
99

Learning Nondeterministic Real-Time Automata

JIE AN, Max Planck Institute for Software Systems, Germany

BOHUA ZHAN and NAIJUN ZHAN, SKLCS and Science & Technology on Integrated Information

System Laboratory, Institute of Software, CAS, China and University of Chinese Academy of Sciences, China

MIAOMIAO ZHANG, School of Software Engineering, Tongji University, China

We present an active learning algorithm named NRTALearning for nondeterministic real-time automata (NR-

TAs). Real-time automata (RTAs) are a subclass of timed automata with only one clock which resets at each

transition. First, we prove the corresponding Myhill-Nerode theorem for real-time languages. Then we show

that there exists a unique minimal deterministic real-time automaton (DRTA) recognizing a given real-time

language, but the same does not hold for NRTAs. We thus define a special kind of NRTAs, named residual

real-time automata (RRTAs), and prove that there exists a minimal RRTA to recognize any given real-time

language. This transforms the learning problem of NRTAs to the learning problem of RRTAs. After describing

the learning algorithm in detail, we prove its correctness and polynomial complexity. In addition, based on

the corresponding Myhill-Nerode theorem, we extend the existing active learning algorithm NL∗ for nonde-

terministic finite automata to learn RRTAs. We evaluate and compare the two algorithms on two benchmarks

consisting of randomly generated NRTAs and rational regular expressions. The results show that NRTALearn-

ing generally performs fewer membership queries and more equivalence queries than the extended NL∗ al-

gorithm, and the learnt NRTAs have much fewer locations than the corresponding minimal DRTAs. We also

conduct a case study using a model of scheduling of final testing of integrated circuits.

CCS Concepts: • Computer systems organization→ Real-time languages; • Theory of computation

→ Regular languages;

Additional Key Words and Phrases: Active learning, model learning, nondeterministic real-time automata,

real-time languages

ACM Reference format:

Jie An, Bohua Zhan, Naijun Zhan, and Miaomiao Zhang. 2021. Learning Nondeterministic Real-Time Au-

tomata. ACM Trans. Embedd. Comput. Syst. 20, 5s, Article 99 (September 2021), 26 pages.

https://doi.org/10.1145/3477030

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on

Embedded Software (EMSOFT), 2021.

This work is supported in part by the Deutsche Forschungsgemeinschaft project 389792660-TRR 248, the CAS Pioneer

Hundred Talents Program under grant No. Y9RC585036, and the NSFC under grants No. 61625206, 61732001, 61972284,

and 62032024.

Authors’ addresses: J. An, Max Planck Institute for Software Systems, Paul-Ehrlich Str. G 26, Kaiserslautern, Germany,

67663; email: jiean@mpi-sws.org; B. Zhan and N. Zhan, SKLCS and Science & Technology on Integrated Information

System Laboratory, Institute of Software, CAS, Beijing, China, 100190 and University of Chinese Academy of Sciences, Bei-

jing, China, 100049; emails: {bzhan, znj}@ios.ac.cn; M. Zhang, School of Software Engineering, Tongji University, Shanghai,

China, 201804; email: miaomiao@tongji.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2021/09-ART99 $15.00

https://doi.org/10.1145/3477030

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

https://doi.org/10.1145/3477030
mailto:permissions@acm.org
https://doi.org/10.1145/3477030
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3477030&domain=pdf&date_stamp=2021-09-22

99:2 J. An et al.

1 INTRODUCTION

In recent decades, model learning has attracted increasing attentions in many communities,
especially formal methods and artificial intelligence, since it has wide applications in model
checking [3], analysis of protocols [17], grammatical inference [11], interpretation of neural net-
works [34, 35] and so on. For model learning technique, a seminal work is the minimally adequate
teacher (MAT) framework [7] proposed by Angluin to learn regular languages in 1987. In the MAT
framework, a learner actively learns a regular language from a teacher using membership and
equivalence queries. For a membership query, the learner asks whether a word belongs to the
target language. For an equivalence query, the learner submits a deterministic finite automaton
to the teacher as a hypothesis for the target language. The teacher can answer yes or no for the
queries and in the latter case, provide a counterexample as evidence for the differences between
the current hypothesis and the target. Following this approach, many efficient algorithms have
been proposed for active learning of different kinds of automata. We refer to the survey [27] for a
comprehensive introduction.

For real-time and embedded systems, timing constraints play a key role in the correctness and
safety of the system. Classical finite automata is unable to describe the infinite number of timed
actions. Instead, Timed automata [2], a kind of finite automata extended with a finite number of
real-valued clocks, are widely used to model real-time and embedded systems. In this paper, we
consider the active learning problem of real-time automata (RTAs), a subclass of timed automata
with a single clock that resets at every transition, with the goal to learn nondeterministic RTAs
for real-time languages in the MAT framework. RTAs yield simple models while preserving ad-
equate expressiveness, and therefore have been widely used in practical real-time systems, e.g.
scheduling of real-time tasks [25] and key-distribution protocols [14]. In [15], Dima introduced
real-time automata and revealed some of its important properties, including the Kleene theorem
for RTAs, which shows that the expressiveness of rational regular expressions, deterministic real-
time automata (DRTAs) and nondeterministic real-time automata (NRTAs) are all equivalent. On
the other hand, the Kleene theorem also tells us that a DRTA can be exponentially bigger than an
equivalent NRTA in terms of the number of locations, which is similar to the situation of DFAs and
NFAs. Hence, compared to learning DRTAs, learning NRTAs may lead to more succinct models,
which will be more useful, especially for applications in verification.

The cornerstone of learning regular languages in the MAT framework is the Myhill-Nerode the-
orem which shows that a language L is regular if and only if the right-congruence relation RL

has a finite number of equivalence classes. Thus, we can map each equivalence class to a location
(state) in a finite automaton, and this implies that there is a unique minimal DFA which recog-
nizes L. However, there is no unique minimal NFA for the language, which means it is not clear
which target automaton should be learned in the MAT framework. Hence, Bollig et al. proposed
an algorithm named NL∗ [8] to learn a subclass of NFAs named residual finite state automata
(RFSAs) [12], which have the property that there is a unique minimal RFSA recognizing a given
regular language. Inspired by their work, we first prove a corresponding Myhill-Nerode theorem
for real-time languages which shows that there exists a unique minimal DRTA for a given real-
time language. However, there is no unique minimal NRTA, so we proceed to define the notions
of residual real-time languages and residual real-time automata (RRTAs). By proving that there
exists a unique minimal RRTA for a given real-time language, we transform the learning problem
of NRTAs to the learning problem of RRTAs. Compared to NL∗, the challenge is to handle nonde-
terministic behaviours caused by timing information in timed words instead of untimed actions.
By carefully designing the readiness conditions of the observation table and the process for han-
dling counterexamples, we present an active learning algorithm named NRTALearning. Based on

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

Learning Nondeterministic Real-Time Automata 99:3

the corresponding Myhill-Nerode theorem, we can also directly extend NL∗ to learn RRTAs. We
prove the correctness and termination of both algorithms, and show the polynomial complexity
of both algorithms in terms of the number of queries. The two algorithms have been implemented
and evaluated on two benchmarks consisting of randomly generated NRTAs and rational regular
expressions. The results show that the algorithm NRTALearning generally performs fewer mem-
bership queries and more equivalence queries than the extended NL∗ algorithm. Additionally, the
learnt NRTAs have much fewer locations than the corresponding minimal DRTAs. Finally, we
show a case study using a model of scheduling of final testing of integrated circuits.

In summary, our main contributions are as follows.

• A version of Myhill-Nerode theorem for real-time languages.
• Definition of residual real-time automata, and a proof that there is a unique minimal RRTA

recognizing a given real-time language.
• Two efficient active learning algorithms for NRTAs. One is in the standard MAT framework,

and the other needs an assumption.
• Implementation and experimental evaluation on two benchmarks for learning NRTAs and

rational regular expressions.1

Related work. There are several works on learning timed models. We first introduce works in
the active learning paradigm. In [18], Grinchtein et al. proposed a learning algorithm for determin-
istic event-recording automata (ERAs) which are a kind of timed automata that, for every untimed
action a, a clock is used to record the time length from the last occurrence of a to now. In [19],
Henry et al. considered learning a kind of deterministic ERAs, named reset-free ERAs. However,
Dima pointed out that RTAs are incomparable to ERAs since RTA may accept languages consist-
ing of two actions separated by an interval with integer length while ERAs may not [15]. An et al.
proposed an active learning algorithm for deterministic one-clock timed automata in [4]. However,
guessing reset information of the clock leads to a combinatorial explosion in the number of can-
didate tables, and thus an exponential complexity. Hence, they considered learning DRTAs with a
similar technique [5]. In this paper, we consider learning NRTAs directly. Another kind of simple
timed model is called Mealy machine with timers. The value of each timer decreases and a timeout
is triggered when the value becomes 0. Caldwell et al. proposed an algorithm on learning such a
model from programmable logic controllers [10]. In [28], Vaandrager et al. presented an efficient
learning algorithm for such models with one timer. Passive learning for timed models has also
attracted much interest. Passive learning aims at identifying a model from a given data set and the
learnt model is only required to be consistent with the data set. Based on the classic identification
method for DFAs, named evidence-driven state-merging (EDSM), Verwer et al. proposed the RTI
algorithm for identifying DRTAs in the limit [32, 33]. After that, they presented a passive learning
algorithm for deterministic one-clock timed automata [29–31]. Additionally, the passive learning
methods cited above concern only discrete-time semantics of the timed models, i.e., the clock valu-
ations are non-negative integers. There are also some works incorporating other techniques from
machine learning, e.g., learning deterministic timed automata via genetic programming (GP) [26]
and learning probabilistic real-time automata via clustering techniques [23]. Recently, Aichernig
et al. extended their GP-based learning method in an active manner using conformance testing [1]
and successfully learned models with large size. The conformance relation requires that the learnt
deterministic model and the system under test agree on a finite set of sampled traces. Thus it
cannot guarantee the correctness of the learnt model. Even such techniques have been applied to

1The implementation and the experiments are available at https://github.com/Leslieaj/NRTALearning.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

https://github.com/Leslieaj/NRTALearning

99:4 J. An et al.

learn hybrid automata [20, 24]. To the best of our knowledge, our paper is the first work on active
learning of a kind of nondeterministic timed automata.

Organization. In the following, Section 2 recalls important preliminary definitions. The corre-
sponding Myhill-Nerode Theorem for real-time languages is presented and proved in Section 3.
We then define residual real-time languages and residual real-time automata in Section 4. Two
active learning algorithms for NRTAs are proposed in Section 5 and evaluated in Section 6. Finally,
we conclude the paper in Section 7.

2 PRELIMINARIES

In this section, we recall some notions including timed words, timed automata, real-time automata
and their recognized timed languages. Let R≥0 and N be the set of non-negative real numbers and
natural numbers, respectively, and B the Boolean set. We use � to stand for true and ⊥ for false.
Let Σ be a set of actions considered in this paper.

A (delay) timed word over Σ × R≥0 is a finite sequence ω = (σ1,τ1) (σ2,τ2) · · · (σn ,τn), where
σi ∈ Σ and τi ∈ R≥0 for 1 ≤ i ≤ n, |ω | = n is the length of ω, and each τi represents the delay time
between two consecutive actions. We use ϵ to represent the empty word with |ϵ | = 0. A timed
word ω is called a timed action if |ω | = 1. A timed language L can be viewed as a set of timed
words.

Timed automata [2], an extension of finite automata with a finite number of real-valued clocks,
are widely used to model real-time systems. LetC be the set of clock variables, and let ΦC be the set
of clock constraints of the form ϕ ::= � | c ��m | ϕ∧ϕ, where c ∈ C ,m ∈ N and �� ∈ {=, <, >, ≤, ≥}.
A clock valuation is a function ν : C → R≥0 that assigns a non-negative real number to the clocks.
For t ∈ R≥0, let ν + t be the clock valuation with (ν + t) (c) = ν (c) + t for all c ∈ C .

In this paper, we consider a subclass of timed automata with a single clock which resets at every
transition, termed real-time automata [15]. According to the definitions of clock constraint and
clock valuation, a transition guard in a real-time automaton can be represented by an interval
with endpoints in N∪ {∞}. For example, let c be the unique clock, ϕ1 : c < 5∧ c ≥ 3 is represented
as [3, 5), ϕ2 : c = 6 as [6, 6], and ϕ3 : � as [0,∞). We omit the single clock and give a more succinct
definition as follows.

Definition 2.1 (Nondeterministic Real-time Automata). A (nondeterministic) real-time automaton
is a tuple A = (Q, Σ,Δ,Q0, F) where

• Q is a finite set of locations;
• Σ is a finite alphabet;
• Δ ⊆ Q × Σ × 2R≥0 ×Q is a transition relation with |Δ| < ∞, where 2R≥0 represents the set of

intervals whose endpoints are in N ∪ {∞};
• Q0 ⊆ Q is a finite set of initial locations;
• F ⊆ Q is a finite set of accepting locations.

A transition (q,σ , I ,q′) ∈ Δ allows a jump from the source location q to the target location q′ by
performing the action σ ∈ Σ if the guard I is satisfied (i.e., ν (c) ∈ I). Meanwhile, clock c is reset to
zero. Since the unique clock c resets at every transition, the value of the logic clock c represents
the delay time between two actions. Thus, Δ induces the transition function δ : Q × Σ ×R≥0 → 2Q

such that δ (q, (σ ,τ)) = {q′ ∈ Q | (q,σ , I ,q′) ∈ Δ,σ ∈ Σ,ν (c) = τ ∈ I }. We extend δ to δ : Q × (Σ ×
R≥0)∗ → 2Q by δ (q, ϵ) = {q} and δ (q, (σ ,τ) · ω) =

⋃
q′ ∈δ (q, (σ ,τ)) δ (q′,ω), and subsequently to the

set of locations Q ′ ⊆ Q by δ (Q ′,ω) =
⋃

q∈Q ′ δ (q,ω).

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

Learning Nondeterministic Real-Time Automata 99:5

Fig. 1. An NRTA A with a set Q0 = {q0} of initial locations and a set F = {q2} of accepting locations.

A run of an RTA A is either a single initial state ρ = q0 ∈ Q0 or a finite sequence ρ = q0
σ1−−→
τ1

q1
σ2−−→
τ2

· · ·
σn−−→
τn

qn , with n > 0, (qi−1,σi , Ii ,qi) ∈ Δ, and τi ∈ Ii for 1 ≤ i ≤ n. When action σi is

being performed, ν (c) = τi . After that, the clock c resets to 0.

The trace of a run ρ is a timed word defined as: trace (q0) = ϵ , and if ρ = q0
σ1−−→
τ1

q1
σ2−−→
τ2

· · ·
σn−−→
τn

qn

then trace (ρ) = (σ1,τ1) (σ2,τ2) · · · (σn ,τn). For an RTA A, its recognized timed language can be
defined on traces as L (A) = {trace (ρ) | ρ starts from q0 ∈ Q0 and ends in qn ∈ F }. Given an RTA,
Lq denotes the timed language starting from a location q ∈ Q , which is the set of timed words ω
such that δ (q,ω) ∩ F � ∅. In this paper, we consider the real-time languages defined as follows.

Definition 2.2 (Real-time Languages). Given a timed language L ⊆ (Σ × R≥0)∗, L is a real-time

language if L can be recognized by an RTA A, i.e. L = L (A).

An RTA is a deterministic real-time automaton (DRTA) if and only if there is at most one run
for a given timed word ω, i.e. |Q0 | = 1 and |δ (q, (σ ,τ)) | = 1 for all q ∈ Q and (σ ,τ) ∈ Σ × R≥0.
Otherwise, we call it nondeterministic real-time automaton (NRTA). Therefore, given a timed word
ω, it is accepted by an NRTA A if and only if one of its corresponding runs ends in an accepting
location q ∈ F ofA. According to the Kleene Theorem for RTAs [15], DRTAs and NRTAs have the
same expressiveness. And thus every real-time language in our definition is regular.

Example 2.3. Consider NRTA A = (Q, Σ,Δ,Q0, F) in Figure 1. The set of locations Q =

{q0,q1,q2}, the finite alphabet Σ = {a,b}, the set of initial locations Q0 = {q0}, the set of accepting
locations F = {q2}, and Δ = {(q0,a, [2, 3),q1), (q1,a, [5,∞),q2), (q1,b, (1, 4),q0), (q1,b, [3, 6),q2),

(q2,a, [1, 2],q1)}. For the timed word ω = (a, 2.1) (b, 3), there are two runs in A, i.e., ρ1 = q0
a−−→

2.1

q1
b−→
3

q0 and ρ2 = q0
a−−→

2.1
q1

b−→
3

q2, corresponding to it. Clearly, ω is accepted by NRTA A as ρ2

ends in an accepting location q2 ∈ F .

3 THE MYHILL-NERODE THEOREM FOR REAL-TIME LANGUAGES

In order to prove the Myhill-Nerode Theorem for real-time languages, we first recall the notion of
the region [2]. Since there is only one clock c , given a clock valuation ν , we define the region �ν�
containing ν as �ν� = [ν ,ν] if ν ∈ N, and �ν� = (�ν�, �ν� + 1) otherwise, where �ν� is the integer
part of ν . As a convention, �ν� = (κ,∞) if ν is greater than the maximum constant κ appearing in
the RTA. Hence, there exist 2κ + 2 such regions, including [n,n] with 0 ≤ n ≤ κ, (n,n + 1) with
0 ≤ n < κ, and (κ,∞). We further define the region words as follows.

Definition 3.1 (Region Words). Given a timed word ω = (σ1,τ1) (σ2,τ2) · · · (σn ,τn), a word γ =
(σ1, �τ1�) (σ1, �τ2�) · · · (σn , �τn�) is the region word of ω, denoted as γ = �ω�.

The key concept in the classic Myhill-Nerode Theorem is that of indistinguishable words (the
right-congruence relation). Hence, we introduce two definitions about indistinguishable timed
words as follows.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

99:6 J. An et al.

Definition 3.2. Let L ⊆ (Σ × R≥0)∗ be any timed language. Two timed words ω1,ω2 ∈ (Σ ×
R≥0)∗ are indistinguishable by L, denoted ω1 ∼L ω2, if for every timed word ω ′ ∈ (Σ × R≥0)∗, it
holds that ω1 · ω ′ ∈ L if and only if ω2 · ω ′ ∈ L.

Definition 3.3. Given a DRTA A, two timed words ω1,ω2 ∈ (Σ × R≥0)∗ are indistinguishable by
A, denoted ω1 ∼A ω2, if δ (q0,ω1) = δ (q0,ω2), i.e. the reachable location for ω1 is the same as the
reachable location for ω2.

Lemma 3.4. Given a DRTA A, for all ω1,ω2 ∈ (Σ × R≥0)∗, ω1 ∼A ω2 if ω1 and ω2 belong to the

same region word γ .

Lemma 3.5. If a timed language L = L (A) for a DRTA A, then for all ω1,ω2 ∈ (Σ × R≥0)∗, if

ω1 ∼A ω2 then ω1 ∼L ω2.

Corollary 3.6. If L is a real-time language, then ∼L has a finite number of equivalence classes.

It’s not hard to prove the above corollary and lemmas. Based on them, we claim that there is a
corresponding Myhill-Nerode theorem for real-time languages as follows.

Theorem 3.7 (Myhill-nerode theorem for real-time languages). L is a real-time language

if and only if ∼L has a finite number of equivalence classes which satisfy the following two conditions:

1. For all ω ∈ (Σ × R≥0)∗, σ ∈ Σ and τ ,τ ′ ∈ R≥0, if �τ ′� = �τ �, then ω · (σ ,τ ′) ∼L ω · (σ ,τ);
2. There exists κ ∈ N, such that for all σ ∈ Σ and τ ,τ ′ ∈ R≥0, if τ > κ and τ ′ > κ then

ω · (σ ,τ) ∼L ω · (σ ,τ ′).
Furthermore there is a unique minimal (w.r.t. the number of locations) DRTA A with L (A) = L.

Proof. Corollary 3.6 shows that ifL is a real-time language, then ∼L has finitely many equiv-
alence classes. We further prove that ∼L satisfies the above two conditions. Suppose that a DRTA
A recognizes the real-time language L. For the first condition, we assume that A ends in a loca-
tion q after reading ω · (σ ,τ). By Lemma 3.4, for all τ ′ ∈ �τ �, we have ω · (σ ,τ ′) ∼A ω · (σ ,τ). Then
by Lemma 3.5, we have ω · (σ ,τ ′) ∼L ω · (σ ,τ). For the second condition, we let κ be the maxi-
mum constant appearing in the timed constraints of A. By the definitions of DRTAs and regions,
if τ > κ and τ ′ > κ, then �τ � = �τ ′� = (κ,∞). By Lemma 3.4, ω · (σ ,τ) ∼A ω · (σ ,τ ′). Then by
Lemma 3.5, ω · (σ ,τ) ∼L ω · (σ ,τ ′).

Then we prove the other direction. If ∼L has finitely many equivalence classes which satisfy
the two conditions, we can build a DRTA A = (Q, Σ,Δ,Q0, F) which recognizes L as follows. Let
L0,L1, . . . ,Ln be the disjoint equivalence classes of∼L , such that ϵ ∈ L0. Note that the union of the
equivalence classes is (Σ × R≥0)∗. First, we build the set of locations. We set Q = {q0,q1, . . . ,qn },
where each qi represents the equivalence class Li . Then for building a transition (qi ,σ , �τ �,qj),
where σ ∈ Σ, τ ∈ R≥0 and 0 ≤ i, j ≤ n, we select a timed word ω from Li and then find qj

such that ω · (σ ,τ) ∈ Lj . Since ∼L satisfies the two conditions, the number of regions �τ � is finite.
Therefore, Δ is a finite set. Finally, the initial location is q0 and the set of accepting locations is
F = {qi | Li ⊆ L}. By induction, we can prove δ (q0,ω) = qi ∈ F ⇔ ω ∈ Li ⊆ L, i.e. L (A) = L.

Combining the two directions, L is a real-time language if and only if ∼L has finitely many
equivalence classes. Furthermore, we can build a unique minimal DRTA A with L (A) = L. �

4 RESIDUAL REAL-TIME AUTOMATA

From Theorem 3.7, we know that there exists a unique minimal DRTA which can recognize a
given real-time language. However, the same does not hold for NRTAs, which means that there
is no unique minimal NRTA as the learning target for a given real-time language. Therefore, in-
spired by Denis et al.’s work on residual finite state automata (RFSAs) [12], we introduce a special

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

Learning Nondeterministic Real-Time Automata 99:7

kind of NRTAs, named residual real-time automata (RRTAs), which have nice properties for active
learning, that is for a real-time language there is a unique minimal RRTA recognizing it. Then we
can transform the problem of actively learning NRTAs to the problem of actively learning RRTAs,
which will be the focus of Section 5.

Definition 4.1 (Residual Real-time Language). Let L ⊆ (Σ × R≥0)∗ be a real-time language and
ω be a timed word. The residual real-time language of L with regard to ω is defined by ω−1L =
{ω ′ ∈ (Σ × R≥0)∗ | ωω ′ ∈ L}. Let Res (L) be the set of residual real-time languages of L.

If L is recognized by an NRTAA = (Q, Σ,Δ,Q0, F), then q ∈ δ (Q0,ω) ⇒ Lq ⊆ ω−1L. Based on
Theorem 3.7 and the definition of residual real-time language, if RTAA′ = (Q ′, Σ,Δ′,Q ′0, F

′) is the

unique minimal DRTA recognizing L, then (1) there exists a unique q′ ∈ Q ′ such that Lq′ = ω−1L
for each ω−1L � ∅; (2) there exists a unique residual language ω−1L such that ω−1L = Lq′ for
each q′ ∈ Q ′. In other words, for the minimal DRTA A′, there is a bijection between the set of
locations Q ′ and the set of residual real-time languages Res (L (A′)) (i.e. Res (L)).

Definition 4.2 (Residual Real-time Automata). A residual real-time automaton is an NRTA A =
(Q, Σ,Δ,Q0, F) such that ∀q ∈ Q,∃ω ∈ (Σ × R≥0)∗ : Lq = ω−1L (A). Additionally, ω is called a
characterizing timed word for q.

Immediately, we can see that a location q in an RRTAA represents a residual real-time language
of L (A), but not every residual real-time language of L (A) corresponds to a single location. Sup-
pose A′ is the unique minimal DRTA for L (A), i.e. L (A′) = L (A), since there is a bijection
between the set of locations of A′ and the set of residual real-time languages of L (A′), the loca-
tions of RRTA A are a subset of the locations of the unique minimal DRTA A′.

Definition 4.3 (Prime and Composed Residual Real-time Languages). Let L be a real-time lan-
guage. A residual real-time language ω−1L is called prime if⋃

{ω ′−1L | ω ′−1L � ω−1L} � ω−1L,

otherwise, ω−1L is called composed.

In other words, ω−1L is composed if there exist L1,L2, . . . ,Ln ∈ Res (L)\{ω−1L} such that
ω−1L = L1 ∪ L2 ∪ · · · ∪ Ln . Otherwise, it is prime. Additionally, the set of prime residual real-
time languages of L is finite.

The following lemma shows that given an RRTA A, each prime residual language ω−1L (A)
corresponds to a location of A. In other words, RRTA A has at least as many locations as the
number of the prime residual real-time languages of L (A).

Lemma 4.4. If A = (Q, Σ,Δ,Q0, F) is an RRTA, then there exists a location q ∈ Q such that

Lq = ω−1L (A) for each prime residual real-time language ω−1L (A).

Proof. (Sketch) Given a prime residual ω−1L (A), suppose that δ (Q0,ω) = {q1,q2, . . . ,qm } and
let ω1,ω2, . . . ,ωm be the characterizing timed words such that Lqi

= ωi
−1L (A), where 1 ≤ i ≤

m. Depending on Definition 4.1, ω−1L (A) =
⋃m

i=1 ωi
−1L (A). As ω−1L (A) is a prime residual

real-time language, according to Definition 4.3, there should exist a ωi ∈ {ω1,ω2, . . . ,ωm } such
that ωi

−1L (A) = ω−1L (A). Then we find a location q = qi ∈ Q such that Lqi
= ω−1L (A). �

Definition 4.5 (Canonical Residual Real-time Automata). LetL be a real-time language. An RRTA
A = (Q, Σ,Δ,Q0, F) is the canonical residual real-time automaton (CRRTA) of L, where

• Q = {ω−1L | ω−1L is prime} is the finite set of locations;
• Σ is the alphabet;

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

99:8 J. An et al.

• Δ = {(ω1
−1L,σ , �τ �,ω2

−1L) | σ ∈ Σ ∧ τ ∈ R≥0 ∧ ω1
−1L,ω2

−1L ∈ Q ∧ ω2
−1L ⊆ (ω1 ·

(σ ,τ))−1L} is the transition relation;
• Q0 = {ω−1L | ω−1L ⊆ L ∧ ω−1L ∈ Q } is the set of initial locations;
• F = {ω−1L | ϵ ∈ ω−1L ∧ ω−1L ∈ Q } is the set of accepting locations.

According to Theorem 3.7, there exists κ ∈ N as the maximum value appearing in the timed
constraints. Therefore Δ is finite and the CRRTA of L is well-defined. The CRRTA is the RRTA
with the minimum number of locations (reduced) and maximum number of transitions (saturated).

Theorem 4.6. The canonical residual real-time automaton A of a real-time language L is the

minimal (w.r.t. the number of locations) RRTA which recognizes L.

Proof. (sketch) It’s not hard to prove that the CRRTA A is an RRTA. Then Lemma 4.4 shows
that it has a minimal number of locations. �

Note that the CRRTAA has a lot of transitions, according to Definition 4.5. One way to reduce
the number of transitions is to merge those with the same source location, target location and
action, and whose region guards are adjacent. For example, if (q,σ , (1, 2),q′) and (q,σ , [2, 2],q′) are
two transitions in Δ, then we can merge them into a new transition (q,σ , (1, 2],q′). Such operations
do not change the number of locations and the recognized real-time language of A. If A′ is the
automaton transformed from a CRRTAA through the above operation,A′ is seen as the CRRTA
for the same real-time language hereafter.

5 LEARNING RESIDUAL REAL-TIME AUTOMATA

Based on the canonical property of RRTAs, we can transform the problem of actively learning
NRTAs to the problem of actively learning minimal RRTAs. In this section, we describe the learning
algorithm, analyse its complexity and prove its correctness.

We first describe the settings for active learning of real-time languages in general. Following
Angluin’s MAT framework, there exists a teacher who knows the target real-time language L and
answers two kinds of queries from a learner. For a membership query, the learner asks whether a
timed word ω is in the language L or not. The teacher can answer yes or no. The learner collects
the results of membership queries in an observation table. For an equivalence query, the teacher
receives an NRTAA from the learner as a hypothesis forL. The teacher answers whetherL (A) =
L. If not, the teacher returns a timed word as a counterexample which distinguishes L (A) and L.
In what follows, we present the details of the learning algorithm.

5.1 Membership Query and Real-time Observation Table

In order to gather enough information to construct a hypothesis, the learner makes membership
queries like “Is the timed word ω in L?”. In practice, a membership query is often conducted by
testing. In theory, we assume that the teacher has an oracle to answer membership queries, i.e.,
MQ : (Σ × R≥0)∗ → {+,−}. Given an RTA recognizing L, the teacher gives a positive answer if
there is a run ρ ending in an accepting location after readingω. The results of membership queries
are collected in a real-time observation table T as follows.

Definition 5.1 (Real-time Observation Table). A real-time observation table is a 6-tuple T =
(Σ,Ξ, S,R,E, f), where Σ is the alphabet, Ξ = Σ × R≥0 is the set of all timed actions, S,R,E ⊆ Ξ∗,
S is called the set of prefixes, R the set of extended prefixes and E the set of suffixes, respectively.
Specifically,

• S and R are disjoint, i.e. S ∩ R = ∅;
• S ∪ R is prefix-closed and E is suffix-closed;

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

Learning Nondeterministic Real-Time Automata 99:9

Fig. 2. Left: an example of an NRTA. Right: an example of real-time observation table in which the prime

prefixes are labelled by �. Some rows of the table are omitted.

• The empty word ϵ is both a prefix and a suffix, i.e. ϵ ∈ S ∪ R and ϵ ∈ E;
• f : (S ∪ R) · E → {+,−} is a mapping function such that for every timed word (prefix)
ω ∈ S ∪ R and every timed word (suffix) e ∈ E, f (ω · e) = + if the timed word ω · e ∈ L, i.e.
MQ(ωe) = + and f (ω · e) = − otherwise, i.e. MQ(ωe) = −.

Given a table T , we define a function val : S ∪ R → (E → {+,−}) mapping every prefix
ω ∈ S ∪ R to a value vector indexed by the suffix e ∈ E, in which each value is defined by f (ω · e).
Intuitively, the vectors denote different locations in a hypothesis automaton, and the suffixes are
used to distinguish the locations. Here we define a function row : S ∪R → 2E by row (ω) = {e ∈ E |
f (ω ·e) = +} for eachω ∈ S ∪R. Hence, considering the definitions of residual real-time languages
and RRTAs in Section 4, we find that row (ω) represents a subset of the residual real-time language
ω−1L indicated by the prefix ω ∈ S ∪ R.

Therefore, following [8], in order to indicate the prime and composed residual real-time lan-
guages of L using the prefixes in S ∪ R, we define prime and composed prefixes as follows.

Definition 5.2 (Prime and Composed Prefixes). Given a table T = (Σ,Ξ, S,R,E, f), a prefix ω ∈
S ∪ R is prime if ⋃

{row (ω ′) | row (ω ′) � row (ω)} � row (ω)

with ω ′ ∈ S ∪ R, otherwise composed.

In other words, a prefix ω ∈ S ∪ R is composed if there exist ω1,ω2, . . . ,ωn ∈ (S ∪ R)\{ω} such
that row (ω) = row (ω1)∪row (ω2)∪· · ·∪row (ωn). Otherwise, the prefixω is prime. It’s worth noting

that given a prime prefix ω ∈ S ∪ R there may exist prime prefixes s ∈ S such that row (s) � row (ω).

Example 5.3. Figure 2 shows another NRTA A and an instance of the real-time observa-
tion table T during the learning process for A. We use the example to illustrate the defi-
nitions about real-time observation tables. The prefix set S is {ϵ, (a, 5.1), (a, 0), (a, 5.1) (a, 8.1)},
the extended prefix set R is {(b, 0), (a, 5.1) (a, 0), (a, 5.1) (b, 0), (a, 7), . . .} and the suffix set E is
{ϵ, (a, 8.1), (a, 8.1) (a, 8.1), (a, 15)}. Given a timed wordω ·e = (a, 5.1) · (a, 8.1), we have f (ω · e) =
+, since it is accepted by A. For the functions val and row, we have val ((a, 5.1)) = {−,+,−,−}
and row = {(a, 8.1)}. The prefix (a, 7) is a composed prefix since row ((a, 7)) = {ϵ, (a, 8.1)} =
row ((a, 5.1) (a, 8.1)) ∪ row ((a, 5.1)). As an illustration of the note in the previous paragraph, al-
though (a, 5.1) is a prime prefix, there exists a prime prefix (a, 0) ∈ S such that row ((a, 0)) �
row ((a, 5.1)).

The basic idea of the learning algorithm is to find all prime prefixes. Based on Definition 4.3,
there exists a set of timed words to distinguish prime residual real-time languages from each other.
Thus we try to find the suffix set E containing distinguishing words. Before constructing a hy-
pothesis from a table, the learner has to ensure that the table satisfies the following readiness
conditions:

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

99:10 J. An et al.

• Reduced: ∀s ∈ S : s is prime, and ∀s, s ′ ∈ S : s � s ′ ⇒ val (s) � val (s ′).
• Closed: ∀r ∈ R : row (r) =

⋃ {row (s) | s ∈ S ∧ row (s) ⊆ row (r)}.
• Consistent: ∀ω,ω ′ ∈ S ∪R : row (ω) ⊆ row (ω ′) ⇒ row (ω ·σ) ⊆ row (ω ′ ·σ) if ω ·σ ,ω ′ ·σ ∈
S ∪ R, where σ ∈ Ξ = Σ × R≥0.
• Evidence-closed: ∀s ∈ S, e ∈ E : s · e ∈ S ∪ R.
• Distinctness: ∀ω ∈ S ∪ R,σ ∈ Ξ = Σ × R≥0: ω · σ ∈ S ∪ R ⇒ si · σ ∈ S ∪ R, where
si ∈ {s ∈ S | row (s) ⊆ row (ω)}.

Since S is the set of current prime prefixes, a reduced table helps to set a bijection between S
and prime residuals, which corresponds to Definition 4.5. A closed table ensures that for every
current composed residuals indicated by r ∈ R is composed by an union of prime residuals in-
dicated by current prime prefixes, which corresponds to Definition 4.3 and 5.2. Given a table, if
row (ω) ⊆ row (ω ′), it shows a relation that the residual language indicated by ω is a subset of
the residual language indicated by ω ′. Hence if the table is consistent, after performing the same
timed action σ , the relation is still maintained for the timed words ω · σ and ω ′ · σ . The above
two readiness conditions are direct extensions of those in [8]. The evidence-closed condition is
added and serves the same function as in [4, 5, 16]. The last condition, distinctness, is unique for
this paper, and is needed to deal with nondeterministic behavior caused by timing information.
Given a prefix ω, it represents a virtual location which combines the locations indicated by prime
prefixes si ∈ {s ∈ S | row (s) ⊆ row (ω)}. If a table contains the prefixes si · σ , it will make the
residual and location indicated by si distinct. Such condition prevents the hypothesis receiving a
repeating counterexample and therefore ensures the termination of our learning algorithm. A real-
time observation table is prepared if it satisfies the above conditions. To achieve it, we introduce
the following operations.

Making T reduced. If T is not reduced, there are two cases. If there is an s ∈ S which is not
prime, there exists a set {s1, s2, . . . , sn } ∈ S\{s} such that row (s) = row (s1)∪ row (s2)∪ · · ·∪ row (sn).
In this case we fix the table by moving s to R. The second part of the condition, that there are no
two rows in S which are the same, is guaranteed by the other table operations and the process of
handling counterexamples in Section 5.3.

Making T closed. If T is not closed, we find a row r ∈ R such that
⋃ {row (s) |row (s) ⊆ row (r)} �

row (r), where s ∈ S , then move r from R to S . It means that we find a new location. Additionally, for
each action σ ∈ Σ, we add a new row r · (σ , 0) into R and fill the table by performing membership
queries MQ(r · (σ , 0) · e) for every suffix e ∈ E. Such an operation is important since it guarantees
that at every location all actions in Σ are enabled. Comparing with the L∗ and NL∗ algorithms, we
do not add timed words r · (σ ,τ) for all τ ∈ R≥0 to the table since the number of such timed words
is infinite. The partition function in Section 5.2 will handle all clock valuations in R≥0.

Making T consistent. If T is not consistent, it implies that there exist at least two rows ω,ω ′ ∈
S ∪ R, such that ω · σ ,ω ′ · σ ∈ S ∪ R for some σ ∈ Σ × R≥0, with row (ω) ⊆ row (ω ′), but
row (ω ·σ) � row (ω ′ ·σ). Then we find a suffix e ∈ E such that f (ω ·σ ·e) = + and f (ω ′ ·σ ·e) = −.
The suffix e can also be found using row (ω)\(row (ω) ∩ row (ω ′)). One inconsistency can be fixed
by adding a new suffix σ · e to E. Afterwards, the table is filled via membership queries.

Making T evidence-closed. If T is not evidence-closed, then we can find s ∈ S and e ∈ E with
s · e � S ∪ R and put all prefixes of s · e in R except for those already in S ∪ R. Similarly, we need
to fill the table through membership queries.

Making T distinct. If T is not distinct, then we can find a row ω ∈ S ∪ R with ω · σ ∈ S ∪ R for
some σ ∈ Σ × R≥0 but not all si · σ in S ∪ R, where si ∈ {s ∈ S | row (s) ⊆ row (ω)}. Then the table

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

Learning Nondeterministic Real-Time Automata 99:11

Fig. 3. The table instances used in Example 5.4 to illustrate the readiness conditions and the corresponding

operations. These table instances are generated during the learning process of the running example presented

in Section 5.6.

can be fixed by adding all such si · σ to R. Similarly, the table needs to be filled via membership
queries. Note that we need to perform this operation no matter if ω is prime or composed.

A table may need several rounds of the above operations before being prepared (cf. Algorithm 1).
The following example illustrates the readiness conditions and the corresponding operations.

Example 5.4. As shown in Figure 3, there are four table instances T2, T3, T4 and T5.
T2 is not closed since there exists a row (a, 5.1) ∈ R such that

⋃ {row (ϵ)} = ∅ � row ((a, 5.1)). In
order to repair it, we move the row (a, 5.1) from R to S and then add (a, 5.1) · (a, 0) and (a, 5.1) · (b, 0)
to R. After making membership queries, we get T3.
T3 is not distinct. It can be shown as follows. Let ω ·σ = (a, 5.1) · (a, 8.1). Then we can build the

set {ϵ, (a, 5.1)} since row (ϵ) ⊆ row ((a, 5.1)) and row ((a, 5.1)) ⊆ row ((a, 5.1)). However, ϵ · (a, 8.1)
is not in S ∪ R. Hence, we add ϵ · (a, 8.1) into R to repair it. This results in table T4. Actually, since
T3 is also not evidence-closed, ϵ · (a, 8.1) can also be added into R in the process of making T3
evidence-closed. It depends on the checking order of the conditions.
T4 is not consistent, since row (ϵ) ⊆ row ((a, 5.1)) but row (ϵ · (a, 8.1)) � row ((a, 5.1) · (a, 8.1)).

To repair it, we find the suffix (a, 8.1) ∈ E with f (ϵ · (a, 5.1) · (a, 8.1)) = + and f ((a, 5.1) · (a, 8.1) ·
(a, 5.1)) = −, then add (a, 8.1) · (a, 8.1) to E as a new suffix. This results in table T5. It is not hard
to find that T5 is not closed and we can move (a, 5.1) (a, 8.1) from R to S to repair it.

5.2 Constructing a Hypothesis from a Prepared Table T
Once the learner obtains a prepared table T , a hypothesis NRTA can be constructed in two steps.
The learner first constructs an NFAM from T , and then transforms it to an NRTAH as the current
hypothesis. We describe each of the two steps in turn.

Construction of NFA M . Given a prepared real-time observation table T = (Σ,Ξ, S,R,E, f), the
learner builds an NFA M = (QM , ΣM ,ΔM ,Q

0
M
, FM) as follows:

• the finite set of locations QM = {qval(s) | s ∈ S };
• the abstract alphabet ΣM = {σ ∈ Ξ | ω · σ ∈ S ∪ R ∧ row (ω) ∈ {row (s) | s ∈ S }};
• the transition relation ΔM = {(qval(ω),σ ,qval (s ′)) | ω · σ ∈ S ∪ R ∧ row (ω) ∈ {row (s) | s ∈
S } ∧ row (s ′) ⊆ row (ω ·σ) ∧ s ′ ∈ S }; (The corresponding transition function is denoted as δ̂);
• the set of initial locations Q0

M
= {qval(s) | row (s) ⊆ row (ϵ) for s ∈ S ∧ ϵ ∈ S ∪ R};

• the set of accepting locations FM = {qval(s) | f (s · ϵ) = + for s ∈ S ∧ ϵ ∈ E}.
If T is a prepared table, the NFA M is well-defined. For the set of locations, we let each current

prime prefix in S to represent a location. The transitions are built as follows. For each timed word
ω · σ ∈ S ∪ R, since T is prefix-closed, we know ω is also in S ∪ R. If ω is prime, then row (ω) ∈
{row (s) | s ∈ S }, and we add a transition (qval (ω),σ ,qval (s ′)) for each s ′ ∈ S with row (s ′) ⊆
row (ω · σ). If ω is composed, we have row (ω) � {row (s) | s ∈ S }, so no transition comes directly

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

99:12 J. An et al.

from ω. However, since T is distinct, if row (ω) decomposes as row (s1) ∪ row (s2) ∪ · · · ∪ row (sn),
where each si ∈ S , then we have added all si · σ for 1 ≤ i ≤ n into R, and it suffices to build
transitions using row (si). The set ΣM collects all timed actions σ which can trigger transitions,
viewing a timed action σ as an abstract action in NFA M . For initial locations, the formula Q0

M
=

{qval(s) | row (s) ⊆ row (ϵ) for s ∈ S ∧ ϵ ∈ S ∪ R} means that the virtual initial location (reached
by ϵ) is composed from several actual locations. Hence, the prefix ϵ is not in S if and only if it
is a composed prefix. The set of accepting locations collects all locations indicated by the prime
prefixes which are in L.

Definition 5.5 (Compatibility). Let T = (Σ,Ξ, S,R,E, f) be a prepared table, and M =

(QM , ΣM ,ΔM , Q0
M
, FM) be an NFA. We say M is compatible with T if for every timed word

ω · e ∈ (S ∪ R) · E, M accepts ω · e if and only if f (ω · e) = +.

According to the learning algorithms [4, 5, 16] for deterministic automata, we need to prove
that NFA M is compatible with table T . However, as pointed out in [8], this property does not
necessarily hold for the constructed NFA in every round. Instead, it is shown in [8] that M satisfies
several weaker properties, which is still sufficient for proving correctness of the algorithm. Further
it is shown that ifM is compatible withT , thenM is a canonical RFSA. Compared to [8], we defined
several extra readiness conditions and modified the process for handling counterexamples, so the
statement and proofs of the lemmas are slightly modified. The lemmas are as follows.

Lemma 5.6 ([8, Lemma 2]). Let T = (Σ,Ξ, S,R,E, f) be a prepared table and M = (QM , ΣM ,
ΔM ,Q

0
M
, FM) be the constructed NFA. For every timed word s · e ∈ S · E, f (s · e) = + iff e ∈ Lqval (s)

,

where Lqval(s)
is the language of location qval(s) , i.e. δ̂ (qval(s), e) ∩ FM � ∅. Moreover, f (ϵ · e) = + iff

e ∈ L(M), where L(M) is the recognized language of NFA M .

Proof. Suppose e = ϵ , we have f (s · e) = f (s · ϵ) = + iff qval(s) ∈ FM by the definition of FM .
Hence, we have f (s · ϵ) = + iff ϵ ∈ Lqval (s)

.
Now suppose e = σ · e ′. Since T is evidence-closed, we have s · σ ∈ S ∪ R. Since E is suffix-

closed, we have e ′ ∈ E. By the definition of ΔM , there exist transitions with source location qval (s)

and action σ , so that σ ∈ ΣM . We prove the lemma by induction on the length of e ∈ E.
If f (s ·e) = +, then f ((s ·σ) ·e ′) = f (s · (σ ·e ′)) = +. We wish to find s ′ ∈ S such that f (s ′ ·e ′) = +.

If s · σ ∈ S , it suffices to set s ′ = s · σ . Otherwise, we have s · σ ∈ R. Since f ((s · σ) · e ′) = +, there
exists at least one s ′ ∈ S such that f (s ′ · e ′) = + and row (s ′) ⊆ row (s · σ), and it suffices to take
that s ′. By induction hypothesis, e ′ ∈ Lqval(s′) . By the definition of ΔM , there is a transition from

qval(s) to qval(s ′) with action σ . Hence, the suffix e = σ · e ′ is in Lqval (s)
. In particular, if ϵ ∈ S and

f (ϵ · e) = +, we have shown that e ∈ Lqval (ϵ) . By the definition ofQ0
M

, if ϵ ∈ S , Lqval (ϵ) ⊆ L(M) then

e ∈ L(M). If ϵ ∈ R, by the definition ofQ0
M

, every s such that qval(s) ∈ Q0
M

satisfies row (s) ⊆ row (ϵ).

Additionally, since T is closed, then we can find at least one s ∈ S such that qval(s) ∈ Q0
M

and
f (s · e) = +. It follows e ∈ L(M).

For the inverse direction, suppose e = σ ·e ′ and f (s ·e) = −. We have f ((s ·σ) ·e ′) = f (s · (σ ·e ′)) =
−. We wish to show f (s ′ ·e ′) = − for every s ′ ∈ S satisfying row (s ′) ⊆ row (s ·σ). Since T is closed,
we have row (s · σ) =

⋃ {row (s ′) | s ′ ∈ S ∧ row (s ′) ⊆ row (s · σ)}. Since f ((s · σ) · e ′) = − and
row (s ′) ⊆ row (s ·σ), then f (s ′ · e ′) = − for every such s ′. By the induction hypothesis, e ′ � Lqval (s′)
for all s ′ ∈ S satisfying row (s ′) ⊆ row (s · σ). By the definition of ΔM , there exists no transition
from qval(s) to qval(s ′) with action σ . Hence, the suffix e = σ · e ′ is not in Lqval(s)

. Moreover, we can
prove if f (ϵ · e) = − then e � L(M).

Combining the two directions, we have f (s ·e) = + iff e ∈ Lqval (s)
and f (ϵ ·e) = + iff e ∈ L(M). �

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

Learning Nondeterministic Real-Time Automata 99:13

Lemma 5.7 ([8, Lemma 3]). Let T = (Σ,Ξ, S,R,E, f) be a prepared table and M = (QM , ΣM ,ΔM ,
Q0

M
, FM) be the constructed NFA. For s, s ′ ∈ S , row (s) ⊆ row (s ′) if and only if Lqval (s)

⊆ Lqval(s′) .

Proof. If row (s) ⊆ row (s ′) and suppose ω ∈ Lqval(s)
, we need to prove ω ∈ Lqval (s′) . If ω = ϵ , we

have f (s ·ϵ) = +. Since row (s) ⊆ row (s ′), f (s ′ ·ϵ) = +. By the definition of FM , qval(s ′) ∈ FM . Hence,

ω = ϵ ∈ Lqval(s′) . Ifω = σ ·ω ′, where σ ∈ ΣM andω ∈ Lqval (s)
, then δ̂ (qval(s),σ ·ω ′)∩FM � ∅. Hence

there is s ′′ ∈ S with qval (s ′′) ∈ δ̂ (qval(s),σ) and δ̂ (qval(s ′′),ω
′) ∩ FM � ∅. Based on the definition of

ΔM , row (s ′′) ⊆ row (s · σ). Since T is consistent, we also have row (s · σ) ⊆ row (s ′ · σ). Therefore,

row (s ′′) ⊆ row (s ′ · σ). Thus, s ′′ ∈ δ̂ (qval(s ′),σ), which implies ω = σ · ω ′ ∈ Lqval(s′) .

For the inverse direction, suppose row (s) � row (s ′), then there exists e ∈ E such that f (s ·e) = +
while f (s ′ · e) = −. By Lemma 5.6, e ∈ Lqval (s)

and e � Lqval(s′) . Therefore, Lqval (s)
� Lqval(s′) . �

Lemma 5.8 ([8, Lemma 4]). Let T = (Σ,Ξ, S,R,E, f) be a prepared table and suppose the con-

structed NFA M = (QM , ΣM ,ΔM ,Q
0
M
, FM) is compatible with T . For every ω ∈ S ∪ R, if ω is prime,

then qval(ω) ∈ δ̂ (Q0
M
,ω).

Proof. Suppose qval (ω) � δ̂ (Q0
M
,ω). Since ω is prime, then there is a prefix s ∈ S with row (s) =

row (ω). Thus, qval(s) � δ̂ (Q0
M
, s). For all s ′ ∈ S satisfying qval(s ′) ∈ δ̂ (Q0

M
,ω) = δ̂ (Q0

M
, s), we have

row (s ′) ⊆ row (s). By Lemma 5.7, Lqval (s′) ⊆ Lqval (s)
. As qval (s) � δ̂ (Q0

M
, s), there exists e ∈ E such that

f (s · e) = + and for all qval(s ′) ∈ δ̂ (Q0
M
, s), f (s ′ · e) = − which implies e � Lqval (s′) . Thus, e � Lqval(s)

and then s ·e � L(M) while f (s ·e) = +. This contradicts the assumption that M is compatible with

T . Hence, we have qval(ω) ∈ δ̂ (Q0
M
,ω). �

After constructing an NFA M from a prepared table, the learner can transform it to a hypothesis
NRTAH = (Q, Σ,Δ,Q0, F) by using the following partition function.

Definition 5.9 (Partition Function [4]). Given a list of clock valuations � = τ0,τ1, . . . ,τn with
0 = τ0 < τ1 · · · < τn , and �τi � � �τj � if τi ,τj ∈ R≥0 \ N and i � j for all 1 ≤ i, j ≤ n, let τn+1 = ∞,
then a partition function P (·) mapping � to a set of intervals {I0, I1, . . . , In }, which is a partition of
R≥0, is defined as

Ii =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

[τi ,τi+1), if τi ∈ N ∧ τi+1 ∈ N;

(�τi �,τi+1), if τi ∈ R≥0 \ N ∧ τi+1 ∈ N;

[τi , �τi+1�], if τi ∈ N ∧ τi+1 ∈ R≥0 \ N;

(�τi �, �τi+1�], if τi ∈ R≥0 \ N ∧ τi+1 ∈ R≥0 \ N.

Construction of hypothesis H . The hypothesis NRTA H = (Q, Σ,Δ,Q0, F) can be constructed
by the following steps. First, let Q = QM , Q0 = Q0

M
, F = FM and let Σ be the given alphabet

as in T . For every location q ∈ QM and every action σ ∈ Σ, we find a set of clock valuations
Ψq,σ = {τ | (q, (σ ,τ),q′) ∈ ΔM }. Then we apply the partition function P to the result of sorting
the elements in Ψq,σ to get k intervals, written as I1, . . . , Ik , where k = |Ψq,σ |. These intervals
satisfy τi ∈ Ii for any 1 ≤ i ≤ k . Consequently, for every (q, (σ ,τi),q′) ∈ ΔM , a fresh transition
(q,σ , Ii ,q

′) is added to Δ. The construction build a bijection between ΔM and Δ.
Since NFA M is not always compatible with T , the constructed NRTAH is not always compat-

ible with T either, i.e., it does not hold that for all ω · e ∈ (S ∪ R) · E,H accepts ω · e if and only if
f (ω · e) = +.

However, the following lemma shows that the two automataH and M are compatible with each
other w.r.t. all ω ∈ S ∪ R which can be generated by M .

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

99:14 J. An et al.

Fig. 4. An example without the distinctness condition.

Lemma 5.10. Given a NFA M = (QM , ΣM ,ΔM ,Q
0
M
, FM) generated from a prepared table T , and

the hypothesis NRTA H = (Q, Σ,Δ,Q0, F) transformed from M . For all ω ∈ S ∪ R which can be

generated by M , we haveH and M share the same set of runs by reading ω.

Proof. Suppose ω = ϵ , then H and M share the same set of runs since Q0 = Q0
M

. Suppose
ω = ω ′ · (σk ,τk) is a timed word which can be generated by M . Since ω ∈ S ∪ R, then ω ′ ∈ S ∪ R.
By induction, we have M andH share the same set of runs by reading ω ′. Let {q1,q2, . . . ,qm } =
δ̂ (Q0

M
,ω ′) in M , then {q1,q2, . . . ,qm } = δ (Q0,ω

′) in H by the inductive hypothesis. Let Source

be a subset of {q1,q2, . . . ,qm } such that for each q ∈ Source there exists s ∈ S with q = qval (s)

and s · (σk ,τk) ∈ S ∪ R. For ω, there are also prime rows s ∈ S with row (s) ⊆ row (ω). Suppose

{q′1,q′2, . . . ,q′n } = δ̂ (Q0
M
,ω), denoted as Target. Let Seg be the set of segments going from Source to

Target which can occur as the last segment of a run in M by reading ω. Let Seg′ be its counterpart
inH . IfH and M do not share the same set of runs by reading ω, there are two possibilities:

1. Suppose there is a segment q
σk−−→
τk

q′ in Seg′ but not in Seg. If q � {q1,q2, . . . ,qm }, then q can

be reached by a run reading ω ′ in H but not in M . This is a contradiction to the induction
hypothesis. If q′ � {q′1,q′2, . . . ,q′n }, then q′ can be reached by a run reading ω in H but not
in M . This contradicts the bijection between ΔM and Δ (and each transition in Δ is obtained
by extending the corresponding transition in ΔM to an interval).
If q ∈ {q1,q2, . . . ,qm } and q � Source, then there exists s ∈ S such that q = qval(s) , but
s · (σk ,τk) � S ∪ R and s · (σk ,τ

′
k

) ∈ S ∪ R, where �τ ′
k
� � �τk � and τ ′

k
< τk . As it leads to a

transition (qi ,σk , I
′
k
,q′j), where I ′

k
= [�τ ′

k
�, ?) or I ′

k
= (�τ ′

k
�, ?), τk satisfies the guard I ′

k
if the

upper-bound of I ′
k

is greater than τk . However, s · (σk ,τk) � S∪R contradicts the distinctness
condition. Since ω = ω ′ · (σk ,τk) ∈ S ∪ R, then s · (σk ,τk) ∈ S ∪ R for all row (s) ⊆ row (ω ′).
Then the upper-bound of I ′

k
will be less than τk , as the new transition is (qi ,σk , I

′
k
,q′j), where

I ′
k
= [�τ ′

k
�, �τk �) or I ′

k
= (�τ ′

k
�, �τk �).

2. Suppose there is a segment q
σk−−→
τk

q′ in Seg but not in Seg′. This is again a contradiction to

the bijection between ΔM and Δ.

Hence, by induction,H and M have the same set of runs by reading ω. �

Thanks to the distinctness condition and the bijection between ΔM and Δ, we can guarantee
the compatibility between H and M . The following example illustrates the situation without the
distinctness condition.

Example 5.11. In Figure 4, the dashed ellipses represent all ending locations after reading a
timed word. There are two initial locations q0 and q1 of M . M can reach q2 and q3 after reading

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

Learning Nondeterministic Real-Time Automata 99:15

Fig. 5. A prepared table T , the corresponding NFA M and the hypothesis NRTAH .

timed action (a, 1). q2 and q3 are indicated by (a, 1) and (b, 3) (a, 1) respectively. M reaches a non-
accepting location q4 from q2 after reading (b, 7) and reaches an accepting location q5 from q3 after
reading (b, 4). As row ((b, 3) (a, 1)) ⊆ row ((a, 1)) and (b, 3) (a, 1) · (b, 7) � S ∪R∧ (b, 3) (a, 1) · (b, 4) ∈
S ∪ R, where �4� � �7� ∧ 4 < 7, it follows that H and M do not share the same set of runs for
(a, 1) (b, 7) by Lemma 5.10. Thus, in the transformedH , there exist two transitions (q3,b, [4,∞),q5)

and (q2,b, [7,∞),q4). Obviously, (a, 1) (b, 7) is accepted byH as there exists a ρ = q1
a−→
1
q3

b−→
7
q5

with q5 ∈ F . Thus,H is not compatible with M . What’s worse, if (a, 1) (b, 7) is added by a negative
counterexample, (a, 1) (b, 7) will be a repeating counterexample sinceH is not compatible with M .

However, row ((b, 3) (a, 1)) ⊆ row ((a, 1)) since M can reach q3 by reading (a, 1). With the dis-
tinctness condition, (b, 3) (a, 1) · (a, 7) should be added in R. Thus, there must exist a transition

(q3, (b, 7),q?) in M for every q? ∈ δ̂ (q3, (b, 7)). What’s more, δ̂ (q3, (b, 7)) ∩ FM = ∅ as (a, 1) (a, 7) is
not accepted by M . After the hypothesis construction, there exist new transitions (q3,b, [4, 7),q5)
(corresponding to (q3, (b, 4),q5)) and (q3,b, [7,+),q?) (corresponding to (q3, (b, 7),q?)) instead of
transition (q3,b, [4,∞),q5). Therefore, the distinctness condition can guarantee the avoidance of
repeating counterexamples.

Theorem 5.12. If the NFA M is compatible with T , thenH is a canonical RRTA.

Proof. (sketch) Similar to [8], M will be a canonical RFSA if M is compatible with T , since M
satisfies Lemma 5.6, 5.7 and 5.8. Due to Lemma 5.10, M and H share the same set of runs. Based
on the definition of CRRTA and the construction ofH from M , we haveH is a canonical RRTA if
M is a canonical RFSA. Hence,H is a canonical RRTA if M is compatible with T . �

Example 5.13. As shown in Figure 5, we illustrate the two steps construction from T toM andM
toH . Note that we have combined some transitions and intervals. Since there are three prefixes in
S , NFAM has three locationsq−−,q−+ andq+−. We show an example on building transitions accord-
ing to the prefixes (a, 2) and (a, 2) (a, 5). The source location is determined by qval((a,2)) = q−+. Tak-
ing the action (a, 5), the automaton jumps to eitherq−− orq+−, since row (ϵ) ⊆ row ((a, 2) (a, 5)) and
row ((a, 2) (a, 5)) ⊆ row ((a, 2) (a, 5)). From M to H , we take an example on recovering the guards
on transitions with the source location q−− and the action a. We first build the set Ψq−−,a = {0, 2, 5}
and then get the intervals [0, 2),[2, 5) and [5,∞) after applying the partition function.

5.3 Equivalence Query and Counterexample Processing

After constructing a hypothesis NRTAH , the learner conducts an equivalence query to the teacher,
e.g. whetherL (H) = L. We denote the equivalence query oracle as EQ. In theory, suppose that the
teacher holds an RTAA with L (A) = L. The teacher can answer the query be checking whether
L (H) = L (A). The complexity of the equivalence problem of NRTA is PSPACE-complete and
can be decided by first converting NRTA to DRTA and then using classic methods to decide the
inclusion problem of two DRTAs. However, it is not scalable. In [9], Bonchi and Pous introduced

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

99:16 J. An et al.

an algorithm named HKC to decide the equivalence problem of NFAs based on technique of bisim-
ulation up to congruence. We adapt it to decide the equivalence problem of NRTAs. In practice,
the equivalence query is usually done by conformance testing.

If the teacher gives a negative answer for an equivalence query, the learner can also receive a
timed word ω as a counterexample for L (H) = L, i.e. either ω ∈ L (H) ∧ ω � L or ω � L (H) ∧
ω ∈ L. We call ω a negative counterexample and a positive counterexample in the two cases,
respectively.

Processing counterexample: Step 1. Suppose a counterexample ω = (σ1,τ1) (σ2,τ2) · · · (σn ,τn).
First, the learner apply a normalization function norm onω and getω ′ = (σ1,τ

′
1) (σ2,τ

′
2) · · · (σn ,τ

′
n)

as a new counterexample.

Definition 5.14 (Normalization Function [4]). A normalization function norm maps a timed word
ω = (σ1,τ1) (σ2,τ2) · · · (σn ,τn) to another timed word by resetting any clock valuation to its integer
part plus a constant fractional part, i.e., norm(ω) = (σ1,τ

′
1) (σ2,τ

′
2) · · · (σn ,τ

′
n), where τ ′i = τi if

τi ∈ N, and otherwise τ ′i = �τi � + θ for some fixed constant θ ∈ (0, 1).

The following theorem guarantees thatω ′ is still a correct counterexample. In this paper, we set
θ = 0.1. Clearly our approach works for any other value in interval (0, 1).

Theorem 5.15 ([4]). If a timed word ω = (σ1,τ1) (σ2,τ2) · · · (σn ,τn) ∈ L (H) � L, its normaliza-

tion ω ′ = norm(ω) ∈ L (H) � L, where � denotes the symmetric difference of two sets.

Proof. (sketch) It can be proved according to the definitions of region and NRTA. �

Processing counterexample: Step 2. After the normalization, add all prefixes ofω ′ to R and add all
suffixes of ω ′ to E, except for those already in S ∪ R and E respectively. The learner then fills the
current table T by membership queries.

Our counterexample process is different from L∗’s and NL∗’s. All prefixes of ω ′ are added in R,
as we want to query other timed actions (σ ,τ), where σ ∈ Σ and τ � 0, since we only add s · (σ , 0)
to R when making table closed. The query results will help to modify the guards in transitions.
Likewise, we want to collect suffixes which can distinguish the prime residuals indicated by the
prefixes s ∈ S , so all suffixes of a counterexample are added to E. In [21] and [8], it is only needed
to add all suffixes of a counterexample to E, since s · σ for every σ ∈ Σ is added to the table
when making table closed. However, we cannot obtain this as the number of timed actions (σ ,τ)
is infinite.

This procedure can be viewed as a nondeterministic version combining the counterexample
process in [4] and that in [21]. The important thing is to consider all s ∈ S with row (s) ⊆ row (ϵ)
which indicate multiple initial locations instead of just considering ϵ . Thanks to the distinctness
condition, we just need to add all prefixes of ω ′ to R rather than all elements in {s · u | s ∈
S ∧ row (s) ⊆ row (ϵ) ∧ u ∈ prefixes(ω ′)} to R in this step, where prefixes(ω ′) is the prefix set of ω ′.
Since u can be viewed as ϵ · u, if the table is distinct, then ϵ · u ∈ S ∪ R ⇒ si · u ∈ S ∪ R, where
si ∈ {s | row (s) ⊆ row (ϵ)}. Removing the condition will lead to repeating counterexamples as ϵ
may be composed and thus not in S . As a result, adding all prefixes of counterexamples may not
exclude any error in the current hypothesis. Therefore, the learning process will not terminate.

Improving Step 2 by homing sequences decomposition. In [22], Rivest and Schapire introduced
a decomposition on counterexamples. We adapt it to a nondeterministic version in our coun-
terexample processing (Step 2) as an improvement. For a normalized counterexample ω ′, if∨

qval (s) ∈Q0
MQ(s ·ω ′) � MQ(ω ′), then there exists a decomposition ω ′ = u ·σ ·v into a prefix u, a

timed actionσ ∈ Ξ, and a suffixv such that
∨

qval(s) ∈δ (Q0,u) MQ(s ·σv) �
∨

qval (s′) ∈δ (Q0,uσ) MQ(s ′·v).

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

Learning Nondeterministic Real-Time Automata 99:17

ALGORITHM 1: NRTALearning

input: the real-time observation table T = (Σ, Ξ, S, R, E, f).
output: a canonical RRTA H recognizing the target real-time language L.

1 S ← {ϵ }; R ← {ω | ω = ϵ · (σ , 0), ∀σ ∈ Σ}; E ← {ϵ }; // initialization

2 fill T by membership queries;

3 equivalent ←⊥;

4 while ¬equivalent do

5 prepared ← is_prepared(T) ; // whether the table is prepared

6 while ¬prepared do

7 if T is not reduced then make_reduced(T) ;

8 if T is not closed then make_closed(T) ;

9 if T is not consistent then make_consistent(T) ;

10 if T is not evidence-closed then make_evidence_closed(T) ;

11 if T is not distinct then make_distinct(T) ;

12 prepared ← is_prepared(T);

13 M ← build_NFA(T) ; // constructing an NFA M from T
14 H ← build_hypothesis(M) ; // constructing an NRTA H from M

15 equivalent, ctx ← equivalence_query(H) ; // ctx represents a counterexample

16 if equivalent = ⊥ then

17 ctx_processing(T , ctx) ; // counterexample processing

18 return H ;

Such a decomposition can be found by using binary search on ω ′. Then we add all prefixes of ω ′

to R and all suffixes of v in E instead of adding all prefixes and suffixes of ω ′ to the table in Step
2. Such operation will reduce the size of R and E comparing to the original Step 2, and thus re-
duce the number of membership queries. Additionally, it still maintains S ∪ R prefix-closed and E
suffix-closed.

5.4 NRTA Learning Algorithm, Correctness and Complexity Analysis

Algorithm 1 combines all components described in Section 5.1, 5.2 and 5.3. First, the learner makes
an initial table T by adding ϵ to the prefix set S and the suffix set E by Definition 5.1 and adding
ϵ · (σ , 0) to the set of extended prefixes R (Line 1). After filling T by several membership queries
(Line 2), the learner checks if T is prepared or not (Line 5). If not, repeatedly check each table
condition in sequence to find and fix violated one by the operations described in Section 5.1 (Line 7–
11) until the current table T is prepared. In case T is prepared, the learner can build an NFA M
(Line 13) and a hypothesis NRTAH afterwards (Line 14) by the construction procedure presented
in Section 5.2. Then an equivalence query is performed by submittingH to the teacher (Line 15).
The teacher returns the answer and a counterexample ctx in addition if the answer is negative.
After performing a counterexample process (Line 17) described in Section 5.3, the learner needs
to check whether the current table T is prepared again. The whole procedure repeats until the
teacher gives a positive answer to an equivalence query, and the algorithm returns the current
hypothesis H as a canonical RRTA recognizing the target real-time language L (Line 18). The
correctness and termination of Algorithm 1 is stated in the following theorem.

Theorem 5.16 (Correctness and termination). Algorithm 1 terminates and returns the canon-

ical RRTAH which recognizes the target real-time language L.

Proof. We first show the correctness of Algorithm 1. Suppose Algorithm 1 terminates and re-
turn an NRTA H . Since L (H) passed the equivalence checking with L, then H recognizes L.
Consequently, H can pass all membership queries on ω · e ∈ (S ∪ R) · E. By Theorem 5.12, the

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

99:18 J. An et al.

NRTAH is a CRRTA. Then we can conclude thatH is the CRRTA recognizingL. The termination
is guaranteed by Theorem 5.17 proved in the following. �

Suppose that the unique minimal DRTA for the target real-time language L has n locations,
the length of the longest returned counterexample is h and let |Σ| =m. As a convention in active
learning, the learning complexity is measured in terms of the number of two kinds of queries rather
than the time complexity.

Theorem 5.17 (Complexity). Algorithm 1 takes O ((n+nh(n2+mκn)) ·h(n2+mκn))) membership

queries and O (n2 +mκn) equivalence queries to learn the CRRTA recognizing L.

Proof. The proof is similar to that given in [8] for nondeterministic finite automata. We give
an outline of the proof below, mainly focusing on the difference from [8]’s.

The main idea is to consider a measure including four natural numbers: ls for the number of
distinct rows ever in S , l for the number of distinct rows in the entire table, p for the number of
prime rows in the table, and i for the number of strict containing relations of pairs of distinct rows
in the table, i.e. row (ω) ⊂ row (ω ′) where ω,ω ′ ∈ S ∪ R. Clearly, the value of ls , l , and p is upper-
bounded by n. The value of i can only increase when l increases. Whenever l is increased by k , the
value i increases by at most kl + k (k − 1)/2. So i can be increased up to n(n − 1)/2.

Next, consider how to measure changes after each operation. If the table is not closed, then
extending the table increases ls by 1 and possibly increases l by k > 0. If the table is not consistent
or evidence-closed, extending the table does not change ls , and might increase l . If l is not increased,
then i is decreased by at least 1. These two cases are exactly the same as for NFA.

Now consider the processing of a counterexample. The main argument in [8] is that if l stays the
same, then either i decreases or p increases, for otherwise the automataHT andHT ′ constructed
before and after the processing must be the same, contradicting the fact that HT ′ handles an
additional counterexample. In our case, there is another possible modification to the automata:
splitting an edge into multiple edges by refining the guard. For each distinct row, its guard can be
refined by at most 2κ + 1 times, so the total number of refinements is at most O (mκn).

Finally, the process for maintaining the distinctness condition can at most add one row for each
distinct row and timed action (pair of an action and a value containing in a region), hence the
number of rows added to maintain distinctness is at most O (mκn).

The above argument shows that Algorithm 1 always reaches an equivalence query and termi-
nates after performing O (n2 +mκn) equivalence queries.

Now we consider the number of membership queries. The number of rows in S is upper-bounded
by n. The operation making T evidence-closed may add at most O (n ·h(n2+mκn)) rows in R. The
counterexample process and the operation for distinctness add at most O (n · h(n2 +mκn)) rows
in R together and O (h(n2 +mκn)) columns in E. Hence, the number of membership queries is at
most O ((n + nh(n2 +mκn)) · h(n2 +mκn))). �

5.5 Extended-NL∗

Suppose L is a real-time language, based on the corresponding Myhill-Nerode Theorem for real-
time languages, there is a constantκ ∈ Nwhich will be the maximum value appearing in the guards
of the corresponding RTAs recognizing L. According to the definition of CRRTAs, assuming that
κ is known before learning, we can extend NL∗ algorithm to learn real-time languages as follows.

First construct all regions [0, 0],(0, 1),. . . ,[κ,κ],(κ,∞) offline, denoted as Reg0,Reg1, . . . ,Reg2κ+1.
Then select a numberτ ′i from each region. If Regi = [τi ,τi] is a point region, thenτ ′i = τi . Otherwise,
choose τ ′i = �τi � + 0.1 where τi ∈ Regi . After that, an abstract alphabet ΣM ′ = {(σ ,τ ′i) |σ ∈ Σ∧τ ′i ∈
Regi∧0 ≤ i ≤ 2κ+1} can be constructed before learning. ΣM ′ is a finite set with |ΣM ′ | = (2κ+2) · |Σ|.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

Learning Nondeterministic Real-Time Automata 99:19

Fig. 6. Some of the table instances generated in the process of learning NRTA A in Figure 2.

The learning process also follows the two steps construction. At the first step, an NFA M ′ =
(QM ′, ΣM ′,ΔM ′,Q

0
M ′, FM ′) with the finite alphabet ΣM ′ can be constructed using the NL∗ algorithm

directly. At the second step, NFA M ′ is transformed to an NRTAH′ = (Q ′, Σ,Δ′,Q ′0, F
′) by reusing

the process presented in Section 5.2. From the result in [8], we have the following theorem.

Theorem 5.18 (Extended-NL∗). The Extended-NL∗ algorithm terminates and returns the CRRTA

which recognizes the target real-time language L after performing O (hκmn3) membership queries

and O (n2) equivalence queries.

Extended-NL∗ is a conservative method since it makes membership queries for all regions at all
locations. Note that instead of assuming κ is known before learning, we can also guess an initial
value of κ, then increase it whenever a counterexample involves a larger time value. However, this
may result in restart of the learning process frequently.

5.6 Running Example

In this section, we present the learning process for NRTA A in Figure 2. To simplify the presen-
tation, we omit the evidence-closed condition which has no effect on this example. In Figure 6,
T1 is the initial instance of the table. Since T1 is prepared, the learner builds an NFA M1 and a

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

99:20 J. An et al.

Fig. 7. Some of the NFAs and hypothesis NRTAs generated in the process of learning NRTA A in Figure 2.

hypothesis NRTA H1 shown in Figure 7. After making an equivalence query to the teacher, the
learner receives a positive counterexample ctx1 = (a, 5.1) (a, 8.1). After processing the counterex-
ample, T2 is generated. The procedure from T2 to T5 can be found in Example 5.4. As T5 is not closed,
the learner moves (a, 0) from R to S . After making the table distinct and closed, the learner obtains
another prepared table T8 and builds an NFA M2 and hypothesisH2. The learner receives a nega-
tive counterexample ctx2 = (a, 5.1) (a, 15) and generates T9. Then after 11 more rounds including
processing 5 counterexamples, the learner gets a prepared table T20 and builds the final hypothesis
H8 which recognizes the target language L (A). Obviously, if we delete the “sink” location q−−−−−
and related transitions, then combine the intervals on the transition from q−−+−+ to q−+−−− and
the intervals on the transition from q+−−−− to q−+−−− respectively, the resulting automaton will be
the same as A in Figure 2.

6 EXPERIMENTS

We implemented the two algorithms NRTALearning and Extended-NL∗ in Python and evaluated
both algorithms on two benchmarks which include a set of randomly generated NRTAs and a set
of rational regular expressions. We also demonstrate the algorithm NRTALearning on a scheduling
example. All experiments have been conducted on an Intel Core i5-9600 @ 3.1GHz processor with
16GB RAM running 64-bit Debian GNU/Linux 10 equipped with Python 3.7.3.

6.1 Randomly Generated NRTAs

In the first experiment, 100 randomly generated NRTAs are divided in 10 groups, with each group
having different numbers of locations |Q | and size of alphabet |Σ|. |Q | ranges from 10 to 20 and |Σ|
ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

Learning Nondeterministic Real-Time Automata 99:21

Table 1. Experimental Results on the Randomly Generated NRTAs

Group ID |Δ| nDRTA Method
#Membership #Equivalence |QH | t (s)

Nmin Nmean Nmax Nmin Nmean Nmax

10_2_20 23.5 66.5
NRTA-L 3520 5665.3 9660 31 36.4 40

11.1
1.7

E-NL∗ 15725 26571.5 35310 3 4.7 6 1.1
DRTA-L 38461 223977.9 670380 6 9.1 13 66.5 19.3

10_4_20 32.3 62.7
NRTA-L 4975 9664.4 15192 33 49.2 62

11.1
3.8

E-NL∗ 31433 55362.6 75618 4 5.9 9 2.3
DRTA-L 68561 347454.2 781231 7 8.7 11 62.7 24.6

10_6_20 43.7 79.0
NRTA-L 8876 17346.3 26910 52 62.8 76

11.0
10.6

E-NL∗ 68817 79628.1 96792 3 5.7 8 3.4
DRTA-L 171886 577082.6 1234835 7 8.9 11 79.0 44.1

10_8_20 56.5 101.7
NRTA-L 14756 20309.8 29886 65 83.1 97

11.0
13.5

E-NL∗ 78642 109356.2 191550 4 5.9 7 4.6
DRTA-L 354175 1259531.4 2848321 7 9.7 13 101.7 122.3

10_10_20 64.1 109.2
NRTA-L 12078 26558.5 56840 67 92.0 118

11.0
24.4

E-NL∗ 100816 138915.4 174746 4 6.0 8 6.5
DRTA-L 807271 1632323.2 2763231 8 10.5 13 109.2 176.0

12_4_20 42.1 127.1
NRTA-L 8652 14968.3 21096 50 66.0 80

13.0
7.8

E-NL∗ 47899 74348.9 111755 4 6.0 8 3.1
DRTA-L 88567 1071517.5 1958611 10 12.5 16 127.1 117.8

14_4_20 49.5 130.3
NRTA-L 10290 21305.2 38372 58 73.6 85

15.1
13.6

E-NL∗ 59997 101304.0 145188 4 6.7 9 4.3
DRTA-L 422722 1014350.4 3067064 11 11.8 14 130.3 97.1

16_4_20 56.2 325.9
NRTA-L 18258 41004.4 132928 73 85.5 103

17.1
51.0

E-NL∗ 99819 128872.7 182818 3 6.2 9 5.8
DRTA-L 408270 3883803.1 13490655 10 15.0 20 325.9 909.8

18_4_20 61.8 330.7
NRTA-L 14256 35404.0 61464 73 97.5 128

19.4
34.3

E-NL∗ 140486 178679.7 254072 7 8.6 11 7.9
DRTA-L 613914 4989360.0 11884279 11 16.6 23 330.7 899.5

20_4_20 68.7 422.7
NRTA-L 26255 56817.1 135675 86 104.0 117

21.0
84.1

E-NL∗ 154600 211740.0 260107 6 7.6 10 9.9
DRTA-L 2921594 6720561.6 13160576 17 18.6 22 422.7 1392.3

Group ID: each group has ID of the form |Q |_ |Σ |_κ , where |Q | is the number of locations, |Σ | is the size of the

alphabet, and κ is the maximum constant appearing in the clock constraints.

|Δ |: average number of transitions of an NRTA in the corresponding group.

nDRTA: average number of locations of the corresponding minimal DRTAs for each group.

Method: NRTA-L, E-N L∗, and DRTA-L representing the learning algorithms NRTALearning, Extended-N L∗ and the

learning algorithm for DRTAs in [5], respectively.

#Membership & #Equivalence: number of membership and equivalence queries, respectively. Nmin: minimal,

Nmean: mean, Nmax: maximum.

|QH |: average number of locations of the learned automata for each group.

t : average wall-clock time in seconds, including both time taken by the learner and time taken by the teacher.

ranges from 2 to 10. We set the maximum constant appearing in guards κ = 20. We abbreviate the
algorithms NRTALearning and Extended-NL∗ as NRTA-L and E-NL∗ respectively. DRTA-L denotes
the learning algorithm for DRTAs in [5]. The experimental results are shown in Table 1.

The three algorithms are all successful to learn out all 100 models. For all groups, NRTA-L takes
fewer membership queries than E-NL∗ and DRTA-L takes the most number of membership queries
to learn the corresponding minimal DRTAs. NRTA-L is more radical for guessing the bounds of
guards by using the partition function while E-NL∗ is more conservative. However, the drawback
of the radical operation is that we need more equivalence queries to correct the guards, which
explains why NRTA-L takes more equivalence queries. Since the language equivalence problem

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

99:22 J. An et al.

Fig. 8. Comparison results on randomly generated rational regular expressions. The expressions are divided

into 6 groups according to the number of the used operators (#Operators). Left: Comparison of the aver-

age number of locations between the learnt minimal RRTAs and the corresponding minimal DRTAs. Right:

Comparison of the average number of membership queries performed by NRTA-L and E-NL∗.

of NRTAs is PSPACE-complete, more equivalence queries means more average running time for
NRTA-L. Note that the complexity is measured in terms of the number of queries in the automaton
learning theory as we mentioned before. The other observation is that the learnt CRRTAs are much
smaller (w.r.t. the number of locations) than the corresponding minimal DRTAs, which conforms
to the contents on residual real-time languages in Section 4.

6.2 Randomly Generated Rational Regular Expressions

In the second experiment, following [13], we fixed a set of operators {∅, Σ, ∗, ·,+}, where Σ =
{a,b, c} and ∗, ·,+ represent the Kleene star, concatenation and union respectively. Then we ran-
domly generated 300 different rational regular expressions based on the operators. These real-time
languages are divided into 6 groups according to the number of operators used. The distribution p
on operators used for random generation is pϵ = 0.02,pΣ = 0.1,p∗ = 0.13,p · = 0.5 and p+ = 0.25.
Both NRTA-L and E-NL∗ are successful in learning all real-time languages. In Figure 8, the chart
on the left shows that the learnt RRTAs are much smaller than the corresponding minimal DRTAs.
The chart on the right shows NRTA-L takes fewer membership queries than E-NL∗ on average.

6.3 A Scheduling Example

For the third experiment, we follow a case study conducted in [6] (as Experiment 6.2). It considers
the scheduling of final testing of integrated circuits. We first review the setting of the case study in
that paper. There are two kinds of products A and B which are processed in two stages: testing
and burn_in. The two jobs for A and B are grouped into 5 and 2 lots respectively. In the testing
stage, the lots are processed serially on two parallel machines, and it takes one machine 3 time
units to handle each A lot and 4 time units to handle each B lot. In the burn_in stage, all lots
are processed in a batch manner on the two machines, and it takes one machine 10 time units to
finish each batch. The maximum batch size for one machine is 5. During testing, if a machine is
allocated to process A products, it cannot handle B products until all A jobs are finished. Likewise
for machines that are allocated to process B products. We assume that it takes t ∈ (0, 1] time to
prepare one machine and t ∈ [1, 2] time to prepare two machines in each stage. The operations
in one stage can start only after both machines are allocated and prepared. We also assume that
products are sent to the burn_in stage only after the testing stage is completely finished.

The schedules for processing A and B products are modeled by NRTAs MA and MB (see
Figure 9(a) and 9(b)), respectively. MA has nine locations 0, . . . , 8. Here 0 is the initial location, 1

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

Learning Nondeterministic Real-Time Automata 99:23

Fig. 9. (a) NRTA MA; (b) NRTA MB ; (c) The composed NRTA MAB ; (d) The learnt NRTAH .

for allocating one machine to test A products, and 2, 3, 4 for allocating two machines, but with dif-
ferent scheduling policies. In 2, one machine has 5 lots and the other has no lots; in 3, one machine
has 4 lots and the other has 1 lot; in 4, one machine has 3 lots and the other has 2 lots. Location
5 indicates the testing stage has finished. Locations 6, 7 stand for allocating A lots for burn_in
on one machine and two machines respectively. The accepting location 8 stands for completion
of processing, with return to initial location after a delay in [0, 1]. The labels a1, a2, a3, a4 and c
represent allocating machines for testing, testing finished, allocating machines for burn_in,
burn_in finished, and completion, respectively. The NRTA MB with the labels b1, b2, b3 and b4 can
be understood similarly.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

99:24 J. An et al.

Assuming that we always allocate one machine for each kind of product during the second stage,
the two schedules can be composed to form a schedule model for two products, given by an NRTA
MAB with 23 locations connected by 39 transitions. The composed model is shown in Figure 9(c).
Using the method NRTA-L, the CRRTA H (see Figure 9(d)) for the composed model is learned
in 12.4 seconds after 10670 membership queries and 50 equivalence queries. The resulting H is
equivalent to MAB but simpler, in particular it has only 17 locations excluding the sink location,
connected by 33 transitions.

7 CONCLUSION AND DISCUSSION

In this paper, we presented two active learning algorithms for NRTAs. One is in the standard MAT
framework, and the other is with additionally assuming that the maximum constant appearing in
the clock constraints is known before learning. Before that, we proved a corresponding Myhill-
Nerode theorem for real-time languages which shows that there exists a unique minimal DRTA
for a given real-time language but it does not hold for NRTAs. In order to set a learning target,
we defined residual real-time automata and proved that for a real-time language there is a unique
minimal RRTA recognizing it. As a result, learning NRTAs is transformed to learn RRTAs.

As mentioned before, RTAs are a kind of one-clock timed automata which reset the unique
clock at every transition. Hence, it is restricted in that it cannot represent the common timing
constraints involving multiple locations and actions. However, RTAs are still powerful enough
for specifying the functionality of key-distribution protocols and modelling scheduling problems
in practice. We leave for future work to adapt our algorithm to learn nondeterministic one-clock
automata whose expressiveness is strictly stronger than deterministic ones and RTAs. For learning
general timed automata, one way is to construct the corresponding region automata. However, it
brings an exponential explosion on the size of model. How to learn a succinct model still needs
more work.

REFERENCES

[1] Bernhard K. Aichernig, Andrea Pferscher, and Martin Tappler. 2020. From passive to active: Learning timed automata

efficiently. In Proceedings of the 12th International Symposium NASA Formal Methods, NFM 2020 (LNCS, Vol. 12229).

Springer, 1–19. https://doi.org/10.1007/978-3-030-55754-6_1

[2] Rajeev Alur and David L. Dill. 1994. A theory of timed automata. Theoretical Computer Science 126, 2 (1994), 183–235.

https://doi.org/10.1016/0304-3975(94)90010-8

[3] Rajeev Alur, P. Madhusudan, and Wonhong Nam. 2005. Symbolic compositional verification by learning assumptions.

In Proceedings of the 17th International Conference on Computer Aided Verification, CAV 2005 (LNCS, Vol. 3576). Springer,

Heidelberg, 548–562. https://doi.org/10.1007/11513988_52

[4] Jie An, Mingshuai Chen, Bohua Zhan, Naijun Zhan, and Miaomiao Zhang. 2020. Learning one-clock timed automata.

In Proceedings of the 26th International Conference on Tools and Algorithms for the Construction and Analysis of Systems,

TACAS 2020 (LNCS, Vol. 12078). Springer, Heidelberg, 444–462. https://doi.org/10.1007/978-3-030-45190-5_25

[5] Jie An, Lingtai Wang, Bohua Zhan, Naijun Zhan, and Miaomiao Zhang. 2020. Learning real-time automata. SCIENCE

CHINA Information Sciences (2020). https://www.sciengine.com/doi/10.1007/s11432-019-2767-4. In press.

[6] Jie An, Naijun Zhan, Xiaoshan Li, Miaomiao Zhang, and Wang Yi. 2018. Model checking bounded continuous-time

extended linear duration invariants. In Proceedings of the 21st International Conference on Hybrid Systems: Computation

and Control (part of CPS Week), HSCC 2018. ACM, 81–90. https://doi.org/10.1145/3178126.3178147

[7] Dana Angluin. 1987. Learning regular sets from queries and counterexamples. Information and Computation 75, 2

(1987), 87–106. https://doi.org/10.1016/0890-5401(87)90052-6

[8] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker. 2009. Angluin-style learning of NFA. In Proceed-

ings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009. 1004–1009.

[9] Filippo Bonchi and Damien Pous. 2013. Checking NFA equivalence with bisimulations up to congruence. In Proceed-

ings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013. ACM,

457–468. https://doi.org/10.1145/2429069.2429124

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/11513988_52
https://doi.org/10.1007/978-3-030-45190-5_25
https://www.sciengine.com/doi/10.1007/s11432-019-2767-4
https://doi.org/10.1145/3178126.3178147
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/2429069.2429124

Learning Nondeterministic Real-Time Automata 99:25

[10] Ben Caldwell, Rachel Cardell-Oliver, and Tim French. 2016. Learning time delay mealy machines from programmable

logic controllers. IEEE Trans Autom. Sci. Eng. 13, 2 (2016), 1155–1164. https://doi.org/10.1109/TASE.2015.2496242

[11] Colin de la Higuera. 2010. Grammatical Inference: Learning Automata and Grammars. Cambridge University Press.

[12] François Denis, Aurélien Lemay, and Alain Terlutte. 2001. Residual finite state automata. In Proceedings of the 18th

Annual Symposium on Theoretical Aspects of Computer Science, STACS 2001 (LNCS, Vol. 2010). Springer, Heidelberg,

144–157. https://doi.org/10.1007/3-540-44693-1_13

[13] François Denis, Aurélien Lemay, and Alain Terlutte. 2004. Learning regular languages using RFSAs. Theoretical Com-

puter Science 313, 2 (2004), 267–294. https://doi.org/10.1016/j.tcs.2003.11.008

[14] Dorothy E. Denning and Giovanni Maria Sacco. 1981. Timestamps in key distribution protocols. Commun. ACM 24, 8

(1981), 533–536. https://doi.org/10.1145/358722.358740

[15] Catalin Dima. 2001. Real-time automata. Journal of Automata, Languages and Combinatorics 6, 1 (2001), 3–23. https:

//doi.org/10.25596/jalc-2001-003

[16] Samuel Drews and Loris D’Antoni. 2017. Learning symbolic automata. In Proceedings of the 23rd International Confer-

ence on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2017 (LNCS, Vol. 10205). Springer,

Heidelberg, 173–189. https://doi.org/10.1007/978-3-662-54577-5_10

[17] Paul Fiterau-Brostean, Ramon Janssen, and Frits W. Vaandrager. 2016. Combining model learning and model checking

to analyze TCP implementations. In Proceedings of the 28th International Conference on Computer Aided Verification,

CAV 2016 (LNCS, Vol. 9780). Springer, Heidelberg, 454–471. https://doi.org/10.1007/978-3-319-41540-6_25

[18] Olga Grinchtein, Bengt Jonsson, and Martin Leucker. 2010. Learning of event-recording automata. Theoretical Com-

puter Science 411, 47 (2010), 4029–4054. https://doi.org/10.1016/j.tcs.2010.07.008

[19] Léo Henry, Thierry Jéron, and Nicolas Markey. 2020. Active learning of timed automata with unobservable resets. In

Proceedings of the 18th International Conference on Formal Modeling and Analysis of Timed Systems, FORMATS 2020

(LNCS, Vol. 12288). Springer, 144–160. https://doi.org/10.1007/978-3-030-57628-8_9

[20] Xiangyu Jin, Jie An, Bohua Zhan, Naijun Zhan, and Miaomiao Zhang. 2021. Inferring nonlinear switched dynamical

systems. Formal Aspects of Computing (2021). https://doi.org/10.1007/s00165-021-00542-7

[21] Oded Maler and Amir Pnueli. 1995. On the learnability of infinitary regular sets. Information and Computation 118, 2

(1995), 316–326. https://doi.org/10.1006/inco.1995.1070

[22] Ronald L. Rivest and Robert E. Schapire. 1993. Inference of finite automata using homing sequences. Information and

Computation 103, 2 (1993), 299–347. https://doi.org/10.1006/inco.1993.1021

[23] Jana Schmidt, Asghar Ghorbani, Andreas Hapfelmeier, and Stefan Kramer. 2013. Learning probabilistic real-time au-

tomata from multi-attribute event logs. Intelligent Data Analysis 17, 1 (2013), 93–123. https://doi.org/10.3233/IDA-

120569

[24] Miriam García Soto, Thomas A. Henzinger, Christian Schilling, and Luka Zeleznik. 2019. Membership-based synthesis

of linear hybrid automata. In Proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019

(LNCS, Vol. 11561). Springer, Heidelberg, 297–314. https://doi.org/10.1007/978-3-030-25540-4_16

[25] Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. 2011. The digraph real-time task model. In Proceedings of

the 17th IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2011. IEEE Computer Society,

71–80. https://doi.org/10.1109/RTAS.2011.15

[26] Martin Tappler, Bernhard K. Aichernig, Kim Guldstrand Larsen, and Florian Lorber. 2019. Time to learn - learning

timed automata from tests. In Proceedings of the 17th International Conference on Formal Modeling and Analysis of

Timed Systems, FORMATS 2019 (LNCS, Vol. 11750). Springer, 216–235. https://doi.org/10.1007/978-3-030-29662-9_13

[27] Frits W. Vaandrager. 2017. Model learning. Commun. ACM 60, 2 (2017), 86–95. https://doi.org/10.1145/2967606

[28] Frits W. Vaandrager, Roderick Bloem, and Masoud Ebrahimi. 2021. Learning mealy machines with one timer. In Pro-

ceedings of the 15th International Conference on Language and Automata Theory and Applications, LATA 2021 (LNCS,

Vol. 12638). Springer, 157–170. https://doi.org/10.1007/978-3-030-68195-1_13

[29] Sicco Verwer. 2010. Efficient Identification of Timed Automata: Theory and practice. Ph.D. Dissertation. Delft University

of Technology, Netherlands.

[30] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. 2009. One-clock deterministic timed automata are efficiently

identifiable in the limit. In Proceedings of the 3rd International Conference on Language and Automata Theory and

Applications, LATA 2009 (LNCS, Vol. 5457). Springer, 740–751. https://doi.org/10.1007/978-3-642-00982-2_63

[31] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. 2011. The efficiency of identifying timed automata and the

power of clocks. Information and Computation 209, 3 (2011), 606–625. https://doi.org/10.1016/j.ic.2010.11.023

[32] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. 2012. Efficiently identifying deterministic real-time automata

from labeled data. Machine Learning 86, 3 (2012), 295–333. https://doi.org/10.1007/s10994-011-5265-4

[33] Sicco Verwer, Mathijs De Weerdt, and Cees Witteveen. 2007. An algorithm for learning real-time automata. Electrical

Engineering Mathematics & Computer Science (2007).

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

https://doi.org/10.1109/TASE.2015.2496242
https://doi.org/10.1007/3-540-44693-1_13
https://doi.org/10.1016/j.tcs.2003.11.008
https://doi.org/10.1145/358722.358740
https://doi.org/10.25596/jalc-2001-003
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1007/978-3-030-57628-8_9
https://doi.org/10.1007/s00165-021-00542-7
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.3233/IDA-120569
https://doi.org/10.1007/978-3-030-25540-4_16
https://doi.org/10.1109/RTAS.2011.15
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1145/2967606
https://doi.org/10.1007/978-3-030-68195-1_13
https://doi.org/10.1007/978-3-642-00982-2_63
https://doi.org/10.1016/j.ic.2010.11.023
https://doi.org/10.1007/s10994-011-5265-4

99:26 J. An et al.

[34] Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. Extracting automata from recurrent neural networks using queries

and counterexamples. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018 (PMLR,

Vol. 80). PMLR, 5244–5253.

[35] Gail Weiss, Yoav Goldberg, and Eran Yahav. 2019. Learning deterministic weighted automata with queries and coun-

terexamples. In Proceedings of the 33rd Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019.

8558–8569.

Received April 2021; revised June 2021; accepted July 2021

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 99. Publication date: September 2021.

