions

𝑠1 (𝑡) = 𝑡√
2

+ 𝑡2

3
+

√
2𝑡3

36
− 89𝑡4

1080
+ O(𝑡5),

𝑠2 (𝑡) = −𝑡√
2

+ 𝑡2

3
−

√
2𝑡3

36
− 89𝑡4

1080
+ O(𝑡5)
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with first coefficients in Q(
√

2). Therefore,

2(𝑠1 (𝑥1/2)2) = 𝑥 + 2

√
2𝑥3/2

3
+ 𝑥2

3
+ O(𝑥5/2),

2(𝑠2 (𝑥1/2)2) = 𝑥 − 2

√
2𝑥3/2

3
+ 𝑥2

3
+ O(𝑥5/2)

are Q(
√

2)-Puiseux series solutions of 𝐹 (𝑦,𝑦′) = 0. Similarly we can
find the twoC-Puiseux series solutions corresponding to (−2𝑡2, 𝜑3 (−2𝑡2)),

𝑥 + 2

√
2𝑖𝑥3/2

3
− 𝑥2

3
+ O(𝑥5/2), 𝑥 − 2

√
2𝑖𝑥3/2

3
− 𝑥2

3
+ O(𝑥5/2),

and the two formal power series solutions with rational coefficients

𝑥 + 𝑥3

6
+ 17𝑥5

240
+ O(𝑥6), 𝑥 − 𝑥3

6
+ 17𝑥5

240
+ O(𝑥6)

corresponding to (𝑡, 𝜑2 (𝑡)) and (𝑡, 𝜑1 (𝑡)), respectively. Note that in [6,
Example 15] we obtained the same solution set, but when using
classical Puiseux parametrizations it is in general unclear which
of the solutions will be real as it can be seen with the initial tuple
( 4𝛽

9
, 𝛾) ∈ CR (𝐹 ). The rational Puiseux parametrizations are

( 4𝛽
9
+ 1

𝛽
𝑡2, 𝛾 − 1

𝛽
𝑡 + O(𝑡3)) .

whereas the classical Puiseux parametrizations are purely complex.
The solutions of the associated differential equation are

𝑠 (𝑡) = ±
√︁
−𝛾 𝛽 𝑡 + O(𝑡2)

which are real if and only if (𝛽,𝛾) ∈ {(−
√

3, 1+ 2

√
6

9
), (−

√
3, 1− 2

√
6

9
)}.

Thus, we obtain four R-Puiseux series solutions with initial value
( 4𝛽

9
, 𝛾) given by

4𝛽
9
+ 𝛾𝑥 ± 2

√
−𝛾 𝛽

3

√
3

𝑥3/2 +
(

5𝛾
32

− 143

864

)
𝛽𝑥2 + O(𝑥5/2).

Finally, there is no solution corresponding to the curve point (∞,∞).
Let us note that all curve points of CC (𝐹 ) are fulfilling the assump-

tions of Theorem 3.7. Hence, we have indeed found all R-Puiseux series
solutions of 𝐹 (𝑦,𝑦′) = 0.

Let us now demonstrate that these solutions can also be found by
using 𝑃 (𝑡) (see Remark 3.9). The curve point (0, 1) is obtained for
𝑡0 ∈ {0, 1

14
, 1

15
, 1

16
}. Since 𝑃 (𝑡) ∈ Q(𝑡)2 has (0, 1) four times in its

image, we could have directly concluded that the rational Puiseux
parametrizations of CC (𝐹 ) centered at (0, 1) have rational coefficients.
Moreover, for 𝑡0 = 0, the Taylor expansion is

𝑃 (𝑡) = (8𝑡2 + O(𝑡3), 1 + 4𝑡 + O(𝑡2) .

The associated differential can be written in closed-form as

𝑃 ′
1
(𝑠 (𝑡)) 𝑠′ (𝑡) = 2𝑡 𝑃2 (𝑠 (𝑡))

and has the solutions 𝑠 (𝑡) = ± 1

2

√
2

+ O(𝑡2). Then,

𝑃1 (𝑠 (𝑥1/2)) = 𝑥 ± 2

√
2𝑥3/2

3

+ 𝑥2

3

+ O(𝑥5/2)

are the R-Puiseux series solutions corresponding to this place.
Since CQ (𝐹 ) is given by 𝑃 (Q) ∪ 𝑝∞, we can use Algorithm 2 for

finding the Q-Puiseux series solutions of 𝐹 (𝑦,𝑦′) = 0. The generic
solution is 𝑦 (𝑥 ;𝑦0) = 𝑦0 + 𝑝0𝑥 + O(𝑥2) for (𝑦0, 𝑝0) ∈ CQ (𝐹 ) \ B. By

Theorem 3.10, the generic solution and 𝑥 ± 𝑥3

6
+ O(𝑥5) represent all

Q-Puiseux series solutions of 𝐹 (𝑦,𝑦′) = 0.

Example 2. Let us consider 𝐹 (𝑦,𝑦′) = 𝑦′ +𝑦3𝑦′2 +𝑦2 − 1 and the
critical curve point (∞,∞) ∈ CC (𝐹 ) as initial tuple. The numerator
of 𝐹 (1/𝑦,−𝑝/𝑦2) is𝐺 (𝑦, 𝑝) = 𝑝2 +𝑦5 −𝑝𝑦5 −𝑦7 and has the rational
Puiseux parametrization

(𝑎(𝑡), 𝑏 (𝑡)) = (−𝑡2,−𝑡5 + 𝑡9

2

+ O(𝑡10))

centered at (0, 0), which is order-suitable with 𝑛 = 3, ℎ = 2. The
associated differential equation 2𝑠′ (𝑡) = 3𝑡−4 ·(−𝑠 (𝑡)4+ 𝑠 (𝑡 )8

2
+O(𝑡9))

has the solution

𝑠 (𝑡) = 𝑠1𝑡

3

+ 𝑠4 𝑡
4 +

𝑠2

1
𝑡5

27

+ O(𝑡6),

where 𝑠4 ∈ R is a free parameter and 𝑠3

1
= 2/3. Then, for 𝑠1 = 3

√︁
2/3,

we obtain the R-Puiseux series solution (expanded around infinity)

(𝑎 (𝑠 (𝑥−1/3 ) ) )−1 =
− 3
√

18𝑥2/3

2

+3𝑠4 𝑥
−1/3−

3
√

18

2

𝑥−2/3

9

− 𝑥−1

3

+O(𝑥−4/3 )

of 𝐹 (𝑦,𝑦′) = 0.
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