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Developing an operating system (OS) for low-end embedded devices requires continuous adaptation to new
hardware architectures and components, while serviceability of features needs to be assured for each individual
platform under tight resource constraints. It is challenging to design a versatile and accurate heterogeneous test
environment that is agile enough to cover a continuous evolution of the code base and platforms. This mission
is even more challenging when organized in an agile open-source community process with many contributors
such as for the RIOT OS. Hardware in the Loop (HiL) testing and Continuous Integration (CI) are automatable
approaches to verify functionality, prevent regressions, and improve the overall quality at development speed in
large community projects.

In this paper, we present PHiLIP (Primitive Hardware in the Loop Integration Product), an open-source
external reference device together with tools that validate the system software while it controls hardware
and interprets physical signals. Instead of focusing on a specific test setting, PHiLIP takes the approach of a
tool-assisted agile HiL test process, designed for continuous evolution and deployment cycles. We explain its
design, describe how it supports HiL tests, evaluate performance metrics, and report on practical experiences of
employing PHiLIP in an automated CI test infrastructure. Our initial deployment comprises 22 unique platforms,
each of which executes 98 peripheral tests every night. PHiLIP allows for easy extension of low-cost, adaptive
testing infrastructures but serves testing techniques and tools to a much wider range of applications.

CCS Concepts: * Hardware — Hardware test; * Software and its engineering — Software testing and
debugging; Operating systems; * Computer systems organization — Embedded systems.

Additional Key Words and Phrases: [oT, hardware in the loop, operating system, constrained devices

1 INTRODUCTION

The rapidly expanding Internet of Things (IoT) faces the continuous arrival of new microcontroller
units (MCUSs), peripherals, and platforms. New and established components collectively comprise
a zoo of embedded hardware platforms that admit various capabilities and a distinctively diverse
set of features. Application software is often requested to operate these devices with significant
responsibility and high reliability. In this context, employing an embedded OS with hardware
abstraction can significantly ease development by making common code reusable and hardware
independent. High quality requirements on such system software, however, can only be ensured after
extensive validation in realistic testing procedures.

Testing an embedded OS can be challenging due to the constrained nature of the devices, the
variety of hardware-specific behavior, and the requirements of real-world interactions. As embedded
devices interact with external hardware and the physical world, testing must also verify this behavior.
Rapidly evolving hardware and agile software development require tests to be run regularly on a vast
number of individual devices. An automated, extensible way of testing a large variety of embedded
devices is therefore required to develop and maintain a reliable embedded OS.
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(b) Overview of the HilL test environment: The test

(a) A local HiL test setup that connects a device node runs test suites (TS) and interfaces with the
under test (DUT) (1) to PHILIP firmware in a bluepill DUT and PHILIP via Protocol Abstraction Layers
board (2) which is mounted on a Raspberry Pi based (PAL). Each test suite corresponds to a test firmware
test node (3). (FW). PHiLIP firmware and PAL are configured via

the Memory Map Manager (MMM).

Fig. 1. Overview of physical components of the test setup and their architecture integration.

Many previous attempts in this area remained limited to individual use cases, without aiming
for generality or focusing on a broad range of features and platforms. Respectively, multi-platform
Hardware in the Loop (HiL) testing is currently not covered well. Moreover, previous solutions are
often hard to acquire, set up, and maintain. A versatile testing tool filling this gap should instead be
compatible with a wide set of platforms while being easy to obtain, use, and extend.

In this paper, we try to bridge this gap between early research and reality for the open source OS
RIOT [9]. We propose a layered testing architecture that enables agile test development and employs
an external reference device to provide automated HiL testing for a large variety of embedded devices.
Following this approach, we intend to close the loop from research to design, engineering, and further
to operations, triggering a rich set of feedback. Lessons learned substantiated research and design
work during the years of developing and optimizing PHIiLIP. A strong interaction with the large
RIOT community was part of this process.

The concept considers three main components. One is a resource-constrained device-under-test
(DUT) that is evaluated (see Figure 1(a)). The second is a reference device that takes measurements
and executes hardware interactions with the DUT. The third referred to as test node, coordinates, and
controls the two previously introduced entities. To streamline the integration and maintenance of
implemented tools and firmware, our concept also includes the memory map manager (MMM) that
simplifies versioning and coordination of configuration data and documentation across device and
tool boundaries. This is shown in Figure 1(b) and will be explained in Section 3. In particular, this
paper makes the following key contributions:

(1) Following an in depth requirements analysis, we design a testing abstraction layer and a
structured testing interface.

(2) We introduce PHiLIP, our Primitive HiLL Integration Product, as a firmware with verified
peripheral behavior together with a tool-set for agile test development.

(3) We integrate PHiLIP with multi-platform DUTs into a fully automated HiL testing environment
and report on lessons learned based on our deployment.
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(4) We evaluate our HiL testing proposal from the perspectives of testing impact, resource expen-
ditures, and scalability.

About half of the current work on IoT testing concerns interoperability and testbeds [3]. Inter-
operability testing mainly targets networking [39], often more narrowly wireless protocol confor-
mance [37], or protocol performance [27]. Device heterogeneity is still a major challenge [23],
though. Only very few contributions exist that are validated against real open-source embedded
software, whereas the majority uses simplified examples. The fast-paced business culture and lacking
standardization in this area [61] leads to sidelining of serious challenges regarding product quality,
security, and privacy [26]. Together with the prevalent resource constraints, devices are often shipped
without complex code that prevents or corrects errors at run time—eventually leading to faulty
behavior and reliability problems of applications [54]. All those observations strongly support the
relevance of our multi-platform testing for hardware layer abstractions of a popular open-source OS.

In the remainder of this paper, we present PHiLIP together with its design concepts, functions,
tools, and experiences from our long-term deployment in the wild. The presentation is organized
as follows. Section 2 discusses background and challenges related to testing embedded devices and
OSs. An overview of our proposed HiL testing architecture is given in Section 3. Section 4 dives into
the details of PHIiLIP, a key component of our solution. Section 5 explains how our setup is used for
automated multi-platform testing of OS hardware abstraction modules. We evaluate our approach
in Section 6 and report on its key performance metrics. Other work is related in Section 7. Some
lessons learned and potential improvements are discussed in Section 8 together with conclusions and
an outlook on future work.

2 TESTING EMBEDDED SYSTEMS: CHALLENGES AND REQUIREMENTS

Software testing commonly consists of functional [51] and non-functional tests [42]. Methodologies
such as test-driven development [29] or model-based testing (MBT) [30] can be applied at almost any
stage of the development process. Even though it seems suitable to approach testing of IoT solutions
via conventional software testing levels [60], embedded systems at the lower end of IoT architectures
put up a unique set of nontrivial challenges. In particular, their inherent technical properties and
requirements, their heterogeneity and hardware proximity must be taken into account [3, 10, 17]. Even
at its core, [oT systems comprise very specific hardware peripherals, among which are timers [22],
energy management components [50], entropy sources [32], and crypto chips [31].

The low quality of IoT system tests indicates that existing testing approaches still face difficul-
ties overcoming these domain-specific challenges [16]. Existing gaps are partially attributed to a
mismatched focus between industry and academia [17]. Falling in line with others that identified
the need for joined work between academia and industry to enable new testing approaches in real
environments [16].

2.1 Multi-platform Testing Needs Automation

Developers of IoT systems can easily access various hardware features and specific functions when
relying on the hardware abstraction layer (HAL) and APIs of an OS for embedded devices. This
flexibility for the application developer comes at a cost for the OS developers. Each device-specific
implementation must be maintained and thoroughly tested. Whenever a feature is added or an API is
changed, all implementations must be tested and validated again. Overall, testing often accounts for
more than 50 percent of development costs [4], providing a very strong incentive to automate testing
steps.
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Several popular IoT OSs are open source and driven by a diverse and distributed community of
users and developers who report problems, provide new features, and fix bugs. It is therefore impera-
tive for these projects to automate testing and verification processes for community contributions.
Many other popular embedded OSs such as RIOT [8], Contiki [19], Mbed [5], and Zephyr [66]
include testing infrastructure that provides static and unit tests. Some of these OSs have limited board
simulation support but are not included in automated testing. RIOT, Mbed, and Zephyr support HiL
testing on a subset of boards but struggle with heterogeneous multi-platform testing with different
architectures and boards.

Aligned to this context, the goal for our automated multi-platform testing involves two major parts.
First, an architecture is needed that enables testing unified OS interfaces for the same deterministic
behavior across all supported hardware. This includes correct program flows, handling of parameters,
API return codes, internal state, and acquire/release operations for resources. Second, the verification
of physical 10 signals to comply with our specification and involved communication standards,
i.e., interactions to the physical world and other devices. Most importantly this involves the need for
a reference device to instrument our DUTS in a generic way.

2.2 Agile and Reproducible HiL Testing

HiL setups are commonly realized by connecting the DUT to external hardware, which represents
subsystems that are part of the final product or its environment. A motor control DUT could, for
example, be connected to a real motor or the circuit that powers the motor. In our scenario of OS
development, the general-purpose DUTs do not have such a single specific use case. Therefore, we
simply call the external subsystem that pairs with our DUT reference device.

An external HiL reference device can
be realized in many ways but should Table 1. Feature comparison of solutions for external test de-
be qualified with proven methods to vices: Logic Analyzer (LA), Emulator/Simulator (ES), Slave De-
have consistent behavior. Logic analyz- vice (SD), or FPGA versus commodity MCU.
ers (LA) can be expensive and cannot

inject signals or error cases. USB-based =~ Metric LA ES SD FPGA MCU
bus controllers generally miss the tim- HW Control v v
ing requirements and features needed Reproducible Setup v v V/ v
for testing. Emulators and Simulation  Agile Adaptability X X X v
tools (ES) are often limited to a certain ~ Multi-Platform VA S v v

platform and provide only limited fea-

tures compared to the real hardware. For example, Renode or QEMU emulators do not cover a large
enough range of platforms and peripherals. External slave devices (SD) such as sensors, which use a
specific bus or peripheral, are quick to deploy for smoke tests but cannot exhaustively test the API or
failure cases. An FPGA solution would allow for extendable fine-grained control but can be more
expensive, take more development time, and has limited off-the-shelf solutions. An MCU solution
sacrifices some control over the buses for ease of development and is available off-the-shelf. Table 1
compares the relevant features of each solution indicating not supported, partially supported, or well
supported.

Trying to keep up with fast IoT development cycles, agile processes such as Continuous Integra-
tion (CI), or applying checks on every change, are increasingly applied to embedded systems [40].
While systems evolve, they are likely to incorporate new bugs and testing needs to follow the agile
development. Bugs may arrive with new features or new usage patterns that were not considered by
the existing testing infrastructure. In both cases, the test tool must allow for adding test capabilities
quickly to cover those new features and also prevent future regressions. To keep pace with rapid
feature changes, we aim for a testing tool that is easy to acquire, adapt, and extend for the test tool
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users. We see these objectives supported by off-the-shelf hardware with an open-source implemen-
tation. Being able to look at the software implementation of the testing tool gives insight on how
exactly tests are performed and what kind of constraints or implications are bound to it. Developers
possessing very detailed domain knowledge on devices or software implementations are provided
with a clear path on how to transfer this knowledge into automated HiL tests. Considering this, the
MCU solution fits best given the constraints and domain knowledge of our target audience.

3 SYSTEM OVERVIEW OF THE HIL ENVIRONMENT

Our proposed testing environment consists of an ensemble of three components and tooling (see
Figure 1(b)). All components and the associated infrastructure are designed for testing an embedded
OS. Our implementations separate tester and testee via an abstraction layer, which makes most
implementations in our system agnostic to the OS and devices used.

The test node conducts the tests orchestrated by a common framework. It executes the test firmware
on the DUT, and the external reference device, PHiLIP. PHiLIP serves as a qualified reference to
test peripheral API implementations across the supported DUTs. All three devices interact through
the wiring of peripherals and GPIOs.

To solve the challenges outlined in Section 2, PHiLIP allows for automated tests on various target
boards, provides low maintenance and deployment costs. PHIiLIP runs a single firmware that uses
auto-generated code from a tool called MMM. The MMM processes a simple configuration file and
easily extends the API of PHIiLIP allowing for the development of test capabilities to be agile. We
refer to Section 4 for details.

3.1 Testing Abstraction Layer

Coordination between PHILIP and the DUT happens without altering the firmware. The peripheral
APIs of the DUT are exposed through an interactive shell in a structured way. This structure is shared
with PHILIP allowing a coordinator to apply the same instructions to both PHiLIP and the DUT.
Python wrappers simplify and unify the interface to the test node by providing classes with structured
output enabling queries for statistics and benchmarking.

Coordination is not the only benefit of a structured testing language. Following structured testing
guidelines allows developers to write tests with a unified process for handling and executing tests.
Implementation of test logic independent of the firmware reduces the flash cycles that are needed for
every test. Exposing the API comes at a fixed overhead cost. As the number of tests grows, the size
of the firmware does not. Our goal is to keep the constraints off the MCU but leave them to the more
capable test node, which can easily verify all advanced test options.

3.2 The Structured Testing Interface

The structured interface is provided via the python wrappers. This allows test API grammar to be
defined and exploited. Five conventions are applied to both PHiLIP and the DUT to simplify testing:

C1 The communication method is synchronous commands and responses.

C2 The response information is a dictionary adhering to a schema.

C3 Every response contains a result which will either be success, error, or timeout.
C4 Optional data returns simple, predefined types.

C5 Time-critical steps should be wrapped in a single synchronous command.

By following these basic conventions code reusability is increased. Additionally, the test structure
is unified and lowers the barrier for developers to understand existing tests and expand the test base.
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4 PHILIP: A MODIFIABLE REFERENCE DEVICE

PHILIP is a reference device for automated peripheral testing. It consists of a nucleo-f103rb or
bluepill board with open-source firmware. PHiLIP can use the MCU hardware to collect physical
information from a DUT similar to a logic analyzer but can also inject specific peripheral behaviors.
PHILIP uses a serial connection wrapped with philip_pal to simplify interaction and provide an
intelligent shell.

As illustrated by Figure 1(b), a core component of PHIiLIP is the MMM which feeds memory
map information to PHiLIP firmware, the philip_pal interface, and documentation. philip_pal
allows integration of a CI system and a developer to interact with the philip_pal shell and read
documentation from the memory map.

4.1 PHILIP Objectives

The goal of PHIiLIP is to have an extendable reproducible solution for testing real-world characteris-
tics of the peripheral APIs of embedded devices (i.e., UART, SPI, 12C, ADC, DAC, PWM, timers,
GPIO). The peripherals should be able to:

(1) Read and write bytes and registers via I2C and SPIL.

(2) Support different modes and addressing.

(3) Allow for various speeds (I2C 10-400 kHz, SPI 0.1-5 MHz, UART 9600-115200 Bd).
(4) Support different register sizes (8 bit, 16 bit) with both big and little endianness.

(5) Track peripheral interactions such as bytes sent and received.

(6) Inject error signals and artificial delays.

(7) Estimate bus speeds for I12C, SPI with 5% tolerance.

(8) Log timestamped GPIO events with a precision of 200 ns.

The pinout on PHiLIP is static so that rewiring is not needed when testing different peripherals.
The languages (C and Python) and tools used to develop PHiLIP are familiar to developers testing
with it. PHILIP serves as a specific example of the general concepts for agile test tool development.

Qualification. In an agile development environment, qualification must occur frequently and with
little cost. PHIiLIP enables this by taking an inexpensive piece of hardware, automating qualification
with a single set of more costly or rented tools, and then distributing the inexpensive hardware to
all test nodes. This process is valuable in many situations, including (i) requiring many copies of
reference hardware where purchasing off-the-shelf qualified equipment is too costly; (if) working
with remote developers that require physical access to expensive qualified reference devices; (iii)
having occasional access to costly tools.

4.2 PHILIP Firmware Implementation

PHILIP firmware is designed to easily add peripheral functionality. It separates the peripherals and
application-specific functions from communication, parameter access logic, and the memory map as
shown in Figure 2. The application core code and memory map definition process of PHiLIP code is
reusable in other projects and has versionable firmware components for structured communication.
The application-specific code in PHiLIP implements peripheral instrumentation. Without optimizing
for size, the PHIiLIP application requires less than 36 kB and leaves at least 28 kB for future upgrades.

Application Core. The application communication protocol provides a simple serial interface to
read or write the parameters of the memory map as a byte array implemented in the firmware (see
Table 2). The array is packed into a typedef structure allowing the C code to use descriptive names. To
support multiple simultaneous changes in configuration, the parameter access functions require that
the execution command is called after all changes to the memory map are completed. All parameter
changes undergo access protection checks and safe handling (e.g., disabling interrupts). Accessing



PHILIP on the HiL: Automated Multi-platform OS Testing with External Reference Devices 1:7

Application Core

[ app_shell_if ] [ app_reg ] [ map_if ]

byte read/write
eg. read_reg(offset=10, size=2, access=user)

Memory Map

[ defaults ] [ access ] [ typedef ]

Reusable Code |
peripheral structures ------------ T
eg. i2c.mode.data_nack = 1; . PHILIP Code |

Fig. 2. PHiLIP firmware module interaction with array access from the application core and structure access
from the peripheral modules

Table 2. Basic PHiLIP firmware protocol commands

Command Description Example Return

rr <index> <size> Read application registers {"data": 42, "result": @}

wr <index> [datal Write application registers {"result": 0}

ex Apply changes to registers {"result": 0}

Y Print interface version {"version": "1.2.3", "result": 0}

the memory map data as an array is valuable for peripherals that can read or write registers such as
SPI and I2C, and then verify with a different interface. PHiLIP contains 128 bytes of shared user
data that can be accessed via both the peripherals and the app_shell_if. The size and offsets of the
memory map can change and the version command is used to identify the correct mapping.
Time-critical Peripheral Event Handling. The PHiLIP firmware should allow all time-critical
events to be stored for later access or prepared before the event occurs. PHiLIP uses peripheral
hardware, interrupts, and polling to capture the information from events that occur. Using the MCU
peripheral hardware allows a simpler implementation without requiring overclocking of PHiLIP
with respect to the DUT. Specific peripheral behaviors can be triggered by preparing a state for an
expected DUT action. If several time-critical events occur before data can be accessed, then the
information can be stored as counts, sums, or as an array of events. For example, the GPIO module
logs a timestamp per interrupt in a circular buffer that can be accessed after a series of rapid pin
toggles.

4.3 PHILIP Memory Map

To keep PHILIP easily adaptable while maintaining a low memory footprint, we developed the
MMM as a code generator for coordinating application information from a single configuration file.
This reduces human error when adding or changing runtime parameters, improves development
speed, and the information can be fed into tests with various interfaces. The JSON configuration
file follows a schema that can provide named packed structures to embedded devices, and allows
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Module A

Module Z

commit
changes

Fig. 3. Setting parameters for modules (A-Z) on PHiLIP.

Table 3. Example showing how data traverses PHiLIP abstraction layers via name-mapped parameter access

Layer Request Response

philip_pal phil.read_reg("i2c.r_count") | {"cmd": ["read_reg(i2c.r_count,@,1)"], "data": [1], "result": "Success"}
Serial port rr 334 1| {"data": 1,"result": 0}
PHIiLIP FW printf("{\"data\":%u,\"result\":03\n", read_regs(334,1));

for documentation of the register map. Structures and parameter properties such as type, array size,
or testing flags are defined from the configuration file, as well as default values, access levels, and
information for describing the parameters. The registers are serialized and can be accessed as a
structure (by name) or byte array (by address).

Describing the memory map based on parameter names with the respective types and sizes
combines the versatility of named access with the efficiency of serialized packed memory. The
interface only needs to translate the name to an offset and size to get the information. The simplicity
of implementing only read and write register commands to deal with each parameter reduces bugs on
the embedded device.

The generated output of the MMM is C style data and consumed by the firmware application. By
convention, parameters can be changed by writing registers, similar to MCUs or sensors. To initiate a
change in properties, for example, altering the I2C address on PHiLIP, an initialization bit should be
set before calling the command to execute changes. This allows for a peripheral to be configured
only once, preventing possible initialization sequence errors. Figure 3 shows an example of changing
many parameters and executing the changes.

4.4 The Abstraction philip_pal

philip_pal provides a Python wrapper that implements the structured testing interface outlined
in Section 3.2. It takes the basic firmware protocol commands and maps bytes back to structure
members using a CSV file generated from the MMM. philip_pal first checks the version then
correlates that version to a specific mapping. As a result, the memory map can easily change or add
parameters while maintaining backward compatibility for named access. philip_pal also provides
the documentation of functions, validation of parameters, default arguments, and parsing of values,
keeping this out of PHIiLIP firmware. There are over 270 named fields that can be written or read
in the map that corresponds to settings for parameters implemented in the PHiLIP firmware. For
example, the i2c.r_count contains the number of bytes read from the I12C register. The logic is
implemented in the firmware, counting the number of I2C data ready hardware interrupts that occur
and storing it in the mapped C structure.
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Table 4. Comparison of build sizes on nucleo-f103rb board

Test ROM [Bytes] RAM [Bytes]
periph_i2c 19,780 2,656
periph_gpio 13,828 2,520
periph_spi 20,268 2,816
periph_uart 20,672 4,536
periph_timer 16,624 2,548

Along with a Python class, philip_pal provides a shell to assist developers in manual debugging
with features such as autocompletion, self-documentation, and helper functions. Table 3 shows
name-based parameter access via philip_pal being converted to addresses and offsets. philip_pal
looks up the offset and sizes from the named parameter based on the versioned memory map indicated
by PHiLIP, then writes the command via the serial port to PHiLIP. PHIiLIP in turn, either prepares,
applies, or reports the parameters. In this example, reporting the requested value i2c.r_count via
the serial port, which then gets parsed by philip_pal according to the datatype indicated by the
map. The i2c.r_count parameter in PHiLIP gets updated via I12C reads from the DUT and are
only fetched from PHiLIP by the host computer when needed with a read_reg("i2c.r_count")
command.

4.5 Adding New Testing Capabilities to PHiLIP
The agile process to adopt a new test capability takes five steps:

(1) Identify the parameter(s) needed based on a bug or issue.

(2) Add the parameter into the MMM configuration file and generate a new map.
(3) Implement functionality on the given module.

(4) Qualify the parameter on PHiLIP.

(5) Release the new firmware and Python package.

If PHILIP cannot provide a way to either measure or induce the state where an issue occurred then
a parameter is added to the memory map configuration file, e.g., forcing a data NACK on the I2C bus.
The parameter has a descriptive name and other valuable information such as access level or unique
flags. A new memory map is generated that validates the JSON syntax and schema, recalculating the
sizes and offsets of each parameter. C code and a CSV file are exported to the sources. Functionality
is implemented in the C code for that given module, e.g., if the i2c.nack_data parameter is enabled
PHILIP should set the I2C_CR1_ACK bit to 0. An automated qualification procedure based on standard
tools then validates the expected behavior. Thereafter, the firmware can be released along with a
Python package containing the new memory map data.

5 PHILIP PERFORMING MULTI-PLATFORM HIL TESTING

Automated and platform-independent tests are created using PHiLIP for the DUT (see Section 3). The
design of the testing environment takes advantage of the structured testing interface and existing tools
where available, adding custom implementations where needed. The tests can be run by developers
or integrated with a CI system.

5.1 Testing RIOT OS Peripherals

The DUT firmware is implemented in C on RIOT OS, which enables the multi-platform testing based
on the DUT HAL. Writing tests in this way can save flash cycles and limit code size as more tests are
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added. Table 4 shows build sizes of the peripheral-based tests. We group all tests that share similar
properties in three groups, infrastructure testing, bus testing, and timer testing.

Infrastructure Testing. Errors can occur from infrastructure components or setup. Tests ensure that
the infrastructure is operating properly within the testing system. There must be a connection to the
DUT and PHILIP, opening a connection and sending a sync message can resolve this. The wiring
must be correct, thus toggling the GPIO of each wire can be used to verify the wiring. The flashing
tool for the DUT must be functioning, reading a descriptor of the firmware can be a way to check the
correct firmware is flashed on the DUT.

Bus Testing. A peripheral bus is stateful and involves exchanges between devices. Since hardware
registers need to be set and cleared by external interactions to introduce persistent states or race
conditions, simply completing code coverage is not exhaustive. PHiLIP can be configured to inject
and check for errors related to the time and state of SPI, UART, and I12C buses. For example, it can
alter clock stretching, flip bits, or record total interaction time. When the DUT executes an action
to be tested, PHiLIP interacts with the DUT according to the configuration and collects metadata
on the interaction. This information can be queried later from PHiLIP via the host. We consider the
following five basic tests:

Initialization Tests: Initializing and acquiring any bus lock including powering on the hardware.
Usage Tests: Read or write operations using the default configuration.

Mode Tests: Varying the modes and settings of the bus and ensuring interactions are correct.
Negative Tests: Check improper configurations return appropriate error messages.

Recovery Tests: Check bus recovery after forcing an error state.

philip.write_and_execute("i2c.mode.nack_data", 1)
response = dut.i2c_read_reg(PHILIP_ADDR, 0)
assert response["result"] == ERROR_RESULT

assert response["data"] == -EIO

Listing 1. Example testing indication of 12C NACK condition

Listing 1 shows an example of PHiLIP injecting a challenging behavior for a test. First PHILIP is
prepared to NACK only data bytes in an 12C frame. Then the DUT executes an 12C read register
command on PHIiLIP. After the 12C is finished, the DUT returns the result to the test node. The
expected result is an error with the -EIO error code indicating a NACK on the data has occurred.

response = dut.i2c_read_reg(PHILIP_ADDR, 0)

assert response["result"] == SUCCESS_RESULT

assert response["data"] == philip.read_reg("user_reg", 0@)["data"]

assert philip.read_reg("i2c.r_count")["data"] == 1

assert philip.read_reg("i2c.w_count")["data"] == 1

Listing 2. Example for asserting metadata of 12C operation

Listing 2 collects metadata of an I2C read register command from PHiLIP. First, the DUT executes
an I2C read register command on PHIiLIP and stores the response. The result should be successful
and the data of that register should match data from PHiLIP. Additional properties of the I2C read
register command are verified such as the number of bytes read from and written to PHiLIP.

Initialization tests can catch bugs with powering and configuring the peripheral clock which may
prevent startup. Usage tests verify the correctness of basic operation in corner case conditions like
maximum transfer size. Mode tests expose unimplemented or wrongly implemented configuration
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Fig. 4. Examples of two timer tests, accuracy, and delay

options. Negative tests probe if a module handles unexpected conditions appropriately. With recovery
tests it is possible to find bugs that occur only after rare fault conditions.

Timer Testing. Timer tests are challenging, truly concurrent operations. Events are generated at very
high rates and require precise timing. Isolated testing solely on the DUT is infeasible as a reliable
internal reference time is often missing. Complex code for measuring and analyzing corrections on
the DUT induces side effects, which cannot reliably be quantified nor compensated across platforms.
Using pure command-response communication between test node and DUT does not allow for
precise timing either, because the communication channel (e.g., UART) and command parsing induce
significant delays and jitter. Therefore, a clear separation between test overheads and time-critical
hardware instrumentation is needed.

With PHILIP, this is achieved by asynchronously logging GPIO signal events with timestamps.
DUT timer operations are instrumented for signaling via designated pins. The pins are dynamically
configured on PHiLIP before the test execution. Thereafter, timestamped GPIO-traces are acquired
via philip_pal, and measurements such as frequency, drift, jitter, and accuracy are calculated
and compared to tolerance values. Respective limits on timing accuracy of the current PHiLIP
implementation are detailed in Section 6.2.

Figure 4(a) shows sample results of a cross-platform test on timer accuracy. The threshold given
as 170 PPM (Parts Per Million) combines datasheet limits for crystal oscillator accuracy, stability,
and aging values of the DUT and PHiLIP. Two of the tested boards clearly do not comply with this
specification. Likely sources for such errors are incorrectly configured clock sources (e.g., using an
internal resistor-capacitor oscillator instead of a crystal), improper trimming configuration of the
crystal oscillator, or faulty prescaler configurations.

A further example grounded on precise microsecond-scale measurements is the assessment of
worst-case delay limits under specific edge cases, e.g., n virtual timers triggering at the same time.
Figure 4(b) exhibits the upper bound for the timer scaling behavior of virtual (software multiplexed)
timers on nucleo-f091rc board. The plot shows a linear scaling behavior, indicating a maximum delay
close to 300 ps when ten timers are scheduled for the same target time.
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Fig. 5. Up to 8 test nodes can be packed in 19" server rack

5.2 Developer Testing Locally

The automated test suites can be run by developers locally if the boards or wiring are not supported
in the CI. The setup requires PHiLIP firmware to be flashed on a nucleo-f103rb or bluepill board.
The testing repository along with python requirements must be installed. Only the wiring needed for
the specific test must be connected from the DUT to PHILIP. If wiring differs from the CI boards
then it must be input to the test environment. A single make command allows the tests to be flashed
and executed.

5.3 Flexible CI Integration

PHILIP can be used from off-the-shelf components, however, a custom board was created to ease
CI deployment. A CI test node consists of the custom board that provides connections between a
Raspberry Pi and PHILIP and a standard 20 pin ribbon connector to the DUT (see Figure 5). This
allows for the simple wiring of DUTs in different form factors without developing specific breakout
boards. A test is provided to ensure wires are correctly routed. The custom board also provides basic
power measurement and control tools to help with low power testing, some protection circuitry, and
signal conditioning.

Each test node is responsible for testing a single DUT in the CI setup. The 1:1 ratio of test node
to DUT was chosen over a 1:n ratio for multiple reasons. Managing the test node environment is
simplified. Downtimes of a single test node become less critical. DUTs do not need to share USB
bandwidth. Computationally heavy tasks on the test node will not affect other running tests. Building
is done on separate servers with docker and does not require any special hardware.

In our current setup, tests run on 22 different boards! of various form factors, vendors, and CPU
architectures. We test nine CPU architectures (AVR, cortex-m0+, cortex-m0, cortex-m3, cortex-m4,
cortex-m7, cortex-m23, esp32, esp8266) three peripheral buses (I2C, SPI, UART), timers, and GPIO.

At the software side, our CI environment is based on three common open-source tools. (i) Jenkins
steers continuous integration across multiple test nodes. (ii) Robot Framework? implements the test
logic with its keyword-based syntax that can easily be extended and adapted to a specific domain.
(iii) Ansible is used to add and manage each test node. Text execution is orchestrated by Jenkins
allowing tests to be triggered manually, every night, and on every change of the test code.

lup-to-date board list: https://ci.riot-os.org/hil/labelsdashboard/
Zhttps://robotframework.org
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Table 5. List of bugs discovered by PHiLIP during an 12C rework. CWE (Common Weakness Enumeration)
provided by https://www.mitre.org/

Family Boards Priority Severity CWE Description

sam( 5 medium moderate 474 Inconsistent Function Implementation
sam( 5 medium moderate 394 Unexpected Status Code or Return Value
atmega 3 low major 480 Use of Incorrect Operator

cc2538 5 medium  major 460 Improper Cleanup on Thrown Exception
stm32 18 low minor 394 Unexpected Status Code or Return Value
stm32 18 high major 835 Loop with Unreachable Exit Condition

6 EVALUATION

PHILIP has powered continuous HiL testing in RIOT for over a year with over 200 stable testing
cycles. 1519 tests are executed per night for 22 unique boards, taking less than 45 minutes. In
comparison, a developer may need the equivalent time to manually set up and execute a test on a
single board.

In the following, we evaluate PHIiLIP in detail from five perspectives. (i) A case study of using
PHILIP during a large 12C rework; (ii) the timing constraints of measuring and executing tests; (iii)
system overhead introduced by tools, the MMM, and philip_pal; (iv) the memory consumption
exposing an API vs. hardcoding test cases; (v) The costs of the CI infrastructure and developer usage.

6.1 Impact: The 12C Rework Use Case

PHILIP was used during a two-month rework of the 12C peripheral in RIOT. A small python script®
was used to run automatic tests on developer machines. This required wiring of the 12C pins for
each DUT to PHILIP. The script initialized both PHiLIP and the DUT, then ran a number of checks
with different parameters such as varying addresses, flags, sizes, efc. to check the new API being
introduced. It discovered and prevented the bugs shown in Table 5. Bugs with high priority typically
mean they exist in master or are about to be merged into master. Bugs with higher severity affect
the current tests and drivers whereas minor severity bugs are edge cases that may occur in external
applications.

The hidden CWE474 bug was discovered on the sam@ platform. It was a physical read of an extra
byte, leading to additional time used on the I2C line as well as potentially increasing a register
pointer on the secondary device. Since the byte was discarded in software, other tests with sensors
were not able to detect the failure. The i2c.r_count parameter provided by PHiLIP about how
many bytes were read from the I2C bus uncovered the bug for the whole samO platform. The test in
Listing 2 discovered that the read byte count was 2 instead of 1. A CWE394 bug was also discovered
in the process. In this case, the return value was always successful, even when failing, showing the
importance of negative tests.

Testing on the atmega platform, a CWE480 bug caused I12C register writing to fail. This was due
to missing an inversion of the bitfield when checking a status bit causing incorrect state transitions.
The CWE460 discovered on the cc2538 platform caused lockup after reading from a missing address.
This was due to the internal hardware not clearing its error state before issuing another command.
Both CWE394 and CEW835 were discovered on the stm32 platform prevented multiple 12C register

3https://github.com/RIOT-OS/RIOT/pull/9409
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Table 6. Comparison of timing constraints for different instrumentation methods provided by PHiLIP.

Measurement Method | 7, Ljiter
Timer Capture DMA 200ns 28 ns
Timer Capture IRQ 1us 200 ns
GPIO IRQ sampling 10us 600 ns
Overhead Source Test step
Bl test framework python wrapper Bl flash setup Bl execute
PHiLIP nucleo-f103rb |
read 10 regs. = spi samr21-xpro
PHILIP g frdm-k22f u
9 read reg. =
5 . s nucleo-f103rb I
é it ?(? g ;20 &, uart samr21-xpro . ]
5 wrie ytes o frdm-k22f ]
@) DUT i2c kel
write byte @'3 nucleo-f103rb |
DUT i2¢ i2c samr21-xpro [l
acquire frdm-k22f
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Fig. 6. Timing of framework overhead and command Fig. 7. Average test step time per board for a given
time for a nucleo-f103rb using the periph i2c test. tests.

writes. This was due to stop signals being sent when busy causing the state to hang when attempting
to issue another write command.

6.2 Timing Constraints

PHILIP Qualified Timing Constraints. Temporal accuracy is a relevant constraint for PHiLIP as the
timer tests described in Section 5 for instance, need high-resolution measurement methods. PHiLIP’s
capabilities are evaluated against accurate measurement equipment as part of the qualification
procedure outlined in Section 4.1. This is done by setting the measurement equipment to toggle a pin
at different rates and verifying the readings of PHiLIP. The limits of different time capture methods
supported by PHiLIP are summarized in Table 6. The minimum time between two consecutive
logging events is denoted by #,,;,,. The maximum accepted jitter of the time measurements is listed
as tjirer- DMA instrumented timer capturing performs best but, due to MCU hardware limitations,
can only capture either rising or falling edges. The Timer interrupt request (IRQ) variant can be
triggered by rising and falling edges but relies on slower CPU instructions to read timer values. Both
variants using designated timer hardware allow high precision but restrict the number of events by
the associated buffer size to 128. The GPIO IRQ sampling uses interrupts of GPIO hardware to log
timestamps directly to the memory map. With both edges and virtually infinite sampling duration,
this gives the highest flexibility but limits precision.

Command Timing Constraints. PHiLIP solves the need for strict timing requirements between the
test node and DUT by measuring time-critical parameters locally and reporting them later to the test
node. The completion time varies depending on the command and communication method.

Figure 6 shows the execution time of various commands collected from Robot Framework test
artifacts produced in the nightly CI runs. The time for the python instruction includes sending the
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Table 7. Comparison of memory and parse time for address-based parameter access vs. named-based param-
eter access.

Access Flash (kB) Parse Time (us)
By Address 31.4 22.4
By Name 40.8 38.6

command from the test node to the DUT, its execution, returning results to the test node, and finally
parsing it. The framework overhead is the time Robot Framework takes to log the steps and check
the results. This depends on the speed of the test node, i.e., a relatively slow Raspberry Pi 3.

These times help determine the limits using synchronous commands and when time-critical events
should be offloaded to a grouped command. With this setup, anything that requires timing below
milliseconds should be offloaded.

6.3 Test System Overhead

Duration of Tests. We present results for three test suites on three different boards in Figure 7
selected to show the largest variations of time. Each value is averaged over 30 nightly CI runs
though time variances between runs are negligible. We focus on the time the microcontroller is in use
excluding timing metrics related to the test node. The setup and execution time are captured from the
Robot Framework output whereas the flash time is taken from the CI logs. The flash time depends on
the binary size and the speed of the flasher. Some boards have slow flashers due to low baud rate
UART communication. Flash times range between 3 and 10 s.

The test setup time is the longest across all cases. A setup phase occurs before each test and resets
both the DUT and PHILIP, then establishes a connection by reading the expected firmware version.
The reset times of a DUT vary due to board-specific delays introduced by a failed initial connection
attempt due to the spurious bits of the UART peripheral being reset. Depending on the bootloader, a
silent period may be needed before connecting, for example, the Arduino bootloader requires 2.6
seconds after resetting.

During the test execution time, the DUT and PHiLIP are interacting via peripherals. This includes
the time to send a command from the test node to the DUT, to execute the API call on the DUT, to
return the result to the test node, and parse that result. The UART tests show a longer execution time
due to the DUT sending a large amount of data at the baud rate limit. The frdm-k22f board finishes
faster as it skips tests of unsupported modes.

Memory Map Overhead. The cost of using the MMM can be shown by evaluating both the
memory footprint and the speed at which the data can be accessed. Table 7 shows the differences
in the overhead of PHiLIP firmware between address-based access using the size and offset versus
name-based access using a name and decoding the information in the firmware. PHiLIP’s memory
map contains 273 parameters taking a minimum of 1841 bytes, a total of 2048 bytes with padding.
We compare a variant of PHiLIP firmware that allows the memory map to be stored inside the
firmware instead of using philip_pal to decode the map. Reading and writing parameters by name
rather than address-based reads with size and offset increases flash size by 9352 bytes. The ability to
access the map properties through firmware adds 384 bytes but allows philip_pal to use the map
without previous information. Accessing with names also adds to the response time due to increased
parsing complexity. PHIiLIP is instrumented to toggle a GPIO pin when a command is received
resulting in 22.4 s to parse a rr @ 1 command mentioned in Table 2, that reads one byte from the
user register. Reading with a name, for example, r user_reg 0, results in 38.55 ps parsing time.
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6.4 Memory Usage

The memory footprint is evaluated by comparing build sizes for three variants of the DUT interface,
differing in interaction functionality and verbosity. The two interactive variants communicate syn-
chronously between the test node and the DUT, where the first one uses a text-based, human-readable
shell and the second uses more concise binary encoding. We refer to both cases as verbose interactive
and minimal interactive respectively. The third, self-contained variant still outputs verbosely but does
not require input from the test node. Therefore, we refer to it by verbose output only in the following.

m 18

24,

§ 16 1

@ =@— verbose output only

f@ 14 4 verbose interactive

B == minimal interactive
0 10 20 30 40 50

Test case [#]

Fig. 8. Flash memory size for DUT test firmware vs. the number of test cases.

Figure 8 relates the memory usage of all three approaches based on an 12C test firmware for the
nucleo-f103rb considering an empirical average memory size increment of around 106 bytes per test
case. The reduced memory usage of the minimal interactive case always has an advantage over the
more verbose alternatives. But even the verbose interactive version becomes more memory efficient
than the self-contained firmware after surpassing the break-even point around 53 test cases. This
shows that, despite its additional code to expose DUT functionality, offloading test cases to the test
node saves memory for a large number of test cases.

6.5 Cost of Testing on Hardware

We analyze the cost associated with testing on real hardware in Table 8 in terms of capital expenditure
(CAPEX) and operational expenditure (OPEX) by considering the main expenses of two usage
scenarios for PHiLIP: the minimal developer desktop setup overhead as shown in Section 5.2 and the
overhead from automated testing via dedicated CI infrastructure as shown in Section 5.3. Common
to both scenarios are the costs related to the DUT which are displayed separately.

DUT. The average cost of our deployed DUTs is 40 €, with the most inexpensive board being the
esp8266-esp-12x at 7 €, and the most expensive board being the frdm-k64f 136 €. The maintenance
interval of the DUT is determined by its flash endurance. To obtain a realistic estimate on DUT
lifetime, we survey manufacturer datasheets of 7 unique boards supported by the RIOT CI (arduino-
due, arduino-mega2560, frdm-k22f, nucleo-f103rb, remote-revb, samr21-xpro, slstk3401a). The
worst-case and most common flash cycle range is 10k. The OPEX of the DUT consists of the
replacement cost that occurs after 1250 full test runs consisting of 8 flashes per run.

Testing on the Desk. Based on empirical values, students working with RIOT OS and PHiLIP need
approximately 2 hours to initially set up the hardware and testing environment which is reduced
to 30 minutes once they are familiar with the process. The operational expenditure for running
the full test suite with the minimal setup is heavily dominated by only this labor time, effectively
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marginalizing other operational costs in this scenario. The capital expenditure overhead is the cost of
a nucleo-f103rb kit, some wiring, and the time to flash PHiLIP firmware on it.

CI Testing. The operational expenditure per CI run consists of build server time, around 2 minutes
per run*, and labor costs for maintenance of replacing the DUT, which take around an hour per
maintenance interval. Compared to the cost of the DUTSs, the initial PHiLIP and test node investment
fits in the cost range of the DUTs. The operational costs of the CI also are similar to the cost of
replacing the DUTs at the maintenance interval.

Cost Reduction Potential. The flash cycle limitation could be overcome by executing tests from
RAM at the cost of accurately representing target devices in production. Execution from RAM would
additionally require per-target customization of linker scripts, limit the allowable code size, and alter
timing due to missing flash wait states. The CAPEX of the CI could be reduced by using more DUTs
per test node, however, it would only pay off with a large number of DUTs due to the additional
complexity implying further maintenance and development costs.

Table 8. Cost breakdown of HiL usage for desktop setup overhead, Cl overhead, and base DUT cost.

Desktop CI DUT
OPEX  30[Z] 0.05[-£] 0.01t00.12[:5]
CAPEX 10[€] 80[€] 7 to 136 [€]

7 RELATED WORK

Testing with HiL fills important gaps as discussed in Section 2.

On-target Testing. Strandberg [57] points at significant time barriers due to the duration of
complex tests. Tight hardware coupling of the tested software further limits the availability of the
environment as it requires direct hardware access. Orthogonal to our solution, Strandberg focuses on
a management layer for optimized test selection and allocation of multiple networked devices. We
target testing HALs with physical interactions, therefore, focusing on test execution with generic
hardware instrumentation.

Martensson [40] considers test execution on real hardware as a hurdle for CI/CD integration
because of limited access to custom target devices. Even though simulation-based testing can take
over selected test tasks, e.g., checking functional stability [25], it is not suited to test whether the
software will correctly operate on hardware. Our solution overcomes these problems with on-target
testing and shared access through CI, nightly, and on-demand testing workflow integration. Instead of
verifying a specific application on a single device, we perform multi-platform testing on a wide range
of heterogeneous DUTSs to guarantee platform-independent firmware has deterministic behavior on
all target devices.

Tools for Testing Embedded IoT Systems. Specialized solutions cover domains from the custom
silicon layer [13] and printed circuit board schematics [34] to system modeling, simulation, and
automatic code generation [41]. Common tools for testing usability, reliability, and compatibility of
IoT devices, however, do not provide a solution for automated testing of tightly hardware-coupled
software [43]. IoT-TaaS [33] deals with coordination of interoperability and conformance testing of
higher layers (i.e., network protocols). Testbeds are a common approach to test embedded software
on real hardware under realistic conditions and in larger setups [2, 24, 28, 36]. While they are

“Based on 4 CPU, 16 GB memory, On-demand from https://calculator.aws/#/createCalculator/EC2
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mostly used for experimentation and performance evaluations of protocols and applications, some
also explicitly focus on the integration of heterogeneous multi-node setups [35, 62]. Aiming for
improved reliability, Woehrle et al. [65] propose a distributed testing framework that combines
simulation and testbed support tailored to the development process of wireless sensor networks.
Tools such as Greentea and Icetea [6], LAVA [38], and ICAT [14] focus on deployment, execution, or
operative management abstractions, leaving measurement of physical hardware interactions limited
or out-of-scope, or target mobiles instead of constrained IoT devices.

Izinto [45] is a pattern-based test automation framework for integration testing. This solution does
not require technical knowledge about the tested system but is limited to user perception use cases,
whereas our work targets low-level misbehavior.

The Importance of Testing Peripheral Abstractions in Embedded Software. System standards
such as POSIX are not applicable for deriving test items for hardware interfaces [58]. Therefore,
Sung et al. [58] contribute a test model, defining a list of test features for interfaces of OS and
hardware layers. Seo et al. [55] used this model to show that the likelihood of finding errors is
significantly higher in interface functions that cross heterogeneous abstraction layers. Their analysis
further indicates that bugs in this type of code are harder to discover with classical unit testing
approaches. Justitia [56] was developed using the same model to automate the identification of
interfaces to be tested together with generating and executing test cases. The employed fault detection
method is tailored very closely to a specific target platform and only applies to time-invariant
errors (e.g., in memory management and allocation). It poses significant limits when timing critical
operations with true hardware concurrency and connections to the physical world are considered.
Although the DUT instrumentation principle is orthogonal, our focus on peripheral abstractions
explicitly targets the important areas where execution flows cross layer boundaries.

Feng et al. [21] automate implementations of peripheral models that approximate the behavior
of real peripherals for use in emulation-based fuzzy testing. In contrast to our work, their approach
aims for generic testing of the firmware on top of peripherals and is therefore neither able to model
arbitrary hardware, DMA peripherals in particular, nor correct physical layer interactions.

Testing Physical Interactions With HiL. HiL solutions are commonly used in the automotive
domain [18, 23, 30, 63]. Vejlupek et al. [63] propose a hybrid HiL approach, i.e., stimuli signal
injection allows them to use a parameterized model instead of a complex physical test setup. Keri-
nen et al. [30] investigate benefits of MBT in HiL setups. The employed online MBT approach
generates test input on the fly and injects random test steps. Randomness injection was also shown to
be useful for testing interrupt-driven software by covering execution paths that are highly unlikely
to occur [47]. Combining MBT and code generation was previously also demonstrated to support
verification of model-based embedded systems [59]. Downsides inherent to MBT still apply, though:
a correct model of the DUT and additional development effort are needed, and vulnerability to human
error exists.

Virzonis et al. [64] demonstrate how HiL, simulation, and CI can transform the linear development
process of embedded control systems into iterative cycles. Their work focuses on a process and local
setup for the development phase whereas our work targets a distributed CI setup for the testing phase.

Muresan and Pitica [44] indicate that Software in the Loop is appropriate when a control algorithm
is the test item. In such cases, simulation benefits such as full parameter control and virtualization of
timing critical aspects outweigh the downsides of not considering any hardware-related properties.
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Common between the discussed HiL. implementations is their usage in a very limited and well-
defined domain for single specific purpose DUTs. In contrast to that, we aim for a system that tests a
wider range of general-purpose devices.

Emulation and Simulation. Embedded systems are sensitive to their physical environment making
them cumbersome to test and debug. Simulation and emulation solutions avoid these problems to
make testing of embedded software easier for isolated aspects. They promise benefits like repro-
ducible experiments, major scalability improvements through parallel execution, faster operation
by controlling virtual time, and many more. QEMU [46] is a well-established machine emulator
that provides many features for virtualization, user-mode emulation, up to full-system emulation.
Even though it can emulate constrained ARM MCUs as well as full-sized x86 and PowerPC systems
it is more targeted towards the latter class of systems. Renode [48] is an open-source software
development framework for running, debugging, and testing unmodified embedded software that
is more focused on small embedded devices. It employs simulation of the CPU in addition to its
peripherals, externally connected sensors, and the communication medium between nodes to make
multi-node system testing more reliable, scalable, and effective.

The benefit of such emulators is evident for cross-platform development and for providing an
accurately controllable execution environment with a high degree of flexibility. However, it is
important to highlight that there are major obstacles that make it impossible to use these existing
solutions for the same purpose targeted by our approach. These obstacles mostly stem from two
dimensions: the number of compatible devices and the basic applicability to test the behavior of
low-level driver code with respect to the physical world.

RIOT as our test subject supports both aforementioned emulators [49], but none of them can
provide the required level of compatibility. To evaluate how far away current state-of-the-art emulation
is from serving our intended purpose a look at the current support of devices and peripherals provides
guidance. According to the QEMU documentation, only two different embedded microcontrollers
of the Cortex-M CPU family are supported”. For Renode, the situation appears much better at first
sight, with 9 targets being supported of our currently deployed 22 MCUs. Though, as of now, feature
availability puts up further limits with only two targets supporting all peripherals that our setup is
testing.

Apart from existing solutions not being available for a relevant number of target devices there is
also a fundamental mismatch of objectives compared to our solution. Per definition, the objective of
an emulator is to mimic or mock (i.e., emulate) the behavior or a specific system. While this covers
the behavior of the (emulated) hardware towards the firmware, it does not cover the internal state of
the real hardware and its interactions to the physical world. In fact, existing emulators deliberately
deviate internal system behavior to improve emulation performance [20]. Therefore, they lack the
required level of simulation granularity to test for correct peripheral interactions with the physical
world. Albeit a hypothetical full-fledged simulator would be capable of testing these aspects, to
the best of our knowledge, currently no such simulator exists that covers both important aspects of
device compatibility and basic applicability. An accurate simulator will always require a high-quality
model. But the primary source to get detailed descriptions of hardware peripherals are manufacturer
datasheets and reference manuals which differ considerably in terms of provided details and quality.
Additionally, they are subject to human interpretation and undiscovered hardware errata, arguably
making it extremely challenging to derive exact models of hardware peripherals. Implementing new
device models would require non-negligible time whereas adding a new CPU with PHiLIP only
requires basic knowledge on how to provide peripheral configurations and wire the device.

Shttps://wiki.qemu.org/Documentation/Platforms/ARM
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We conclude that compared to emulation and simulation our approach has a conceptual advantage
in terms of device compatibility, applicability to find errors in low-level driver code, and scalability
when adding new devices. With a scaleable way to qualify hardware behavior, our solution further
contributes an important building block for future development and evaluation of generalized cross-
platform MCU peripheral simulators.

Test Generation. Research on test generation provided several methods to attain high coverage
and unveil hard-to-find bugs with automated software testing. Combinatorial, search-based, and
MBT allows optimizing test selection in order to slim down huge parameter spaces into manageable
numbers of cases that still provide good coverage. Symbolic execution is particularly interesting
because of its ability to implicitly test huge sets of values by considering execution paths symbolically
via constraints instead of concrete variable values. A vast amount of tools is available from academia
and industry that showed practical relevance and notable impact on automated software testing [12].
However, there are still multiple open problems related to path explosion, path divergence and
complex constraints that complicate employing symbolic execution for testing real production
software at scale [4]. For the constrained devices class we are interested in, symbolic execution was
previously shown to be useful for testing firmware implementations of networked nodes [52]. Even
though that approach can detect inter-node bugs in a network of embedded devices, it only considers
network and application layer behavior, leaving MCU peripheral code out of scope.

In our specific domain — testing peripheral drivers including their interactions with the physical
world — complex constraints, environment interactions, and device-specific characteristics can be
expected to strongly interfere with symbolic execution, as is already visible with virtual devices [15].
The approach developed by Cong et al. [15] employs symbolic execution for virtual QEMU devices
via the KLEE [11] engine. It is evaluated with five different network devices and methods are
proposed to reduce the manual implementation effort for the required device-specific models. As
indicated by the authors, however, the manual effort to enable symbolic execution for devices can
not be completely avoided. This leaves major blockers regarding applicability to our domain: a
widely applicable set of accurate software models for MCU peripheral devices does not exist, and
platform-specific hardware interfaces towards MCU-internal peripherals come in almost arbitrary
variants making it very hard to automate model generation.

8 DISCUSSION, CONCLUSION, AND OUTLOOK

In this paper, we presented and evaluated a concept and implementation for HiL testing low-end IoT
devices. Part of the solution is two crucial components: PHiLIP, an open-source external reference
device, and a tool-assisted process that simplifies verification of peripheral behavior on different
embedded hardware platforms. In the following, we take a retrospective look at design decisions,
report on lessons learned, and address shortcomings with potential solutions worth considering in
future designs.

8.1 Concept Validity

The evaluation results show that PHILIP serves as a versatile tool to instrument currently 22 hetero-
geneous DUT devices with significant extensions planned in the near future. Approximately 67% of
the peripheral implementation variants (I2C, SPI, UART) supported by RIOT OS are covered. The
timing analysis confirms the test throughput is high enough to increase the current ~ 1,500 nightly
tests by an order of magnitude. Future work could reduce the overhead of the test firmware on the
DUT further by leveraging a more efficient serialization of commands and responses.

Employing the Memory Map Manager (MMM) proved beneficial to simplify maintenance and
enable resource-efficient operation in terms of processing time and memory. The MMM saves time
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compared to manually altering and reviewing the memory map when extending and maintaining
PHILIP. Instead of using a custom JSON-based configuration format, the memory map could in the
future be encoded with the widely used SVD format [7]. This would allow using tools developed for
SVD files alongside the MMM.

Exposing low-level peripheral APIs via DUT commands enables offloading test logic to the test
node, keeping the size of test firmware static. Offloading allows operation delays to stay below the
order of 100 ms. For time-critical operations, we showcased how asynchronous signal triggers of
the DUT can be captured by PHiLIP with a measurement precision on the microsecond scale. Our
practical case study during the I2C rework confirmed that PHIiLIP enabled better coverage of test
cases and boards with less effort while ensuring easy to reproduce test setups and execution. Results
of PHiLIP are continuously used by developers to identify and fix bugs.

The structured testing interface helped to evolve a multitude of customized test applications with
unspecified architecture and coding styles into a uniform shape to build test suites that follow a
consistent test design. The developed wrapper tools provided machine-readable entry points that
described available low-level APIs in a well-defined format. This information can be used for higher-
level test generation and orchestration tools for further automation of end-to-end testing processes.

8.2 Limitations

MCU as a Reference. We chose to implement PHILIP with an MCU (opposed to, e.g., an FPGA)
to simplify its design and make it accessible to embedded OS developers, though, an MCU has
limitations. The MCU must reply immediately when data is requested via peripheral buses, which
cannot be guaranteed when the bus clock speed is high relative to the MCU clock speed. Thus,
advanced capabilities such as dynamic data response are provided only for lower transfer speeds,
limiting high-speed transfers to predefined data. Using an FPGA or a very fast MCU are potential
solutions, however, they interfere with our original goal of being low-cost and accessible to typical
embedded developers.

Static Wiring. Most MCUs support several options to multiplex peripheral signals onto different
pins or set pins to alternate functions. In our current setup, peripherals are only tested using a fixed
pin configuration based on the default pins provided by RIOT OS. Tests are skipped if the wiring is
not supported, for example, a peripheral is not exposed on the DUT. Even though this can validate
peripheral behavior, it does not cover all possible deployment configurations. While this can be
addressed with a custom FPGA implementation or the addition of signal muxes, we argue that
misconfigured pins are easier to find than software bugs.

Time-critical Test Commands. Due to the command response-based interaction method, only
synchronous commands that contain the communication overhead can be issued. Wrapping time-
critical interactions in firmware is a solution but loses the benefit of the agile process when many
variations of wrapped commands are needed.

Capturing and Reporting Bugs. Outside of the I2C rework case, the bugs that were produced in
RIOT are not included as the focus was not on studying the bugs that were caught but providing
reproducible tools for developers. As of now the capabilities of PHiLIP are still beyond the features
used in the current test suites. We prioritized maturity and reliability for developers over very
sophisticated features to avoid false positives and support community adoption.

Coverage Feedback. Code coverage metrics serve as valuable feedback to measure test completeness
and for controlling test case generation. Static analysis can be used for preliminary offline coverage
assessment but the runtime dynamics of peripheral interactions render such approaches incomplete
because external events (like an altered signal) affect the paths executed in low-level peripheral driver
code. Covering this requires on-target execution and end-to-end testing of firmware with the involved
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hardware peripherals, as proposed in this paper. In our setup, MCU-embedded trace macrocells or
external debuggers can be employed for collecting runtime information on the test node to deduce
code coverage. A generic implementation of this is considered future work as platform-specific
debugging interfaces need dedicated tooling and considerable integration work without providing
intrinsic benefits on its own. However, combining this with approaches for automated test generation
is expected to be worthwhile the effort and mandates for separate examination.

8.3 Stability

Board Quality Issues. A low-cost board such as the bluepill may introduce quality issues, especially
when purchasing from different vendors. The quality of the oscillator used for the clock source
varies, affecting the minimum jitter and overall accuracy for timing tests. This still allows us to
find misconfigured clock trees. Some calibration can be done to improve long-term drift tests. The
infrastructure tests and qualification procedures are also able to reduce quality issues.

Reliable DUT Interface. Some vendor implementations of the USB interface used for communica-
tion between the test node and the DUT are not reliable, causing occasional test failures. To improve
the reliability we add retries which increased the setup time but handled spurious failures.

Flashing Problems. Development tools for flashing DUTs are sometimes only available as closed-
source software. This either restricts the test node to a specific CPU architecture and OS or requires
manual integration effort. Even if flashers are readily available, many have reliability issues and cause
occasional device lockups. To cope with locked-up DUTs, PHIiLIP was equipped with automated
flasher recovery mechanisms.

8.4 Outlook

In future work, we will use PHILIP and the process described in this paper to improve test coverage
on an increasing amount of platforms. To use PHiLIP with other OSs, its tooling can be supplemented
with additional implementations of protocol abstraction layers that wrap DUT interactions. Informa-
tion derived from regular HiL testing results and benchmarks of evolving software versions can be
incorporated in various ways. It provides valuable feedback for well-informed technical decisions
and strategic planning of development efforts and gives users a comprehensive and realistic overview
of the quality and performance of supported features across available target devices. The system
can further be used to qualify peripheral implementations of simulators and emulators by verifying
them against the ground truth of a real device in the HiL setup. With the instrumented hardware and
automatic test execution in place, another promising direction is to equip our system with methods
for coverage feedback and automatic test generation.
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A NOTE ON REPRODUCIBILITY

We explicitly support reproducible research [1, 53]. The source code and documentation of our
designs and implementations (including tools and scripts to set up the testing) are available on Github,
see https://philip.riot-apps.net/.
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