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Regular Expression (RE) matching is a computational kernel used in several applications. Since RE complexity
and data volumes are steadily increasing, hardware acceleration is gaining attention also for this problem.
Existing approaches have limited flexibility as they require a different implementation for each RE. On the
other hand, it is complex to map efficient RE representations like non-deterministic finite-state automata onto
software-programmable engines or parallel architectures.

In this work, we present CICERO, an end-to-end framework composed of a domain-specific architecture
and a companion compilation framework for RE matching. Our solution is suitable for many applications, such
as genomics/proteomics and natural language processing. CICERO aims at exploiting the intrinsic parallelism
of non-deterministic representations of the REs. CICERO can trade-off accelerators’ efficiency and processors’
flexibility thanks to its programmable architecture and the compilation framework. We implemented CICERO
prototypes on embedded FPGA achieving up to 28.6× and 20.8× more energy efficiency than embedded and
mainstream processors, respectively. Since it is a programmable architecture, it can be implemented as a
custom ASIC that is orders of magnitude more energy-efficient than mainstream processors.

Additional Key Words and Phrases: Domain-Specific Architecture, Regular Expressions, Non-deterministic
Automata, Energy Efficiency

1 INTRODUCTION
Many applications rely on determining whether a string obeys a specific text-based pattern. A
Regular Expression (RE) is a compact and specialized expressive language used to describe such
patterns. RE matching determines whether a sequence of input characters belongs to the set of
strings described by the pattern. If so, we say the string is “accepted” by the RE.
RE matching is an essential kernel [2] for traditional computer security [32, 41] and database

queries [19, 31] but also for novel domains such as natural language processing [35, 42], and genome-
protein matching [8, 36]. The literature contains different algorithms to tackle RE matching. The
first approach comes from theoretical computer science and employs deterministic finite-state
automata (DFA) [17]. Such procedure requires only to keep track of the current state and moves into
a new state every time it reads a character. However, some REs intrinsically carry a certain level of
non-determinism. For example, the RE “(abbb|abab)” describes two alternative patterns that both
start with the sub-string “ab”. Therefore, the matching process does not know which pattern is
matching until it evaluates the last two characters (either “bb” or “ab”). Even though it is always
possible to move from non-deterministic finite-state automaton (NFA) into a deterministic version
via the power-set construction algorithm, this conversion can exponentially increase the number of
states. Figures 1a and 1b show a simple example where the NFA representation (Figure 1a) requires
less states. When using an NFA, we need to adapt the matching algorithm to manage the states
with alternative paths associated with the same character. A recursive implementation selects an
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Fig. 1. Different representation of the RE “(a|b)∗b(a|b)”.

alternative and, if wrong, it backtracks to the most recent “decision state” to evaluate a different
path. This approach also requires reverting the portion of the string that was processed in the
wrong path. In this way, the backtracking algorithm is simple but requires processing the input
string multiple times. In the worst case, if the string does not match the RE, the algorithm must try
all possible execution paths, leading to an exponential execution time [9]. An alternative approach
with linear execution time has been proposed by Thompson [33] and used by Google in RE2 [11], a
RE software library, which is in use in many Google products like BigQuery1 and Google Suite2.
Despite significant algorithmic improvements, software solutions cannot keep pace with the

increasing size of the processed data (either input strings or REs). For this reason, hardware
acceleration is a valid alternative for computationally-intensive kernels such as those for RE
matching [3, 4, 7, 14, 26, 29, 31, 40]. In this scenario, reconfigurable FPGA devices represent a viable
solution to boost the matching process while keeping a low energy profile. FPGAs can achieve a
throughput of 100Gbps during intrusion prevention while a CPU with 250 cores is limited only
to 400Mbps [41] (almost 250× of improvement). So, FPGAs can be used to implement specialized
energy-efficient RE engines, while the device or part of it can be turned off when unused [16, 18].
However, since fixed-function accelerators embed custom RE matching logic for a given set of REs,
they cannot be applied for other patterns, limiting the solution flexibility. Indeed, this approach
requires to re-synthesize the logic for each new RE.
To overcome these limitations, we propose CICERO, a complete solution based on domain-

specific programmable engines for RE matching. CICERO includes a domain-specific architecture
for RE matching where each engine’s execution model is based on Thompson’s approach and a
compilation framework to create the programming code of such engines. Indeed, given the input
REs, the CICERO compiler translates it into our architecture machine code based on a simplified
Instruction Set Architecture (ISA). Moreover, it applies optimizations to reduce the code size (i.e.,
number of instructions) and extract more hardware parallelism. Then, the CICERO engine executes
such instructions while processing the input string. To exploit more hardware parallelism, we
also describe a parallel architecture composed of multiple engines, evaluating two alternative
interconnection topologies. CICERO combines the efficiency of specialized hardware accelerators
and the flexibility of general-purpose processors.

After introducing the problem of RE matching (Section 2), we present our main contributions:

• the ISA (Section 3) and the associated compiler (Section 4) to generate the RE matching
instruction to be executed;

1https://cloud.google.com/bigquery/docs/reference/standard-sql/string_functions?hl=it#regexp_contains
2https://support.google.com/docs/answer/62754#regular_expression4

https://cloud.google.com/bigquery/docs/reference/standard-sql/string_functions?hl=it#regexp_contains
https://support.google.com/docs/answer/62754#regular_expression4
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Fig. 2. From a RE “abbb|abab” (top) to its NFA (mid) and, finally, to CICERO instructions (bottom).

• the CICERO architecture and the associated architectural optimizations to exploit the intrinsic
parallelism of non-deterministic REs (Section 5);

• a comprehensive validation of the CICERO overall solution with embedded FPGA prototypes
and a comparison with embedded (ARM) and mainstream (Intel) processors (Section 6).

We evaluated our single- and multi-engine FPGA prototypes using real benchmarks from the
open-source AutomataZoo benchmark suite [36]. We obtained excellent results both in terms of
performance and energy efficiency: our CICERO architecture is 28.6× and 20.8× more energy-
efficient than ARM and Intel processors, respectively. Given the flexibility of our architecture,
we present performance estimations for an ASIC implementation of CICERO that can potentially
outperform even high-end, commercial processors in energy efficiency on the complete benchmarks.

2 BACKGROUND ON REGULAR EXPRESSION MATCHING
This work aims at implementing an architecture for RE matching with two conflicting goals: 1)
provide the efficiency of hardware accelerators thanks to specialization and parallel execution, and
2) offer the flexibility and reusability of general-purpose processors. For this reason, we first analyze
existing algorithms for the RE matching since they have a huge impact on the performance of the
architecture. In the rest of this section, we use the RE “abbb|abab” (see the top part of Figure 2) as
a running example.

Software libraries, like the ones available in programming languages such as Python2.4 or Perl5.8,
divide the RE into sub-expressions until the matching problem becomes manageable and then use
a backtracking algorithm to evaluate the alternative paths [9].

Example: When applied to our example, they first divide the pattern into two sub-
expressions, namely “abbb” and “abab”. This decomposition can be easily represented as
the non-deterministic finite-state automaton shown in the mid part of Figure 2. When
a character (e.g., ‘a’) is compatible with two or more sub-expressions (e.g., “abbb” and
“abab”), the machine considers one sub-expression (e.g., “abbb”), keeping track of the
possible alternatives. If the machine does not match the string (i.e., the RE does not accept
the string), it needs to backtrack to the most recent alternative and consider other paths
(e.g., sub-expression “abab”).

This process repeats until the machine either accepts the string in one of the paths or rejects
it after exploring all the alternatives without finding a match. This algorithm becomes extremely
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inefficient when the number of alternative paths grows exponentially. Consider the case of RE-based
Denial of Services [27], where we may need to match the string “aaaa” and the RE “a?a?a?a?aaaa.”
Indeed, the backtracking approach has a time complexity of 𝑂 (2𝑚), where𝑚 is the number of
alternative paths to be evaluated [9].

Thompson observed that the backtracking algorithms are inefficient mostly because they need to
scan the input string multiple times [33]. To avoid this, he built a Virtual Machine (VM) implement-
ing amulti-threaded executionmodel. The VM can handle simple operations like scheduling a thread,
executing a thread for a certain time quantum, or a finite number of steps. Each thread executes
code to match a single RE expression or sub-expression. Whenever a parallel or non-deterministic
path occurs, it spawns additional threads to explore the alternatives with a breadth-first approach.
In this way, the new threads do not require to analyze again parts of the string already elaborated.
Moreover, we can avoid saving the whole thread context by executing the threads in “lockstep”: all
of them process the same character of the string and then move forward to the next [10].

Example: When applied to our example with the input string “abbb”, Thompson’s
algorithm creates two threads for the sub-expressions “abbb” and “abab”, respectively.
All threads process the same input character in parallel, so they do not need to look
backward in the string. After processing the first two characters ‘a’ and ‘b’, the third
character of the input string is ‘b’, while the second thread is expecting the character ‘a’.
So it fails the matching and stops. The other thread can continue, consumes the remaining
characters, and accepts the string.

This approach offers an execution time that grows linearly with the number of string characters,
while the degree of alternatives in the RE impacts the number of running threads per character.
Similarly to this work, we address alternatives and non-determinism using parallel hardware
execution flows similar to Thompson’s threads. In particular, we aim at executing the threads with
domain-specific engines that allow us to process the alternatives with the efficiency of hardware
accelerators. To trade-off specialization and flexibility, our engines are domain-specific processors
based on an Instruction Set Architecture (ISA) tailored to RE matching. Our architecture uses
multiple execution flows that process the same current character in parallel with RE-specific
instructions. We also provide a compiler-based framework to convert REs into such instructions.

Example: The bottom of Figure 2 shows the instructions flow generated to match the
RE “(abbb|abab)”. Each node represents a specific instruction that can either 1) proceed
to the next one to continue the match or 2) stop the analysis when the input string is not
accepted. We also have specific instructions to spawn “threads” (Split).

In the following sections, we describe the main components of our approach. First, we describe
the ISA (Section 3), which is the tailored software/hardware interface for creating domain-specific
RE matching engines. Then, we present the compiler devised for lowering REs into our CICERO-
compatible instructions (Section 4). Finally, we show the architectural details of the CICERO engine
and its optimizations (Section 5).

3 CICERO INSTRUCTION SET ARCHITECTURE
The CICERO ISA takes inspiration from the basic operations described by [9], which employs parallel
threads working in lockstep on a sequence of characters [10], similar to a breadth-first exploration.
For this reason, the CICERO engine must be capable of performing simple operations such as
matching a character, creating threads, adapting the instruction flow, or ending the execution.
For example, thread creation requires generating references to the instructions indicating the
alternative execution paths’ beginning.
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Table 1. CICERO Instruction Set: PC is Program Counter (i.e., the memory address of the next instruction to
be executed), cc is the pointer to the current character, and OP is the instruction operand.

Instruction Class Instruction Operand Description

Matching

MatchAny - PC+1 and cc+1.

Match(OP) Character Compares OP with *cc. In case of match,
PC+1 and cc+1.

NoMatch(OP) Character Compares OP with *cc. In case of no match,
only PC+1.

Control Flow
Split(OP) Target Addr.

Produces two parallel execution flow: the
first continues with the instruction that fol-
lows immediately after (PC+1), while a new
one starts at the target address (OP).

JMP(OP) Target Addr. Unconditional Jump to the target address
OP.

Acceptance Accept - Accepts if at the end of the string.
AcceptPartial - Accepts at any point in the string.

Each CICERO instruction consists of 16 bits and is divided into two parts: an opcode (3 bits),
which identifies the instruction type, and an operand (13 bits). The operand may have a different
interpretation based on the opcode. All instructions are stored in memory and identified by an
address. The execution of each instruction takes as input a character of the string and determines
the subsequent instructions to continue the matching. The ISA is divided into three main classes,
as shown in Table 1: matching (MatchAny, Match, and NoMatch instructions), control flow (Split
and JMP instructions), and acceptance (Accept and AcceptPartial instructions).
Matching instructions consider the current string character. A MatchAny instruction applies

when the RE contains a wildcard (e.g., ‘.’). It consumes any character and moves to the next
instruction. The Match instruction compares the current character with the instruction operand. If
the two characters match, we move to the next instruction in the sequence. Otherwise, no further
instruction is processed for this part of the flow. The NoMatch instruction represents the dual of
Match operations. Indeed, it checks if the operand and the current character do not correspond. In
that case, it moves to the next instruction in the sequence without consuming the current character.
Otherwise, if the characters match, it does not need to consider any further instruction, and this
part of the flow is over. In this way, it is possible to check a single character multiple times (e.g.,
“[ˆabc]” can be represented by a sequence of three NoMatch instructions followed by a MatchAny).

Control flow instructions change the next instructions to be executed and are the basis for
creating the multiple execution flows that process the alternative non-deterministic paths. A JMP
instruction unconditionally sets a new arbitrary point to continue the execution flow. A Split
instruction creates parallel execution flows (or threads). The first flow continues with the next
instruction, while the second one starts at the address targeted by the operand.

Acceptance instructions conclude the RE matching algorithm. The AcceptPartial instruc-
tion affirmatively concludes the RE matching at any point of the input string, while the Accept
instruction concludes only at the end of the string.

4 CICERO COMPILER
Since CICERO instructions are stateless, we can not take advantage of state-of-the-art algorithms,
such as register allocation, available in highly optimized compiler frameworks. Therefore, we built
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Fig. 4. Example of code restructuring optimization ap-
plied to the RE “(a...|a...)”.

from scratch our own custom compiler that translates REs into executable binaries, according to
Section 3 format. The compiler has a standard structure with three parts: front-end, mid-end, and
back-end.
The front-end elaborates the input RE with an LR parser [21] and produces an abstract syntax

tree. The parser does not support any back-reference operator since the expressive power required
exceeds the regular languages [9]. At that point, the front-end manipulates the abstract syntax tree
to produce our architecture-agnostic intermediate representation (IR).

The mid-end applies a sequence of architecture-independent IR optimizations to enhance the RE
matching code, reduce the code size, and improve parallelism. Our set of optimizations includes
code restructuring and redundant instruction collapsing. These optimizations mostly target sequences
of Split instructions. The code restructuring reorganizes a sequence of Split instructions into a
tree with minimal height, while redundant instruction collapsing merges equivalent instructions.
Figure 3 shows an example of code restructuring. This optimization balances the number of

instructions to reduce the abstract syntax tree height. Indeed, the left side of Figure 3 shows that
the longest instruction path is three (up to the Match ‘d’), while the path up to the Match ‘a’
contains a single instruction. Therefore, in the worst case, i.e., when the current character is ‘d,’ the
Match ‘d’ execution happens after at least four instructions.
On the right-hand side, we can see the code after the compiler applies code restructuring.

In this case, the longest path to each Match is equal to two. Moreover, considering a parallel
architecture that can execute numerous paths simultaneously, this optimization will decrease the
overall execution time. For instance, assuming each instruction is executed in a unit of time, the
worst execution time with four cores is three time units.

The second optimization, i.e., redundant instruction collapsing, aims at identifying and merging
equivalent instructions in the code. This compression reduces both code size and execution time.
This is a common situation in case of non-deterministic representations, like the one in the bottom
of Figure 2 where two equivalent operations (i.e., Match ‘a’) follow a Split instruction. The
compiler repeats this operation until a fixed point to compress equivalent CICERO code parts.
Consider the example in Figure 2. We can anticipate the Match ‘a’ operations before the Split
and collapse them into a unique equivalent instruction without modifications on the code semantics.
Figure 4 shows an example of how this optimization reduces the size of the code, while Figure 6
shows the result of the optimizations to the example in Figure 2.

The back-end emits the actual machine instructions to be executed by the CICERO architecture.
We perform code placement in memory and, after that, we apply another redundant instruction
collapsing to JMP instructions. Since a chain of JMP instructions is inefficient (e.g., left-hand side



CICERO: A Domain-Specific Architecture for Efficient Regular Expression Matching 1:7

Current Character

Buffers

Manager

Instruction
Memory

Engine

Instruction Next
PC

STAGE 1 STAGE 2 STAGE 3

CICERO Core

Buffer Selection

Next PC +
Char. ID Accept

& Next 
PC

Accept

1st PC +
Char. ID

New PC + 
Char. ID

Exit PC + Char. ID

Char. 
ID

Fig. 5. CICERO base engine architecture.

Figure 3), we replace this chain with a unique JMP. In this way, we reduce the number of subsequent
JMP instructions to be processed.

5 CICERO ARCHITECTURE
This section describes the fundamental building blocks of our CICERO architecture. First, we
describe the CICERO base engine that elaborates the instructions over a single character at a time
(Section 5.1). Then, we increase the degree of parallelism in the CICERO engine enabling the ability
of processing multiple characters (Section 5.2). Finally, we aim at further increasing the parallelism
in instruction processing with a multi-engine architecture (Section 5.3). In this context, we also
explore two different interconnection topologies that offer different scalability models.

5.1 CICERO Base Engine
The fundamental block of the CICERO architecture is the CICERO engine, which processes the RE
instructions with a minimal amount of resources. The CICERO engine has two main components:
the CICERO Core and the Buffers. As shown in Figure 5, we combine the CICERO engine with
an Instruction Memory and a Manager module to obtain a platform that executes the instructions
described in Section 3. The CICERO RE matching code requires executing all instructions related
to a string character before moving to the next one until the string is either accepted or rejected.
The CICERO Core is a 3-stage pipelined processor that executes the instructions stored in

the Instruction Memory. The Program Counter (PC) refers to this memory and indicates the next
instruction to be executed3. The first pipeline stage uses the PC signal to address the Instruction
Memory and loads the next instruction. Both the remaining stages decode and execute the instruction
to either indicate the next instruction (by producing a new PC) or conclude the RE matching
algorithm by raising the Accept signal. The CICERO Core requires these two additional stages
since the Split instruction produces two PCs (corresponding to the beginning of the two threads),
while the engine has only one output port. Clearly, the third stage is executed only for this type of
instruction. The output port includes the PC and one extra bit to specify whether the thread has to
continue with the current character or proceed with the next. This bit redirects the CICERO core
output into the proper first-in-first-out (FIFO) of the Buffers. Furthermore, adding a multiplexer to
the CICERO core input allows us to insert the first thread, i.e., first instruction to be executed and
first character to be processed. The Buffers are composed of two FIFOs (or more as in Section 5.2).

3In the following, we use the term Program Counter (PC) and instruction, interchangeably. Indeed, the PC is the memory
reference to the corresponding instruction to be executed.
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string: a b a b c d
Clock cycles

PC Instruction C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 ...

1 match(a) S1 S2
2 match(b) S1 S2
3 split(7) S1 S2 S3
4 match(a) S1 S2
5 match(b) S1 S2
6 jmp(10) S1 S2
7 match(b) S1 S2
8 match(b)

9 jmp(10)

10 accept_partial S1 S2

Fig. 7. Execution timing diagram of CICERO code. S1, S2, and S3 indicate the stages of CICERO core.

We employ them as a ping-pong buffer that contains instructions related to the current character
and the other PCs for the following one.
The Manager selects from which FIFO the CICERO Core gets the following operation to be

processed. Therefore, the Manager alternates the content of the FIFOs among current character
PCs and following character PCs. Moreover, the Manager controls the overall execution of the RE
matching algorithm. Once the CICERO Core has consumed all instructions related to the current
character, theManager provides the new character and changes the FIFO for the CICERO Core. The
FIFO that is currently empty becomes the FIFO for the new next character. When the CICERO Core
reaches an Accept instruction, the CICERO engine notifies that the string is accepted. Otherwise,
when both queues are empty, the Manager concludes that the string does not match the RE.

Running Example. Consider the RE “abbb|abab” in Figure 2 and the corresponding optimized
CICERO code in Figure 6, together with the input string “ababcd”. The engine initialization starts
with the first thread, which has PC equal to 1, and the current character is the first ‘a’. The first
instruction is a Match ‘a’, and it is stored in the first FIFO (let us call it FIFO 0), while the other FIFO
(FIFO 1) is empty. CICERO fetches the first input character, i.e., ‘a’. Then, it executes the
first instruction (i.e., Match ‘a’), consumes the first ‘a’ of the input string,
and produces the reference to the second instruction (i.e., Match ‘b’). Since this
instruction refers to the next character, theManager adds it in the FIFO 1. FIFO 0, which is the FIFO
of the current character, i.e., ‘a’, is now empty since all corresponding instructions are executed;
hence, we can move to the following character of the input string, i.e., the first ‘b’, and switch to
FIFO 1. CICERO executes the second instruction (i.e., Match ‘b’) and produces the Split instruction,
i.e., number 3 in Figure 6. Given that there are no more instructions for the current character ‘b’, we
move to the following one, i.e., the second ‘a’, and swap FIFO 1 for FIFO 0. The core executes the
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Split instruction and produces two instructions: instruction 4 (Match ‘a’) and instruction 7 ( Match
‘b’) . Since both refer to the current character, the Manager adds them in the current FIFO, i.e., FIFO
0. CICERO starts executing instructions 4 and 7, but only instruction 4 (i.e., Match ‘a’) matches and
produces a new instruction , i.e., number 5 Match ‘b’, which the Manager places on FIFO 1. We
move ahead of one character in the string, i.e., the last ‘b’, and switch to FIFO 1. CICERO executes
instruction 5, i.e., Match ‘b’, which produces the JMP instruction, number 6. As for the previous case,
there are no more instructions referring to the current character, and we move forward in the input
string fetching the ‘c’ character, and we swap the FIFOs, i.e. FIFO 1 for FIFO 0. Since the JMP does
not read any character, instruction 10 is pushed into the current FIFO, i.e., FIFO 0. Finally, CICERO
takes instruction 10 from the queue and executes the AcceptPartial, ending the overall matching
procedure. Figure 7 shows the execution timing diagram of the described running example.
As the reader can see from this diagram, there are no instructions with different colors (i.e.,

referring to different characters) executed in the same clock cycle, even though they may be ready
to execute. For instance, instruction 5 is ready to be executed at clock cycle 8, however, its execution
is postponed at the end of all instruction related to third character. This execution delay will play a
crucial role in the following section of the manuscript.
In standard processors, supporting threads requires that the thread context is saved when it

moves to the idle state and reloaded once the thread is resumed. In CICERO, the threads refer to
the parallel flows processing the current character. Since the CICERO Core does not produce any
temporary values nor stores value in a register file, the CICERO context includes only the PC and
the current string pointer. The current character is shared among all active threads; hence, the PC
provides enough information to restart the corresponding thread.

5.2 CICERO Multi-Character Engine
The engine described in the previous section has an architecture able to process a single character
with multiple threads working in lockstep on a sequence of instructions (i.e., it consumes a character
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for each possible instruction flow). In this way, CICERO works in a breadth-first style that consumes
a character at a time without backtracking, similar to a single-stride NFA (i.e., single character [40]),
with two buffers. However, though it has noteworthy abilities, the single character consumption
rate limits the achievable throughput of characters processed per second.

Though we adopt an algorithmic approach that is more efficient than backtracking, the system
considers all the current character’s execution paths before moving to the next. The effectiveness
of this approach is high whenever compared to backtracking or processing workloads containing
several parallel sub-expression to evaluate. As the engine utilization increases, we extract the
best from CICERO. However, this is not always the kind of workloads in the RE world [35], and
sequential execution is inevitable [2]. There are two possible approaches: dealing with thread
accumulation in the next character buffer or increasing the character processing rate.
Considering the second approach, we can enhance the architecture by analyzing a character

window of 2𝑊 characters, i.e., 2𝑊 -stride NFA, with parallel threads in lockstep, as shown in Figure 8.
In this way, we can keep code portability among different windows of engines (i.e., the modification
is not visible at the ISA level), but we increase the engine character consumption rate that can now
run on 2𝑊 − 1 parallel characters. However, the thread context has to be updated to keep track
of the consumption pointer of the input string. CICERO handles this optimization by employing
a W-bit ID, called CC_ID, that refers to the current character in the window analyzed. Moreover,
whenever we encounter Match or a MatchAny instructions, we should update CC_ID to reflect the
fact that we moved to the next character. Considering that the CC_ID is a natural number modulo
2𝑊 , CICERO keeps the threads of the last character of the window in a non-ready state. Indeed,
their execution might conflict with a thread with the same CC_ID that refers to a newer character.
For instance, consider the input string “abcde”,𝑊 = 2, and a current window “abcd” within

CICERO, with running threads with CC_ID’s 0, 1, 2, 3. If the thread with CC_ID 3 goes first and finds
an instruction that consumes a character (e.g., Match or MatchAny), the thread CC_ID increases and
become 0, i.e., (3 + 1) mod 22. At this point, this thread would wrongly target the ‘a’ in the buffer
instead of the proper ‘e’. For this reason, we stall threads related to the last character of the window
that explains the minus one in the 2𝑊 − 1 parallel characters.
To summarize, the proposed optimization is a sliding window that the Manager handles as a

circular buffer. Indeed, we need to add a FIFO for each character of the sliding window (i.e., if𝑊 = 3
we need a total of 8 FIFOs) to handle separate thread contexts and adopt a policy that executes
always the oldest thread. An arbiter with programmable priority will let the proper instruction
execute. Therefore, we can consider the CICERO base engine described in the previous section as a
particular case with a window𝑊 = 1.

Finally, we need to account for the logic required to slide the window ahead, i.e., moving ahead
of one character. Indeed, the enhanced architecture tracks the number of threads per CC_ID in flight
in every architecture component (e.g., Buffers, CICERO Core, engine). Practically, there is a 2𝑊 -bit
wide bitmap that has an 𝑖𝑡ℎ active bit if there exists at least an active thread with CC_ID = 𝑖𝑡ℎ in
the architecture. The bitmaps are then combined with bitwise OR operations to hint the Manager
on sliding the window or not. Indeed, if the character bit closest to the beginning of the window,
i.e., the oldest one, is unset, the Manager fetches another character and slides the window.

Running Example. To better illustrate the mechanism behind CICERO with Multi-Character
Engine and how it takes advantage of non-determinism, we consider an extension to the example
of Section 5.1. Consider the RE “.*(abab|abbb)”, which is shown in Figure 9 in the form of a CICERO
code, and consider as input string “abaababd”. We chose this RE because it also highlights how
CICERO manages non-determinism conversely to a backtracking approach. Indeed, CICERO adopts
a breadth-first like execution model that explores all the alternatives at the same level. The inherent
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Fig. 9. CICERO code corresponding to ".*(abab|abbb)".

string: a b a a b a b d

W=1 Clock cycles

PC Instruction C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 ...

1 split(4) S1 S2 S3 S1 S2 S3
2 matchany S1 S2 S1 S2
3 jmp(1) S1 S2 S1 S1 S2 S2
4 match(a) S1 S2 S1 S2
5 match(b) S1 S2
6 split(10) S1 S2 S3
7 match(a) S1 S2
8 match(b)

9 jmp(13)

10 match(b)
11 match(b)
12 jmp(13)
13 accept_partial

string: a b a a b a b d

W=2 Clock cycles

PC Instruction C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 ...

1 split(4) S1 S2 S3 S1 S2 S3 S1 S2 S3
2 matchany S1 S2 S1 S2 S1 S2
3 jmp(1) S1 S2 S1 S2 S2
4 match(a) S1 S2 S1 S2 S1 S2
5 match(b) S1 S2
6 split(10) S1 S2 S3
7 match(a) S1 S2
8 match(b) S1 S2
9 jmp(13)

10 match(b) S1 S2
11 match(b)
12 jmp(13)
13 accept_partial

Fig. 10. Comparison of CICERO execution timing diagrams with Single character Engine (W=1) and with
Multi-Character Engine (W=2). S1, S2, and S3 indicate the stages of CICERO core.
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Fig. 11. An overview of CICERO multi-engine architecture showing the overall infrastructure that wraps
CICERO engines.

non-determinism in the considered RE leads CICERO to execute instructions 1, 2, 3, and 4 for
every character in the string to test the actual starting point of the matching procedure, which
begins at instruction 4. Moreover, since CICERO instructions do not rely on state, it can start
considering new instructions that are ready to execute while running instructions 1,2,3 and 4. The
reader can appreciate a graphical representation of this effect in Figure 10, which compares the
pipeline of Single-Character CICERO (i.e.,𝑊 = 1), on the top, with a Multi-Character (i.e.,𝑊 = 2)
CICERO, at the bottom. This part of Figure 10 shows that by supporting up to four (i.e., 2𝑊 , where
𝑊 = 2) parallel characters, CICERO avoids waiting for the pipeline flush before processing the new
character in the input string. For instance, instruction 6 can execute at clock cycle 7 (bottom of the
Figure), instead of waiting for the end of the processing of character ‘b’ at clock cycle 12 (top of
the Figure). Thanks to this improvement, we can increase the pipeline occupancy (in the example,
we move from an instruction per clock of 11/17=64% to 16/18=88%). Consequently, the proposed
optimization reduces execution times and increases the character processing rate.

5.3 CICERO Multi-Engine Architecture
In the previous sections, we described the base design of the CICERO engine together with the
sliding window implementation. However, with our execution model we can exploit a further
degree of parallelism related to the instructions of the threads. Since CICERO instructions do not
have side effects, they can be safely executed in parallel by multiple CICERO engines to increase the
parallelism. The parallel version of CICERO features multiple CICERO engines with a centralized
Manager and a distributed Load Balancing Infrastructure as shown in Figure 11.
As discussed above, the Manager supplies the current character to the engines and makes

decisions on the overall matching process. It decides when to move to the next string character
(or slide the window), accept a RE if one of the engines notifies an accept signal, and reject the
RE matching after consuming all the instructions. To support parallel execution, we add a private
block-based instruction cache to each CICERO engine. Since the instruction memory is read-only,
no coherency protocol is needed. If a cache miss occurs, a round-robin Arbiter regulates the access
to the Instruction Memory.
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Fig. 12. CICERO interconnection topologies.

The Load Balancing Infrastructure handles the thread’s execution on different engines without
affecting the critical path. Each CICERO engine features an instance of the Load Balancing Infras-
tructure. It consists of a Station and a latency insensitive channel [1]. At each clock cycle, the Station
receives as input the engine output (i.e., the thread information composed of PC and a CC_ID), the
number of instructions inside the local engine, and information from the nearby stations. At the
same time, the Station obtains the expected latency of running an instruction that might flows to
the next Load Balancing instances. Moreover, the Station can receive threads to execute from the
previous stations. Based on the number of buffered instructions in the local engine (i.e., the local
latency), and the latency coming from the next Station, each Load Balancing Infrastructure decides
where to move the CICERO output and the threads by computing the minimum latency among
the possible paths. As the last step, the Load Balancing Infrastructure computes its input latency as
the minimum between the number of threads to execute in the CICERO engine and the latency
coming from the next Station. The latency information is then adjusted to consider the number of
threads in flight along the channel. To avoid any combinational path, registers separate the latency
on every channel.
We devise two different topologies for the multi-engine architecture. The first topology is a

ring where each engine connects with the other two engines at most, as in Figure 12a. The second
topology is a torus where each engine connects with at most four other engines, as in Figure 12b.
While the ring is a simple topology but with limited scalability, the torus ideally provides a more
scalable interconnection topology since each engine has more alternative where to send the threads.
In both cases, we need a multiplexer to initialize the multi-engine architecture with the first thread.
Considering the ring topology (Figure 12a), the Station modules and the Load Balancing In-

frastructure ones are equivalent to the ones described in the previous section. Station modules are
connected through latency-insensitive queues to form a ring. This protocol guarantees correct
execution in all cases. In this way, we aim at evenly distributing the number of threads to elaborate
across the engines.

For the torus topology (Figure 12b), we can reuse the ring topology’s interconnection compo-
nents to design an XY-distributed Load Balancing station (called Torus Station) on top of the Ring
Station. The Xin input flows into a ring-based Station, and the link with CICERO engines remains
the same. The first ring-based Station’s output then passes to the second ring-based Station via a
latency-insensitive queue. In the second Station, we have the additional input, Yin, which produces
two outputs, namely Xout and Yout. In this way, we can link the Ring Stations as in Figure 12b.
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6 EXPERIMENTAL VALIDATION
We implemented CICERO in SystemVerilog with a standard AXI interface and created FPGA
prototypes exploiting the Xilinx Vivado HLx 2019.2 toolchain. We targeted an embedded FPGA
board, namely the Xilinx Ultra96v2 (Zynq Ultrascale+MPSoCXCZU3EGA484), onwhichwe employ
the PYNQ framework [39]. We also generated an ASIC implementation targeting an open-source
32nm technology to evaluate a potential custom chip.
At first, we analyzed the impact of compiler and architectural optimizations on CICERO per-

formance (Section 6.1). In particular, we measured the code size and clock cycle reductions that
the implemented compiler optimizations enabled. Similarly, we investigated the matching time
and energy efficiency benefits that the multi-character and multi-engine approaches provide when
targeting FPGA with running frequency of 200MHz. Then, we compared our best FPGA prototype
against Google RE2 [15], an optimized multi-threaded C++ library for RE, in terms of matching
time and energy efficiency (see Section 6.2). Finally, we estimated the performance and area of the
ASIC implementation (see Section 6.3).

In all the experiments, we used Protomata [28] and Brill [42] benchmarks from the AutomataZoo
suite [36], which represent proteomics and natural language processing applications, respectively.
We considered Protomata and Brill since they both belong to the family of “Regex” benchmarks
of the original ANMLZoo suite [35]. Therefore, their RE representation is ready to use [36], and
they target novel compelling research fields, i.e., bioinformatics and natural language processing.
Moreover, we believe that these two benchmarks represent two opposite use cases: onemore suitable
to CICERO features, i.e., with a high number of alternatives (Protomata), against an unsuitable
one with a wide variety of sequential REs (Brill). AutomataZoo reports an active set (i.e., the
average number of active states in the NFA) of 712 for Protomata against 78 for Brill [36]. Indeed,
most Protomata REs include many non-contiguous character sets to test. In this way, a generic
architecture has to evaluate a more significant number of alternative paths/sub-expressions, and
partial matches (part of the string matches the initial part of the RE) are more likely to happen. If
adopting a backtracking approach, the target platform will most likely suffer from it and obtain
poor performance on Protomata. Instead, Brill contains a mix of contiguous character sets and
sequential matches. This second benchmark brings more advantages to traditional von Neumann
architectures, which can handle these sets with simple arithmetic differences, sequential executions,
and aggressive approaches similar to backtracking. We exclude other benchmarks since they either
provide the automaton instead of the RE or contain unsupported features of non-regular languages
such as backreferences. We evaluated these benchmarks on the same suite’s input and applied
the RE matching to at most 1,024 characters if the input string was bigger. We also combined
some REs in the two benchmarks to increase the RE complexity. To do so, we used up to four
operators ‘|’ to create parallel alternatives. These combined REs increase the number of alternative
paths simultaneously active and provide a scenario where the final user aims to match a set of
REs in a single input pass. We randomly sampled 1,000 REs from both Protomata and Brill, and
combined four different random REs together in a combinatorial manner, i.e., providing all the
possible combinations, as previously described. Then, we randomly sampled 200 combined REs
from this new set of REs and 200 possible input strings from the original AutomataZoo. We will
call these combined versions Protomata4 and Brill4 benchmarks.

Throughout the evaluation, we employ three different sets of tests for the considered benchmarks.
The first one is a subset of REs and inputs randomly sampled with a uniform distribution from
the original benchmarks. The second subset contains 200 REs randomly sampled with a uniform
distribution from the combined benchmarks (i.e., Protomata4 and Brill4) to increase the parallelism
degree and better highlight the benefits of a multi-engine CICERO. The third set comprises the
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Fig. 13. Unoptimized vs optimized Lines of Code (LoC) difference normalized w.r.t. the unoptimized LoC size
( 𝑈𝑛𝑜𝑝𝑡𝐿𝑜𝐶−𝑂𝑝𝑡𝐿𝑜𝐶

𝑈𝑛𝑜𝑝𝑡𝐿𝑜𝐶
) on REs sampled from Protomata4, showing the improvements w.r.t. the original LoC.

complete benchmark tests as published by the suite authors to provide a fair comparison with other
approaches employing established test suites.

6.1 Evaluation of Compiler and Architectural Optimizations
This Section describes the impacts of compiler and architectural optimizations on CICERO perfor-
mance. First of all, we analyze the benefits that the compiler optimizations introduce in terms of
code size and processing time (Section 6.1.1). Then, we evaluate how CICERO performance scales
according to the character window (Section 6.1.2) and the number of engines (Section 6.1.3). Finally,
we examine which is the most suitable interconnection topology for the CICERO multi-engine
architecture (Section 6.1.4).

6.1.1 Compiler Optimizations. We start evaluating the impact of compiler optimizations on the
code size. Figure 13 shows the reduction in terms of Lines of Code (LoC), or instructions, among
the code sizes of the Protomata’s REs compiled with and without the optimizations. In particular,
we normalized the difference between unoptimized and optimized LoC by the unoptimized size
(𝑈𝑛𝑜𝑝𝑡𝐿𝑜𝐶−𝑂𝑝𝑡𝐿𝑜𝐶

𝑈𝑛𝑜𝑝𝑡𝐿𝑜𝐶
). On average, the optimizations save 15.48% instructions for the Protomata4 com-

bined REs, while the combined Brill4 has an average reduction of 1 instruction, and hence it is
not plotted. Protomata code size reduction leads to a geometric mean (geomean) speedup of 1.3×
compared to the unoptimized code.

6.1.2 Character Window Scaling. Moving to the architectural enhancements, we start evaluating
the impact of the increment in character processing rate, i.e., the character window (Section 5.2),
against the base engine (Section 5.1). For this analysis, we employ the standard Protomata and
Brill benchmarks, and randomly sampled 200 REs and 200 possible input strings to showcase
the behavior on random REs. We measured the matching times of the FPGA prototypes through
CICERO performance counters after loading the code and the string to match on CICERO memory.
Besides, we extracted the board-level power consumption with the Voltcraft Energy-Logger 4000,
which measures the board voltage, current, and power directly from the plug, and then computed
the power consumption geometric means. Figure 14a shows the boxplot distributions of weighted
average matching times of a CICERO single engine with windows of 2𝑊 characters, where𝑊 is
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Fig. 14. The effects on queue scaling on a CICERO single engine (experiments performed on 200 inputs and
200 REs sampled from Protomata and Brill benchmarks).
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Fig. 15. Resource usage percentage of CICERO single engine, with different window sizes.

equal to 1, 2, 3. We chose the weighted average because it assesses the RE processing times better
than raw runtimes as it also accounts for the processed characters. For each RE, we compute the
weighted average as follows:

∑𝑁
𝑖=0 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑇𝑖𝑚𝑒𝑖 ·𝑙𝑖∑𝑁

𝑖=0 𝑙𝑖
, where 𝑁 is the number of input strings, and 𝑙𝑖 the

string length. In particular, according to the RE matching process outcome, we weigh the matching
times with different input string lengths. If the RE does not match, we pick the whole string length;
otherwise, as a match may occur at an arbitrary point of the input string, we approximate the
number of processed characters with half of the string length.
The reader can notice from Figure 14a that moving from𝑊 = 1 to𝑊 = 2 reduces both the

median (the black line within the colored box) and the height of the box, decreasing the aver-
age case and achieving steadier matching times. Comparing𝑊 = 2 and𝑊 = 3, the boxplot of
the greater window (the blue one, 𝑊 = 3) has a smaller length than the green one (𝑊 = 2).
Therefore, it provides a steadier weighted matching time. However, this chart displays minimal
differences among single CICERO engines with𝑊 = 2 and𝑊 = 3; therefore, we will still con-
sider both configurations. Then, we computed the geomean of energy efficiency improvements
when increasing the character window against the base engine with𝑊 = 1. To do so, we used
the previously employed weighted matching time per RE, computed the energy efficiency as
1/(𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑇𝑖𝑚𝑒 [𝑚𝑠] × 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛[𝑊 ]), and finally the geomean. Figure 14b
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highlights that the CICERO single engine with𝑊 = 2 (i.e., the green one) is slightly more efficient
than the one with𝑊 = 3 on Protomata, while it is slightly worse on Brill. Both Figure 14a and
Figure 14b show that the increase in the window dimension gains practical improvements in median
matching time, achieving steadier matching times and better energy efficiency. Figure 15 shows
the resource utilization of the entire Ultra96v2 board, including both the CICERO engine and the
additional logic that connects the engine to the ARM processor. We can notice that the CICERO
engine is mainly LUT and BRAM demanding. Indeed, their usage grows according to W, as the
engine needs further logic to manage the additional number of alternative paths. On the other hand,
FF growth is more restrained since CICERO mainly employs FFs for the Manager state machine.
Finally, the chart indicates that a CICERO engine has a low resource usage; indeed, even when
W=3, the engine requires at most 5% of LUTs.

6.1.3 Engine Scaling. We analyzed the scaling effectiveness of CICERO multi-engine architecture.
We employ the randomly sampled combined version of the two benchmarks (i.e., Protomata4 and
Brill4) to increase the cores utilization. In this way, we aim at showcasing the impact of scaling to
multiple engines with a ring topology. Figure 16a shows the geomean of the speedups achieved
by 4, 9, and 16 cores with𝑊 = 2 (vertical lines) and𝑊 = 3 (horizontal lines) against the CICERO
single engine with𝑊 = 2. For Both Protomata4 and Brill4, we obtain a speedup that scales with
the core number. Conversely, Figure 16b displays the geomean of energy efficiency improvements
at the core scaling on the same benchmarks and shows how the efficiency improvements do not
reflect the speedups. Indeed, considering Protomata4, the most energy-efficient architecture has
four engines with both W = 2 and W = 3. However, Brill4 indicates that the most energy-efficient
architecture has nine engines with W = 3. These results prove how different architectures provide
different trade-offs from both matching time and energy efficiency perspectives, depending not
only on the kind of REs, but also on the input string. For these reasons, from now on, we will
consider only the architecture with nine engines and𝑊 = 3 as the reference one, being the optimal
trade-off among matching time and energy efficiency.

Figure 17 reports how the resource usage scales according to the number of engines andW.While
the FF utilization remains relatively low (almost 8% in the worst case), the number of LUTs and
BRAMs significantly increases due to the additional logic and memory required by both the engines
and the load balancing infrastructure. This behavior is particularly evident when considering
the sixteen-engine configuration. However, since such a configuration does not provide relevant
performance benefits compared to a nine-engine one, there is no point in selecting it. On the other
hand, even though𝑊 = 3 requires more resources than𝑊 = 2, the higher speedup and energy
efficiency (especially on Brill4) compensates for the additional resources. This analysis further
supports our choice of the nine-engine architecture with𝑊 = 3 as the reference one.

6.1.4 Topology Analysis. Before diving into the comparison with other literature approaches, we
compare the ring topology against the torus one for our reference architecture of nine engines and
𝑊 = 3. We exploited the same benchmarks as before, i.e., Protomata4 and Brill4, and compare the
matching times and energy efficiencies of both topologies. Figure 18a and Figure 18b show the
cubic fits of these measures. In this way, the reader can see that, on Protomata4 benchmark, the
torus curve (the red line) always remains above the ring one (the black line) as the RE matching
time increases. Considering the efficiency curves, even though the ring (the blue line) generally
shows a better energy efficiency, the torus (the green line) performs slightly better over the most
time-demanding subset of REs, though it is a very restricted subset. Moving to the Brill4 results in
Figure 18b, the cubic fits of matching times and energy efficiencies demonstrate that the ring gains
better matching time (i.e., the black line stays below the red one) and achieves a higher efficiency
(i.e., the blue line stays above the green one) for all the considered REs. In conclusion, although the
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Fig. 16. The effects on CICERO engine scaling (experiments performed on 200 inputs and 200 REs sampled
from Protomata4 and Brill4 benchmarks).
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Fig. 17. Resource usage percentage when scaling the number of engines (from 4 to 16) considering W=2
(vertical lines) and W=3 (horizontal lines).

torus represents a better solution in terms of scalability and a good candidate for a more suitable
layout design, these results prove that the simplicity of ring topology is enough to keep up with
both the matching time and energy efficiency of Protomata4 and Brill4 benchmarks. Besides, as
shown in Figure 19, the ring topology is also less resource-demanding than the torus one.

6.2 Comparison Against Google RE2
As mentioned before, our analysis identified the ring-based nine-engine architecture with𝑊 = 3
as the most efficient one. This implementation requires 11,563 (16.39%) LUTs, 6,600 (4.68%) FFs, and
81 (18.75%) BRAMs on the Ultra96v2 FPGA. We compared our implementation with Google RE2
executed on two candidate processors: an embedded solution, the ARM Cortex A53 (mounted on the
Ultra96v2), and a mainstream one, the Intel i9-9880H. The RE2 library was built from sources [15]
with -O3 optimizations. We set the comparison on partial match operation in cold-start conditions
and measured matching time and energy efficiency for the matching process only. As previously
stated, we relied on the CICERO performance counters to measure the matching time after loading
the code and the string to match on CICERO memory. We used the C++ chrono library to measure
the execution time of a RE2 code snippet that interprets the RE by creating an RE2::RE2 object
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Fig. 18. Weighted average matching time and energy efficiency of ring and torus topologies (experiments
performed on 200 inputs and 200 REs sampled from Protomata4 and Brill4 benchmarks).
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Fig. 19. Resource usage when considering a 9-Engine architecture with W=3 but with different topologies.

and calling the RE2::PartialMatch function. We repeated the entire procedure 30 times for both
Intel and ARM CPUs to mitigate cache effects and acquire statistically relevant results. As before,
we measured and weighted the average execution times on the string length analyzed. Finally, we
selected the Thermal Design Power (TDP) of the Intel CPUs as reference power consumption. For
the ARM CPUs and the CICERO FPGA prototype, we employed the Voltcraft Energy-Logger 4000
to extract the board-level power consumption.

Figure 20 shows the geomean values of the matching times (left-hand side) and energy efficiency
results (right-hand side) achieved by the A53, i9, and CICERO on all the possible RE-input couples
from Protomata and Brill benchmarks. The results in Figure 20a show that CICERO achieves lower
matching times than the embedded processor (i.e., the A53) with speedups of 3.526× and 2.021× on
the Protomata and Brill, respectively. However, the i9 shows matching times even better than ours
in both benchmarks. Instead, considering the energy efficiencies achieved, Figure 20b highlights
comparable results of CICERO and the mainstream processor (i.e., the i9) on the Brill benchmark, i.e.,
values are around 3.136 and 3.119 [ 1

𝑚𝑠 ·𝑊 ], respectively. However, Protomata benchmark shows the
CICERO advantage of tailoring the architecture for delivering a higher energy-efficient computation.
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Fig. 20. Geomean of matching times and energy efficiency comparison between ARM A53, Intel i9, and
CICERO on the complete Protomata and Brill benchmarks.
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Fig. 21. Geomean of matching times and energy efficiency comparison between ARM A53, Intel i9, and
CICERO on 200 inputs and 200 REs sampled from Protomata4 and Brill4 benchmarks.

Indeed, CICERO delivers 1.89× and 2.851× energy efficiency improvements than the i9 and the
A53, respectively.

Overall, these results exhibit remarkable matching times and higher efficiency with the standard
benchmarks as they are. However, our approach, built on Thompson’s algorithm, which can scale
linearly in the string length without paying the cost of alternative paths backtracking. For this
reason, we collect the results of a combined version of the benchmarks as previously described. This
combination increases the alternative paths simultaneously active and better mimics a real scenario
where the final user aims to search all the REs in a single input pass. Indeed, considering the
analysis of gigabytes of data, an optimized search wants to reduce as much as possible the number
of times to scan the input data. Figure 21 presents the results of these combined experiments on
the considered architectures. While the i9 matching times hold the same magnitude order as the
standard benchmark and the A53 shows deterioration, CICERO reveals dramatic improvements as
in Figure 21a. Indeed, the speedups achieved by the i9 and CICERO over the A53 are 10.386× and
14.642× on Protomata and 10.144× and 35.370× on Brill. While comparing the i9 with CICERO,
our architecture delivers speedups of 6.173× and 3.487× against the mainstream architecture
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Table 2. Related Work Summary.

Work Target Device Architecture Execution Compilation Compilation Time
Scenario Type Mode Framework Required

CICERO-FPGA Embedded XCZU3EG (16nm) Software-Programmable NFA Yes Software like
CICERO-ASIC Embedded ASIC (32nm) Software-Programmable NFA Yes Software like

FPGA [40] Datacenter XC7VX690T (28nm) Stream-Dataflow DFA No Bistream like
FPGA [20] Datacenter XC7VX1140T (28nm) Stream-Dataflow DFA No Bistream like

FPGA/ASIC [14] Embedded Arria V SoC (28nm)/
ASIC (45nm) Stream-Dataflow DFA No Bistream like/N.A.

FPGA [38] Datacenter ADM-KU3 (20nm) Stream-Dataflow NFA Yes Bistream like
FPGA [6] Datacenter XCVU9P (16nm) Stream-Dataflow NFA Yes Bistream like

FPGA[26, 29] Datacenter XCVU9P (16nm) Stream-Dataflow NFA Yes Bistream like

TCAM [23] Datacenter N.A. Software-Programmable DFA N.A. Software like
PowerEN [7, 34] Datacenter ASIC (45nm) Software-Programmable DFA Yes Software like

FPGA [8] Datacenter XC7VX485T (28nm) Software-Programmable DFA Yes Software like
AP [6, 13, 29, 35] Datacenter DRAM (22nm) Software-Programmable NFA Yes Software like

on Protomata and Brill, respectively. Moving to Figure 21b and the associated energy efficiency
results, CICERO FPGA-based implementation presents outstanding results. Especially, CICERO
achieves 8.409× and 20.798× energy efficiency improvements than the most energy-efficient CPU
(i.e., the i9) and 11.839× and 28.600× than the A53 over Protomata and Brill, respectively. The
domain specialization of the architecture combined with Thompson’s approach leads to remarkable
speedups and energy-efficient computations against both an embedded and a mainstream processor.

6.3 Analysis of ASIC Implementation
We synthesized CICERO with Synopsys Design Compiler Q-2019.12-SP4 targeting the Synopsys
SAED 32nm technology at typical conditions. We estimated the resulting total silicon area, power
consumption, andmaximum target frequency. SRAM synthesis limits themaximum target frequency
to 1 GHz. When targeting this frequency, we obtained an implementation that occupies 0.794𝑚𝑚2 –
which is compatible with modern accelerators at 32nm [22] – and consumes 9𝜇𝑊 . We used the
number of clock cycles from the best FPGA prototype to estimate the efficiency of the custom chip
implementation. On average, the resulting design is at least 3,900,000× more energy-efficient than
the Intel CPU on the complete benchmarks.

7 RELATEDWORK
Modern automata processing benchmarks, such as ANMLZoo [35] and AutomataZoo [36], allowed
designers to demonstrate the efficiency of FPGA implementations over general-purpose and spatial
architectures [24]. This Section discusses existing accelerators for RE matching available in the
literature, excluding inexact matching solutions, such as [5, 12, 30], that are out of the scope of this
work. Since the approaches are extremely different, a quantitative comparison would not be fair, as
discussed later in this Section. Thus, we provide a qualitative analysis, as reported in Table 2.

Stream-Dataflow Architectures usually exploit spatial architectures, particularly reconfigurable
ones. The works that mainly rely on deterministic finite automata (DFA) focus their efforts on DFA
compression. However, they require hardware re-synthesis for each new set of automata [14, 20, 40],
which may demand from few hours to days. On the other hand, REAPR [38] is a tool that translates
non-deterministic finite automata (NFA) into RTL implementations. The authors expand their
work to support AWS F1 instances [25] and to allow a fast reconfiguration of different REs that
exploit the same NFA structure [6]. On top of these approaches, other authors propose a compiler
framework called FlexAmata that aims at optimizing the automata representation also considering
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different alphabet symbols bitwidth [29], further extended to exploit either LUT- or BRAM-based
designs [26]. CICERO is, instead, a specialized but flexible architecture that can support several
different REs thanks to the custom ISA and the compiler-based framework. Therefore, our approach
enables generating a new binary code with software compilation time instead of waiting hours for
generating a bitstream. Thus, comparing these two diverse approaches would not result in a fair
apple-to-apple comparison.

In-Memory or Software-Programmable Architectures (SP) are platforms more similar to CICERO.
Indeed, they can update the set of REs without changing the underlining architecture, nor the
bitstream. Meiners et al. [23] exploit Ternary Content Addressable Memories (TCAM) for high-
speed REs matching through efficient DFA representation, but they do not provide insight on the
compilation framework. Van Lunteren and Guanell [7] present an extension of the IBM Power
Edge of Network (PowerEn). They encode the DFA as a set of rules into the memory of a software-
programmable DFA engine by exploiting the B-FSM concept for reprogrammable DFA [34]. Comodi
et al. [8] present an architecture that exploits a VLIW-like approach for a DFA with backtracking
execution mode. All these methods are based on the DFA representation, which grows exponentially
with the complexity of the RE. Instead, we focus on an NFA implementation to allow parallelization
of the alternatives. The algorithmic approaches are fundamentally different, though semantically
equivalent, and the NFA implementation proved to lead execution times linear in the string length.

The Automata Processor (AP) was an outstanding spatial reconfigurable architecture that embed-
ded a target automaton into the reconfigurable fabric [13, 37]. While it was a promising solution
with high performance [29, 42] and no FPGA bitstream overhead [24, 38], only simulation results
of the AP were reported while we show a prototype executed on FPGA [6]4.

8 CONCLUSIONS AND FUTUREWORK
We presented CICERO, a software-programmable, domain-specific architecture for Regular Ex-
pression (RE) matching. CICERO exploits Thompson’s algorithm to create a non-deterministic
RE representation that can execute on multiple engines in parallel without backtracking. We also
provide an end-to-end framework for translating REs into optimized code. We validate CICERO
architectural optimizations on an embedded FPGA on benchmarks from AutomataZoo [36], show-
ing increasing benefits in the proposed solution, e.g., from the code size to the matching times
and energy efficiencies. CICERO multi-engine and multi-character architecture shows up to 28.6×
and 20.80× energy efficiency improvements against the highly optimized Google RE2 library onto
an embedded processor (the ARM A53) and a mainstream processor (the Intel i9), respectively.
We provide an estimation of a software-programmable ASIC prototype on the same benchmarks
projecting remarkable advantages.

In our research plan, we aim at analyzing new interconnection topologies alongwith different load
balancing distributions. Moreover, we envision a vectorized CICERO engine that will potentially
provide further advantages. Finally, the benefits of the RE combination show that there is room for
improving the preprocessing step. Indeed, by deeply analyzing available benchmarks, a run-time
manager could determine the optimal combination degree for the given REs and reconfigure the
FPGA with the architecture that most fits the workload.
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