Check for
Updates

Shard Manager: A Generic Shard Management
Framework for Geo-distributed Applications

Sangmin Lee Zhenhua Guo Omer Sunercan Jun Ying Thawan Kooburat
Suryadeep Biswal ~ Jun Chen KunHuang Yatpang Cheung Yiding Zhou
Kaushik Veeraraghavan Biren Damani Pol Mauri Ruiz =~ Vikas Mehta Chungiang Tang

Facebook Inc.

Abstract

Sharding is widely used to scale an application. Despite a
decade of effort to build generic sharding frameworks that
can be reused across different applications, the extent of their
success remains unclear. We attempt to answer a fundamen-
tal question: what barriers prevent a sharding framework from
getting adopted by the majority of sharded applications?

We analyze hundreds of sharded applications at Face-
book and identify two major barriers: 1) lack of support
for geo-distributed applications, which account for most of
Facebook’s applications, and 2) inability to maintain appli-
cation availability during planned events such as software
upgrades, which happen ~1000 times more frequently than
unplanned failures. A sharding framework that does not
help applications to address these fundamental challenges
is not sufficiently attractive for most applications to adopt
it. Other adoption barriers include the burden of support-
ing many complex applications in a one-size-fit-all sharding
framework and the difficulty in supporting sophisticated
shard-placement requirements. Theoretically, a constraint
solver can handle complex placement requirements, but in
practice it is not scalable enough to perform near-realtime
shard placement at a global scale.

We have overcome these adoption barriers in Facebook’s
sharding framework called Shard Manager. Currently, Shard
Manager is used by hundreds of applications running on
over one million machines, which account for about 54% of
all sharded applications at Facebook.

CCS Concepts: - Computer systems organization — De-
pendable and fault-tolerant systems and networks; «
Software and its engineering — Distributed systems
organizing principles.

Keywords: shard management, sharding, availability

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SOSP °21, October 26-29, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8709-5/21/10.
https://doi.org/10.1145/3477132.3483546

553

1 Introduction

Sharding is a common strategy to scale an application by
dividing its work into smaller units and assigning them to
different servers. For example, consider a key-value store
with ten billion key-value pairs. We can divide the store into
100K shards, each containing 100K key-value pairs, and then
distribute the 100K shards across 1,000 servers. Sharding is
ubiquitous—GitHub currently hosts over 5,000 repositories
that mention “shard” and Facebook internally has hundreds
of sharded applications.

A proper sharding implementation needs to solve many
hard problems such as shard placement, load balancing, shard
discovery & request routing, and application lifecycle man-
agement. To avoid duplicate efforts, there has been a decade
of effort to build generic sharding frameworks [2, 4, 12, 25,
27, 35, 54] that can be reused across different applications,
but the extent of their success remains unclear.

Proprietary sharding frameworks often propose a new
programming model and a selective set of features. However,
without knowing their adoption trajectory and market share
(i.e., 1% or 90%), it is hard to evaluate whether their program-
ming model and feature set are flexible or rich enough to
support the majority of sharded applications. In particular,
the best-known sharding frameworks, Google’s Slicer [4]
and Microsoft’s Azure Service Fabric (ASF) [35], differ sig-
nificantly in their programming model, feature set, design,
and implementation. Their divergence and the difficulty in
comparing their success using common metrics such as the
adoption rate make it hard for others to choose the best
practices to follow.

Open-source sharding frameworks have a limited adop-
tion rate. Twitter’s Gizzard [25] and Uber’s Ringpop [54]
were already archived. LinkedIn’s Helix [27] is better known;
nonetheless GitHub hosts only two tryout Helix applica-
tions [23, 44]. None of the well-known open-source projects
including Cassandra, HBase, Redis, MongoDB, Couchbase,
and Kafka, share a common sharding framework.

1.1 Adoption Barriers for Sharding Frameworks

What barriers prevent a sharding framework from getting
adopted by the majority of sharded applications? We share
takeaways from our analysis of all sharded applications at
Facebook, which amount to hundreds.

https://doi.org/10.1145/3477132.3483546
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3477132.3483546&domain=pdf&date_stamp=2021-10-26

SOSP 21, October 26-29, 2021, Virtual Event, Germany

Log Scale
10000
—. 1000
2 100
10
1
0.1

planned maintenance
or software updates
W\/\M\

Machines

unplanned failures
100K machines

Container Stops
(thousands)

2012

2015

Time 2018 2021

Figure 2. Machines
used by SM applications.

Figure 1. Planned vs. un-
planned container stops.

First, improving availability is a major motivator for appli-
cations to adopt a sharding framework, but this requirement
is not well supported by existing sharding frameworks. They
all support shard failover, but they use it to handle both un-
planned failures (e.g., power loss or process crash) as well
as planned events (e.g., hardware maintenance or software
upgrades). Figure 1 shows that at Facebook, container stops
due to planned events are ~1000 times more frequent than
unplanned failures. Treating planned events as failures am-
plifies unavailability by ~1000x as every failover causes a
period of shard unavailability. Moreover, existing sharding
frameworks cannot perform shard migration (e.g., due to
load balancing) without impacting in-flight client requests,
which further impairs availability. As a result, existing shard-
ing frameworks often bear the cost of deploying extra shard
replicas to compensate for their lower per-replica availability.

Second, existing sharding frameworks do not provide suf-
ficient support for geo-distributed applications, which are
ubiquitous in large-scale internet services. Existing sharding
frameworks are incapable of globally coordinating opera-
tions across multiple regional cluster managers, e.g., to pre-
vent two independent container restarts in two geographic
regions from accidentally bringing down two replicas of the
same shard. Moreover, they cannot spread a shard’s replicas
across regions for better resilience, cannot migrate shards
across regions for better load balancing, and disallow individ-
ual shards from specifying regional placement preferences
for better network locality. As a result, they often bear the
cost of statically deploying extra shard replicas to multiple
regions in order to compensate for their lack of support for
geo-distributed applications.

Lack of support for geo-distributed applications and in-
ability to maintain application availability during planned
events, fundamentally limit the adoption of existing shard-
ing frameworks. Our analysis in §2.3 shows that 1) 100% of
Facebook’s sharded applications are deployed to multiple
regions and 2) availability improvements play an even bigger
role than shard placement & load-balancing (PLB) features in
motivating the adoption of a sharding framework. Existing
sharding frameworks often emphasize PLB, but barely touch
on these two most important aspects. Without gaining signif-
icant benefits from a sharding framework on these two most
important aspects, application owners might not be moti-
vated to adopt the sharding framework due to the downsides
of taking on a deep and complex dependency that is directly

554

linked into their application, which can present reliability
risks and make it difficult to troubleshoot production issues.

Compared with the two barriers above, the two barriers
described below are less fundamental but further lower the
adoption rate of sharding frameworks.

Third, many applications require advanced PLB features—
unfortunately, most sharding frameworks use hand-crafted
PLB heuristics, which are easy to start with but become
brittle and hard to extend over time. As a result, it is hard
to add new PLB features required by new applications (e.g.,
region-aware shard placement required by geo-distributed
applications), which further hinders adoption. By contrast, it
is much easier to introduce a new PLB feature by adding new
constraints to an optimization problem and then solving it
with a generic constraint solver [24]. Unfortunately, a solver
on its own is not sufficiently scalable to handle near-realtime
PLB, especially for large-scale geo-distributed applications.

Fourth, existing sharding frameworks do not account for
the bimodal nature of their workloads, i.e., many small ap-
plications plus a few mega applications. Small applications
prefer simplicity, whereas mega applications often employ
highly customized features. Attempting to implement all
custom features in a single sharding framework makes it
unwieldy and overly complex.

1.2 Our Contributions

In this paper, we present Facebook’s shard-management
framework called Shard Manager (SM). Since its production
deployment in 2012, the server side of SM applications alone
(i.e., excluding the client side) has grown to consume over
one million machines (Figure 2). Currently, SM applications
amount to hundreds and account for about 54% of Facebook’s
sharded applications, which likely far exceeds other sharding
frameworks’ adoption rate. SM applications process billions
of requests per second, which is 100 times higher than the
reported request rate of Slicer applications [4, 49]. Examples
of SM applications include a Paxos-based database [45], a
blob store 8], a queue service [47], a data bus [36], a machine
learning (ML) inference platform [50], a ML-training control
plane [21], ML feature stores, a time series database [51], a
stream processing engine [46], a pub/sub system [56], etc.

This paper makes the following contributions:

e We analyze all sharded applications at Facebook and
present our findings to guide the design of future shard-
ing frameworks.

e We propose a simple yet powerful programming model
and share our internal adoption data to prove its capabil-
ity in supporting the majority of sharded applications.

o We identify two barriers that fundamentally limit the
adoption of existing sharding frameworks: 1) inability to
maintain application availability during planned events
and 2) lack of support for geo-distributed applications. To
maintain availability, SM negotiates with the underlying

Shard Manager: A Generic Shard Management Framework for Geo-distributed Applications

cluster managers about when to safely execute container
lifecycle operations. Moreover, SM ensures that an appli-
cation drops no requests during a graceful shard migra-
tion. To support geo-distributed applications, SM handles
global shard placement & migration and does global co-
ordination across multiple regional cluster managers.

e SM uses a constraint solver for near-realtime shard place-
ment at a global scale. We share the optimizations that
enable our solver to scale. The expressiveness of a con-
straint solver allows us to easily add new PLB features for
new applications, which further boosts SM’s adoption.

e We propose a composable SM ecosystem that allows cer-
tain complex applications to bring their own components.
For example, while most applications adopt the whole
SM framework without customization, a complex SQL
database may choose to adopt SM’s PLB component but
implement its own application lifecycle manager. Note
that all SM adoption numbers in this paper exclude ap-
plications that have adopted some SM components but
not the whole SM framework.

The rest of the paper is organized as follows. §2 reports the de-
mographics of real-world sharded applications. §3 provides
an overview of SM. §4 presents how SM maintains applica-
tion availability. §5 describes SM’s allocator. §6 presents how
we make SM scalable and fault tolerant. §7 discusses our
ongoing work to further boost SM’s adoption. §8 evaluates
SM. §9 discusses related work. §10 concludes the paper.

2 Analysis of Sharded Applications

We spent months of efforts on analyzing all sharded applica-
tions at Facebook. This is a daunting task due to Facebook’s
huge code base and thousands of applications. We did code
search and leveraged sharded applications’ common traits
to identify a candidate pool of sharded applications as ex-
haustively as possible. We then read through their code and
interviewed dozens of application owners as needed to filter
out non-sharded ones. Below, we introduce sharding basics
(§2.1), summarize the demographics (§2.2) of all sharded ap-
plications at Facebook, which amount to hundreds, explain
why certain applications might not adopt certain sharding
frameworks (§2.3), discuss data persistency (§2.4), and finally
describe some real examples of sharded applications (§2.5).

2.1 Sharding Basics

Sharding divides a key space (e.g., strings or 128-bit integers)
into shards of non-overlapping key ranges and assigns each
shard to an application server that handles all client requests
targeting the keys in the shard. An application server may
host multiple shards. In response to load changes, a shard
may migrate from one application server to another in order
to balance load across servers. As the shard-to-server assign-
ment changes, the shard map needs to be disseminated to all

555

SOSP 21, October 26-29, 2021, Virtual Event, Germany

. Region 1 Region 2 Region 3 Region 4 Region 5
Regional
deployment [AlBICIDIE] [AlBYCIDIE] [AlBYCIDYE]
L Region 1 Region 2 Region 3 Region 4 Region 5
Geo-distributed
deployment m B E] B m o

Figure 3. Regional vs. geo-distributed deployment. An ap-
plication with 5 shards (A-E) is deployed to 5 regions (1-5).

application clients in a timely manner so that the clients can
send requests to the correct application servers.

A shard may have multiple geo-distributed replicas in
order to provide resilience against large-scale failures, to
shorten network latency to certain clients, or simply to in-
crease the request-handling throughput of the shard. The
placement of shard replicas on application servers needs to
consider all these factors in addition to balancing load.

To maintain shard availability, applications need to care-
fully prepare for and handle both unplanned failures (e.g.,
power loss) and planned events (e.g., software upgrades). The
latter is particularly important because it is #1000x more fre-
quent than the former (Figure 1). For example, restarting an
application server that hosts the primary replica of a shard
without first draining the primary replica out of the server,
might cause the shard to be unavailable during the restart.

2.2 Demographics of Sharded Applications

2.2.1 Sharding Schemes

In Figure 4, we show the breakdown of all sharded applica-
tions at Facebook. 54% of them are built atop SM; we discuss
how to further boost SM’s adoption in §7. Custom sharding
represents a small number of largest and most complex data
stores that have their own sharding control plane, includ-
ing a SQL database [52], a graph data store [10], and a log
store [43]. These large applications account for only 1% of
sharded applications but 27% of server usage.

Static sharding uses a fixed binding between shards and
containers. Facebook’s cluster manager Twine [60] deploys
an application as a group of containers called tasks. The
taskIDs are indexed sequentially from zero and are often
used for static sharding. For example, the task with taskID =
key mod total_tasks is responsible for the key. Despite the
theoretical advantage of consistent hashing, static sharding
is ~3x more popular than consistent hashing, indicating
that resharding is rare and the overhead of resharding is not
prohibitive. For example, it is common that after a resharding,
an application can rebuild its soft state from an external
persistent store.

Next, we report various properties of applications built
atop SM to understand why they use a sharding framework.

2.2.2 Regional vs. Geo-distributed Deployment
Facebook operates out of tens of geo-distributed regions.
Each region consists of multiple data centers. All applications

SOSP 21, October 26-29, 2021, Virtual Event, Germany

custom sharding
m using SM

9%

= consistent hashing

B static sharding

by #application by #server

m geo-distributed 67% H

M regional
58%
33%

by #application by #server

| 8% |
® primary-secondary
(37
¥ primary-only m

41%

by #application by #server

H secondary-only

Figure 4. Breakdown of all sharded
applications at Facebook.

Figure 5. SM applications’ usage of re-
gional & geo-distributed deployments.

Figure 6. SM applications’ usage of
different shard replication strategies.

multiple metrics

[
shard count

by #server

by #app by #server

by #application Primary Replicas

® drain 22% 15%
. ¥ no drain
10%
) o
® single synthetic 10%: S S 78% 85%
W single resource
¢ ss% E3 m

18%
38%
= storage
® non-storage 82% S
3

by #application by #server

by #app by #server
Secondary Replicas

Figure 7. SM applications’ usage of
load balancing policies.

are deployed to multiple regions in order to provide resilience
against whole-region outages and to reduce network latency
to global users. An application can be deployed in different
modes (Figure 3). With a regional deployment, a complete
copy of all shards of the application are hosted in one region.
A regional deployment may be duplicated in multiple regions
to provide redundancy, but its shards cannot migrate from
one region to another. With a geo-distributed deployment, a
complete copy of all shards might not exist in any single
region, and its shards can migrate across regions on demand.

A geo-distributed deployment may use fewer replicas per
shard than the equivalent regional deployments, thereby
saving hardware capacity. In Figure 3, suppose region 1 fails.
With a geo-distributed deployment, the shards originally in
region 1 can be redistributed across multiple regions that
have any amount of available capacity. With a regional de-
ployment, it is harder to find a single region that has enough
capacity to accommodate a complete copy of all shards. As
a result, application owners often over-provision duplicate
copies of regional deployments ahead of time.

Figure 5 compares the adoption rate of regional vs. geo-
distributed deployments. Regional deployments are still pop-
ular even if global deployments offer more advantages. His-
torically, many applications started with duplicate regional
deployments in every region. This approach is simple, but
wastes capacity and is unsustainable as the number of re-
gions grows rapidly. In recent years, we have observed a
strong trend of applications migrating from regional deploy-
ments to geo-distributed deployments.

2.2.3 Shard Replication Strategies

We first define some terminology related to the leader-follower
programming paradigm. A shard can have multiple replicas
and the role of a replica is either primary or secondary. A

Figure 8. SM applications’ usage of
drain policies for container restarts.

Figure 9. SM applications’ usage of
storage and non-storage machines.

shard can have at most one primary replica plus an arbitrary
number of secondary replicas. We classify sharded applica-
tions into three categories.

e Primary-only (no secondary): Each shard has a single
replica. SM guarantees that no two servers serve the
same shard at the same time.

e Secondary-only (no primary): Each shard has multiple
replicas that all play an equal role.

o Primary-secondary: Each shard has one SM-elected pri-
mary replica plus one or more secondary replicas. The
primary often handles writes.

Figure 6 shows the usage of primary and secondary roles.
Primary-only applications are popular for the following rea-
son. Many traditional applications have one active leader
plus multiple hot/cold standbys. Applications using hot stand-
bys map to SM’s primary-secondary applications, whereas
applications using cold standbys map to SM’s primary-only
applications. A primary-only SM application does not need
to keep cold standbys because upon the failure of a shard’s
primary, SM can immediately recreate the shard’s new pri-
mary in another running container that currently hosts other
shards’ primaries. In other words, the unused capacity of
the application’s running containers serves as cold standbys.
The popularity of primary-only applications implies that
cold standbys are more popular due to their simplicity.
2.2.4 Load-Balancing Policies

SM periodically collects load information of shards from ap-
plication servers and balances load by moving shards out of
overloaded servers (§5). Figure 7 shows the usage of different
load-balancing (LB) policies. “Shard count” means doing LB
based on the number of shards per server. “Single resource”
means doing LB based on a single resource metric such as

Shard Manager: A Generic Shard Management Framework for Geo-distributed Applications

CPU, memory, or storage. “Single synthetic” means doing LB
based on an application-level metric such as request queue
size. “Multiple metrics” means doing complex LB based on
multiple resource/synthetic metrics. 20% of applications use
single synthetic/resource LB because they have a single domi-
nating bottleneck. 55% of applications use shard-count-based
LB because their shard load is sufficiently uniform. Applica-
tions using multi-metric LB account for 65% of server usage,
indicating that sharding frameworks need to support ad-
vanced LB features. Moreover, out of all servers used by
geo-distributed deployments (Figure 3), 33% of them are for
applications that dictate regional shard-placement prefer-
ences, thus requiring region-aware placement features.

2.2.5 Drain Policies

When a container needs to restart in place on a machine,
e.g., to upgrade an application’s executable, SM can either
proactively drain the application’s shards out of the impacted
container or do nothing, i.e., tolerating the downtime of
the shards. Figure 8 shows that most applications choose
to drain their primaries but not their secondaries. A shard
has at most one primary, which often plays an important
role and requires high availability. By contrast, a shard can
have multiple secondaries and SM can manage the pace
of container restarts to ensure that a minimum number of
secondary replicas per shard is always available.

2.2.6 Usage of Storage Machines

Figure 9 compares the usage of storage (i.e., SSD/HDD) and
non-storage machines. SM applications consume a higher
percentage (38%) of storage machines than average appli-
cations do because many sharded applications have states
and need storage (§2.4). Applications using storage machines
need extra support. For them, it is especially important to
spread a shard’s replicas across large fault domains to en-
sure data availability. Moreover, as they often take longer
to recover from a hard crash, it is important to handle their
planned maintenance events gracefully.

2.3 Using Data to Elaborate on Adoption Barriers

In §1.1, we argue that lack of support for geo-distributed
applications and inability to uphold application availability
during planned events fundamentally limit the adoption of
existing sharding frameworks. We elaborate on them below.

If a sharding framework does not uphold application avail-
ability during planned events, the majority of sharded appli-
cations might not adopt it. Specifically, combining data in
Figures 6 and 8, we see that about 70% of SM applications
choose to gracefully drain shards before a container restart.
These applications might not adopt a sharding framework
that cannot gracefully handle planned events. Moreover, 55%
of SM applications that use shard-count-based LB (Figure 7)
might not adopt such a framework either since static shard-
ing is sufficient for their LB needs and they do not need the
sharding framework’s basic failover function. The cluster

557

SOSP 21, October 26-29, 2021, Virtual Event, Germany

manager already provides container-level failover—if a ma-
chine or container is not responsive, the cluster manager
restarts the container on another machine. These applica-
tions using shard-count-based-LB adopted SM primarily be-
cause of its advanced capability in upholding application
availability during planned events.

If a sharding framework does not provide sufficient geo-
distribution support, the majority of sharded applications
might not adopt it. Specifically, 67% of SM applications that
use geo-distributed deployments (Figure 5) might not adopt
it. Moreover, each of the remaining 33% is set up as multiple
regional deployments, which may need global coordination.
Suppose an application uses two regional deployments, each
shard has one replica per region, and the two regions’ local
cluster managers independently restart two containers at
the same time. Those two containers might happen to host a
shard’s different replicas, causing the shard’s both replicas to
be unavailable. Some SM regional deployments work around
this problem by having their owners perform operations
sequentially in one region at a time. It is still problematic
because 1) the number of regions grows quickly, prolong-
ing the operation duration, and 2) some infrastructure-level
maintenance operations kick off automatically without going
through application owners. As a result, we see a strong trend
of migration from regional to geo-distributed deployments.

2.4 Data-Persistency Options

Sharded applications often need to store and access data.
ASF’s strongly-consistent Reliable Collections [35] help build
local-storage-based persistent stores directly into applica-
tions. Slicer’s follow-up work [3] advocates that a sharding
framework should link a custom library into an application to
manage its data persistency and replication. Our experience,
however, suggests otherwise.

Our colleagues initially developed a Paxos [38] library,
hoping it would be used along with SM to build many appli-
cations. However, it eventually had only one use case, i.e.,
ZippyDB [45] described in §2.5. In practice, most applica-
tions do not need strong consistency. Applications that do
need strong consistency almost always prefer the simple
solution of a primary replica accessing external databases.

Even if eventually-consistent applications do not need
Paxos, they still need to handle data updates across replicas.
Our colleagues initially developed a library for asynchronous
data transfer among the replicas of a shard, but it did not get a
wide adoption. In practice, different replicas of a shard often
directly obtain data updates from off-the-shelf external tools
such as a Kafka-like data bus or an HDFS-like file system.

Our experience suggests that in practice application devel-
opers heavily prioritize simplicity. Whenever performance
and costs permit, we recommend applications to use a data-
persistency method in the list below, ranked in order of
increasing complexity and hence decreasing preference.

1. Stateless: An application directly operates on external

SOSP 21, October 26-29, 2021, Virtual Event, Germany

databases. Most stateless applications are not sharded,
but some are sharded in order to solve the high-fanout
problem, i.e., every application server talking to every
database shard, which hinders database connection reuses
in a large application.

2. Soft state: An application caches external stores’ persis-
tent states in memory for fast access. Soft-state applica-
tions often rely on sharding to ensure that operations
related to a specific data item in the external store always
go through the same application server.

3. Standard materialized state: An application stores on
a local SSD materialized-view-style state derived from
external persistent stores. It obtains data updates via stan-
dard external tools such as a Kafka-like data bus. In case
of a total data loss, application states on the local SSD can
be rebuilt from the external persistent stores.

4. Custom materialized state: It works the same as above
except that the application uses a built-in custom library
to obtain data updates and keep its replicas eventually
consistent. This approach is recommended by Slicer’s
follow-up work [3], but it is rarely used at Facebook even
though we have provided such a custom library.

5. Persistent state: An application manages its own repli-
cated persistent states on local SSDs via a consensus pro-
tocol. This approach is akin to ASF’s strongly-consistent
Reliable Collections [35], but few applications at Facebook
use it even though we have provided a Paxos library.

Applications using option 1 or 2 do not need storage ma-
chines. They are the majority; as shown in Figure 9, they
account for 82% of sharded applications and 62% of machine
usage. Option 4 is rarely used. We argue that, for simplicity,
most applications that want to use option 4 can and should
use option 3 instead. Option 5 is only used to build very few
persistent stores such as ZippyDB [45], which then support
many other applications that use option 1, 2, 3, or 4. Op-
tion 5 needs to handle complex issues such as continuous
data-consistency auditing to guard against bit rot. We argue
that most applications that want to use option 5 can and
should use option 1 or 2 instead. For example, among cluster
managers, Borg [64] implements its own Paxos-based em-
bedded persistent store (option 5), whereas Kubernetes [37],
Twine [60], and Protean [32] all successfully delegate data
persistency to external databases (option 2).

2.5 Put It Together via Example Applications

We describe two applications to put all the concepts together.
AdEvents are a group of stream-processing applications di-
rectly related to revenue generation. They use option 3 in
§2.4 and obtain updates via a Kafka-like data bus. Initially,
they were statically sharded, used regional deployments, and
needed standby deployments in multiple regions to guard
against whole-region outages. The standby deployments of-

558

ten remained underutilized. They were converted to primary-
only SM applications, using geo-distributed deployments.
Thanks to better load balancing, flexible shard placement,
and dynamic shard migration across regions, SM helped
reduce their machine usage by 67%.

ZippyDB [45] is a Paxos-based geo-distributed database,
using data-persistency option 5 in §2.4. It was started on SM
in 2013 and has grown to become one of the most widely used
databases at Facebook. Each ZippyDB shard has a primary
serving as the Paxos leader and proposer, and multiple secon-
daries serving as acceptors and learners. Shard replicas can
be placed at different regions for high availability. Load bal-
ancing is based on multiple metrics, including CPU, storage,
and shard count. To reduce hardware costs, most ZippyDB
deployments use one primary plus only two secondaries
per shard and rely on SM to carefully handle maintenance
operations to avoid losing two replicas at the same time (§4).

3 SM Overview

This section provides an overview of SM’s sharding abstrac-
tion, architecture, programming model, and major features.

3.1 Sharding Abstraction

Sharding divides a key space into shards. A sharding frame-
work needs to make two fundamental decisions:

e Should it directly shard an application-provided key space
(so-called app-key approach), or hash application keys
into universally unique identifiers (UUID) and then shard
the UUID key space (so-called UUID-key approach)?

o Who decides how to shard the key space, the application
(so-called app-sharding approach) or the sharding frame-
work (so-called framework-sharding approach)? The lat-
ter allows the framework to freely split or merge shards
during placement & load balancing (PLB) operations.

Slicer chooses UUID-key and framework-sharding, whereas
ASF and SM choose app-key and app-sharding. The trade-off
is that ASF and SM’s approach supports a broader set of
applications but makes PLB harder for the framework. For
example, an SM application may choose to use three uneven
shards denoted by shardID:[key_range] as follows: S0:[1,9],
$1:[10,99], S2:[100,100000]. We describe how SM addresses
the PLB challenges in §5.

Slicer’s UUID-key approach destroys key locality. On one
hand, it helps spread adjacent hot application keys evenly
across the UUID key space. On the other hand, without key
locality it is impossible to support certain popular operations
such as prefix scans in a key-value store. For example, Face-
book’s eventually-consistent key-value store Laser [15] is
built atop SM and processes nearly one billion queries per
second at peak; 9% of those queries are prefix scans.

Slicer’s framework-sharding approach makes it hard to
support certain applications. For example, Laser runs a daily

Shard Manager: A Generic Shard Management Framework for Geo-distributed Applications

MapReduce job to partition data into shards and build per-
shard indices. The data and indices are daily reloaded into
Laser for serving. If SM dynamically splits or merges shards,
they would be misaligned with the indices produced by
MapReduce. By contrast, SM’s app-sharding approach al-
lows an application to decide the key-to-shard mapping
and set different policies for each shard, e.g., per-shard re-
gional placement preference. Moreover, SM’s app-sharding
approach allows applications to use other systems [5, 6, 55]
to intelligently group keys into shards based on various con-
straints such as data-access pattern and region capacity, and
then instruct SM to place shards accordingly.

3.2 SM Architecture

- - H — Application Server
Service Discovery | — Service Router (SR) — SM Library

Application Client

System
v E ‘
: v
.
- > Orchestrator < Jmeeper
Allocator [4—

]

‘ SM TaskController ‘
A

SM Control Plane

TaskControl protocol
k.

‘ Cluster Manager (Twine)

u j

Figure 10. Simplified diagram of the SM ecosystem.

Figure 10 depicts the SM ecosystem. An application server,
written by an application owner and running in a container,
hosts one or more shards assigned by the orchestrator. The
SM library is linked into application servers and takes com-
mands from the orchestrator. The service router library is
linked into application clients. It learns from the service dis-
covery system about which application server is responsible
for which shards and routes requests accordingly.

The orchestrator monitors the health and resource con-
sumption of shards assigned to application servers. When
an application server fails or its load changes, the orchestra-
tor invokes the allocator to generate a new shard-to-server
assignment. It distributes the new shard map to application
clients via the service discovery system, which internally
uses a multi-level data-distribution tree to fan out. The or-
chestrator makes direct RPC calls to application servers for
load-information collection and shard-assignment notifica-
tion via APIs described in §3.3.

Twine, Facebook’s cluster manager, informs SM’s TaskCon-
troller of upcoming hardware maintenance events, kernel
updates, and container starts/stops/moves via the TaskCon-
trol protocol [60]. If needed, the TaskController works with

559

SOSP 21, October 26-29, 2021, Virtual Event, Germany

the orchestrator to drain shards out of the affected server
before allowing a container operation to proceed.

ZooKeeper serves multiple purposes. First, it stores the
orchestrator’s persistent state. Second, during start-up, an ap-
plication server reads its shard assignment from ZooKeeper,
without dependency on the SM control plane. Third, the or-
chestrator watches the SM-library-created ephemeral nodes
in ZooKeeper to detect failures of application servers.

3.3 SM Programming Model

add_shard(shardID, role /* primary or secondary */)
drop_shard(shardID)

change_role(shardID, current_role, new_role)
prepare_add_shard(shardID, current_owner, role)
prepare_drop_shard(shardID, new_owner, role)

Figure 11. APIs implemented by an application server and
invoked by the orchestrator. SM supports all three prima-
ry/secondary replication strategies described in §2.2.3.

SM presents a very simple programming model to lower
the adoption barrier. An application implements the APIs in
Figure 11. add_shard() and drop_shard() are implemented by
all SM applications. change_role() is implemented by those
using both primary and secondary shard-replica roles. pre-
pare_add_shard() and prepare_drop_shard() are described in
§4.3. Application clients use the following APIs to call the
application servers:

rpc_client = get_client(app_name, key)
rpc_client.function_foo(...)

3.4 SM Features
Below is a list of SM’s main features.

e Supporting geo-distributed applications. SM supports
both regional and geo-distributed deployments (§2.2.2).

e Application lifecycle management (§4). SM negoti-
ates with the cluster managers in one or more regions
about when to safely execute container lifecycle operations.

o Graceful shard migration (§4.3). SM can do live primary-
replica migration without dropping any request in flight.

e Regional placement preference (§5.1). SM allows fine-
grained control of placing an application’s different shards
at different regions for better locality.

o Placement spread (§5.1). For better availability, SM can
spread a shard’s replicas across fault domains at all levels,
including regions, data centers, and racks.

e Load balancing (§5). SM can use multiple metrics to
balance load across heterogeneous application servers
that have different capacities.

e Shard scaling. In response to load changes on shards,
SM can adjust each shard’s replica count independently.

SOSP 21, October 26-29, 2021, Virtual Event, Germany

e Automatic failover. Upon the failure of an application
server, SM reassigns its shards to other servers.

4 Maximize Application Availability

SM provides two major benefits to applications: availability

improvements and intelligent shard placement. These fea-

tures are also the foundation for supporting geo-distributed
applications. This section focuses on availability improve-
ments. SM improves availability in multiple ways:

1. SM places a shard’s replicas across fault domains (§5).

2. SM’s TaskController collaborates with the underlying
cluster managers to selectively delay negotiable container
lifecycle operations that are unsafe (§4.1).

3. SM proactively prepares for non-negotiable events such
as hardware maintenance and kernel upgrades (§4.2).

4. SM ensures that no requests are dropped from an appli-
cation during a graceful primary-replica migration (§4.3).

4.1 Graceful Handling of Negotiable Events

SM never approves unsafe operations when handling nego-
tiable events such as application upgrades or an auto-scaler
adjusting an application’s container count in response to
load changes.

Periodically, Twine [60], Facebook’s cluster manager, no-
tifies SM’s TaskController of a set of pending container op-
erations (start/stop/restart/move) and SM’s TaskController
responds with a subset of approved operations that will
not endanger the availability of any shard. Twine delays
the execution of unapproved operations, but executes the
approved operations immediately. When those operations
finish, Twine notifies SM’s TaskController so that it can ap-
prove the next batch of operations.

SM’s TaskController enforces an application’s preconfig-
ured policy that specifies 1) in the event of a container oper-
ation, whether to drain shards out of the impacted container
or leave them there, depending on the operation’s impact and
duration, 2) a global cap on the number of allowed concurrent
container operations, and 3) a per-shard cap on the number
of replicas that are allowed to be temporarily unavailable.
These two caps account for the containers and shard replicas
that are already unavailable due to ongoing unplanned out-
age such as hardware failures. Guided by SM’s knowledge
of the shard-to-container assignment, the TaskController
carefully calculates a maximum set of container operations
that do not violate either the global cap or the per-shard cap
and notifies Twine to execute them.

For a geo-distributed application (§2.2.2) jointly hosted
by multiple Twine instances, SM’s TaskController receives
notifications from and enforces the caps across all involved
Twine instances. Suppose the application’s per-shard cap is
one, and two Twine instances independently plan to restart
two containers in different regions, which happen to host
two replicas of the same shard. SM’s TaskController can

560

approve one Twine instance to proceed with its container
restart while informing the other Twine instance to wait, to
avoid losing both the shard’s replicas at the same time.

4.2 Graceful Handling of Non-negotiable Events

SM cannot delay hardware maintenance or kernel upgrades;
otherwise, fleet-wide maintenance cannot finish in time.
Twine gives SM an advanced notice of the start and end time
of a maintenance event and the impact of the event, which
could be network unavailability, runtime state loss, full state
loss, and full machine loss. How SM handles an event de-
pends on its impact and the application’s configuration. For
example, if a rack switch maintenance only causes network
loss for a short period of time, SM may allow secondary
replicas to stay on the affected machines and demote the
primary replicas on those machines while promoting their
corresponding secondary replicas on unaffected machines
to become primaries.

4.3 Graceful Primary-Replica Migration

Service Discovery

4) Disseminate|the new shard map

anerd

1 pr
arop Orchestrator epar,
2 p(epa‘e’ e\add\ s, hard
o) droP _snerd 3)adq_

Old Primary Sharg New Primary

Figure 12. Graceful primary-replica migration.

Since a shard’s primary replica often carries important re-
sponsibilities such as handling writes, SM takes extra caution
to ensure zero downtime during a graceful primary migra-
tion. It uses the APIs in Figure 11 to instruct the old primary
Po1q to forward client requests to the new primary Pjey, until
the migration finishes, as depicted in Figure 12.

1. Through prepare_add_shard(), SM informs Py, to prepare
for taking over the primary role. Py processes a primary-
related request (e.g., write) only if the request is forwarded
from P,)q. Application clients still send requests to Pgq.

2. Through prepare_drop_shard(), SM informs P,jq that Ppey,
will take over the primary role. Then P4 starts to forward
all primary-related requests to Ppey.

3. Through add_shard(), SM informs Py, that it now of-
ficially holds the primary role and can accept primary-
related requests directly from application clients.

4. SM instructs the service discovery system to notify appli-
cation clients to send future requests to Ppey.

5. Through drop_shard(), SM informs P4 that its replica is
no longer needed. P14 keeps forwarding client requests to
Phew and drops its replica when no more requests arrive.

Throughout the migration process, no client request is dropped.

Shard Manager: A Generic Shard Management Framework for Geo-distributed Applications

The SM orchestrator makes direct RPC calls to application
servers to precisely control the operation sequence above.
By contrast, Slicer’s application servers do not directly com-
municate with Slicer’s controller [4]. Hence, Slicer cannot
orchestrate live migration that requires precise ordering of
operations performed by distributed application servers.

5 Shard Placement and Load Balancing

After presenting availability improvements in §4, this section
presents the other major benefit that SM offers to its applica-
tions, i.e., intelligent shard placement. This capability is an
important foundation for supporting geo-distributed appli-
cations. Below, we describe the shard-placement constraints
(§5.1), how to translate the constraints into an optimization
problem (§5.2), and how to scale SM’s constraint solver (§5.3).

5.1 Hard Constraints and Soft Goals

We design the SM allocator to optimize application’s avail-
ability, performance, and efficient use of hardware, in that
order. The allocator honors hard placement constraints and
a prioritized list of soft optimization goals.

Below are some of the hard constraints.

1. System stability: Cap the number of concurrent shard
moves per server and per application to limit churns that
may threaten system stability. Similarly, cap the number
of a shard’s replicas that can be moved concurrently.

2. Server capacity: For each load-balancing (LB) metric
(e.g., CPU), the aggregate consumption of all shards on a
server should not exceed the server’s capacity.

Below are some of the soft goals presented from high to low

priority.

1. Region preference: SM allows a fine-grained control of
placing individual shards at different regions.

2. Spread of replicas: For better availability, it is preferred
to place a shard’s replicas across fault domains at all levels,
including regions, data centers, and racks.

3. Planned maintenance: Depending on an application’s
configuration, SM may proactively drain shards out of a
server with pending maintenance or software upgrades.

4. Utilization threshold: An application may prefer its
server utilization to not exceed a threshold, e.g., 90%.

5. Global load balancing: Balance load across servers in
different regions. For example, no server’s utilization
should exceed the average utilization of all servers by 10%.

6. Regional load balancing: Balance load across servers
within a region.

7. Parallel shard failover: Evenly distribute shards on a
failed server to multiple other servers for faster recovery.

Shard allocations are performed in either an emergency mode

561

SOSP 21, October 26-29, 2021, Virtual Event, Germany

or an periodic mode. The emergency mode is triggered upon
detecting unavailable shards, e.g., due to server failures. It
tries to place unavailable shards as quickly as possible while
satisfying hard constraints, but may temporarily deteriorate
soft goals. The periodic mode runs regularly, takes a longer
time to optimize the placement of all shards, and must not
deteriorate soft goals. The separation of the two modes helps
SM to perform near-realtime allocations at scale.

5.2 Using a Generic Constraint Solver

SM’s allocator initially used hand-crafted placement heuris-
tics for years. Over time, the heuristics became complex, brit-
tle, and hard to extend. We then started a project to rewrite
it with yet another supposedly simpler heuristic implemen-
tation. Halfway through, we abandoned the project because
the heuristics again became overly complicated as we started
to add the rich features described in §5.1. Finally, we decided
to switch from heuristics to a generic constraint solver.

SM’s placement constraints and goals can be formulated
as a constrained optimization problem in a mathematical
form. For ease of use, we adopt a popular constraint solver
at Facebook called ReBalancer, which provides a high-level
APl interface to specify constraints and goals. In Figure 13,
statements 1 & 2 specify capacity constraints on host-level
CPU and rack-level network, respectively. Statements 3 &
4 specify soft LB goals on CPU and network; CPU is con-
sidered more important because its weight of 1.0 is higher
than network’s weight of 0.5. Statements 5 & 6 specify a
goal of placing shard1 in regionA and a stronger (weight 2.0)
goal of placing shard2 in regionB. Statements 7 & 8 specify
a goal of spreading shard3’s replicas across regions. Place-
ment features like those in statements 5-8 help support geo-
distributed applications. Internally, ReBalancer translates
these high-level statements into a constrained optimization
problem’s mathematical form.

Behind its uniform API interface, ReBalancer has the free-
dom of choosing different backend solvers to solve different
optimization problems. For example, at Facebook, RAS [48]
uses ReBalancer with a mixed-integer programming (MIP)
solver to allocate data-center resources. However, MIP is not

: addConstraint(CapacitySpec{.scope="host", .metric="cpu"});
: addConstraint(CapacitySpec{.scope="rack", .metric="network"});
: addGoal (BalanceSpec{.scope="host", .metric="cpu''}, 1.0);
: addGoal (BalanceSpec{.scope="rack", .metric="network''}, 0.5);
: shardAffinity = {

{"shard1", "regionA", 1.0},

{"shard2", "regionB", 2.0},

g wN =

}
6: addGoal (AffinitySpec.scope="region",
7: replicaMap = {
{"shard3_replical", "shard3"},
{"shard3_replica2", "shard3"},

.affinities=shardAffinity)

8: addGoal (ExclusionSpec.scope="region", .partition=replicaMap);

Figure 13. Examples of specifying hard placement con-
straints and soft goals using the ReBalancer APIs.

SOSP 21, October 26-29, 2021, Virtual Event, Germany

sufficiently scalable for SM’s use case. Specifically, MIP can
solve an optimization problem with millions of assignment
variables in tens of minutes, whereas SM needs to solve a
problem with billions of variables in tens of seconds.

5.3 Scaling the Constraint Solver
We scale the constraint solver via multiple techniques:

1. SM divides a large application into partitions (§6.1), builds
a smaller optimization problem for each partition sepa-
rately, and solves them on multiple machines in parallel.

2. We configure ReBalancer to use Local Search [1] instead of
MIP to solve each partition’s optimization problem while
meeting our rigid time constraint.

3. ReBalancer has accumulated many domain-independent
improvements to accelerate local search.

4. SM’s allocator provides domain-specific knowledge to
guide ReBalancer to further accelerate local search.

We elaborate on the last three techniques below.

First, we use local search to speed up the solver. Start-
ing from the current shard assignment, it considers moving
shards from hot servers to cold servers by prioritizing shards
whose constraint or goal violations impair the optimization
objective the most. It evaluates a large number of such shard
moves and keeps the best one. Local search repeats until it
either cannot find improvements or uses up a predetermined
time and move budget.

Second, as a widely used solver at Facebook, ReBalancer
has accumulated many improvements over the years. Specif-
ically, to reduce the number of variables in an optimization
problem, it figures out from the mathematical formula which
shards are equivalent to one another and reuses the com-
putation for equivalent shards. Moreover, it represents an
optimization objective as a tree of variables that represent
shard-to-server assignments. When evaluating a shard move,
it only traverses tree nodes whose values may change, result-
ing in O(log(n)) complexity. Finally, in addition to moving
individual shards, it may consider two-way (or n-way) swap-
ping of shards. ReBalancer has other advanced features to
speed up search, which are beyond the scope of this paper.

Third, SM’s allocator provides domain knowledge to guide
ReBalancer to find a good solution quickly. It groups under-
utilized servers by properties (e.g., regions), samples servers
from each group, and evaluates them as move targets. Un-
like random sampling, sampling across groups has a better
chance of finding a suitable move target for goals such as
region preference and spread of replicas. This sampling ap-
proach helps reduce solving time significantly (§8.4). More-
over, SM’s allocator groups placement goals of similar pri-
orities into batches, and invokes ReBalancer on one batch
at a time. Earlier batches focus on fixing the most critical
violations (e.g., servers out of capacity) and can use search
timeouts longer than later batches’ timeouts. Within a batch,
only the relevant goals are used to identify hot servers with

562

relevant violations to fix, which simplifies the optimization
problem in each batch and allows it to run faster. Finally, if
a hot server has many small shards and a few large shards,
going through the list sequentially may spend most of the
time on evaluating moving small shards, which may be less
effective in fixing violations. SM guides ReBalancer to evalu-
ate large shards earlier, which not only accelerates the search
but also reduces the number of shard assignment changes.

Overall, using a constraint solver is a major improvement
over hand-crafted heuristics. It reduces the allocator’s lines
of code to ~#20% of the hand-crafted heuristics. For exam-
ple, implementing spread of replicas takes only 180 lines of
production code, including boilerplate code and monitoring
instrumentation. ReBalancer’s simple yet powerful APIs in
Figure 13 enforce the separation of concerns. Systems experts
focus on expressing placement problems, whereas optimiza-
tion experts work on an abstraction that they are familiar
with and can continuously improve the solver’s performance
and solution quality.

6 SM Scalability and Fault Tolerance

This section discusses the scalability and fault tolerance of
the SM control plane.

6.1 SM’s Scale-out Global Control Plane

Shard Scale

Application Manager

Automation Tools

Read
service

Cluster Manager (Twine)

Application
Registry

Partition
Registry

Mini-SM Mini-SM Mini-SM Mini-SM Mini-SM
Control Plane Control Plane Control Plane Control Plane Control Plane
Managed mEEEE EEEEN EEEEN EEEEN EEEEE
Partitions [l Il I | EEEEN EEEEN EEEEN EEEEN

Figure 14. SM’s scale-out global control plane.

The SM control plane in Figure 10 is not scalable enough
to manage millions of servers and billions of shards. We
divide SM’s control plane into multiple mini-SMs so that each
mini-SM manages a subset of servers and shards (Figure 14).
In other words, we shard SM’s control plane, but we use
“mini-SM” to avoid confusion with application shards. Each
mini-SM corresponds to the SM Control Plane in Figure 10.

A geo-distributed application can be so large that it is
beyond what a mini-SM running on one machine can handle.
We divide a large application into non-overlapping parti-
tions, where each partition typically comprises thousands of
servers and hundreds of thousands of shard replicas. Servers
in a partition can come from different regions. Partitions
are managed independently and can be assigned to differ-
ent mini-SMs. The replicas of a shard are always placed on

Shard Manager: A Generic Shard Management Framework for Geo-distributed Applications

servers that belong to the same partition. Because each par-
tition is large, comprising thousands of servers, the average
load in different partitions does not diverge much. In rare
occasions that they do diverge, we use tools to initiate server
or shard migration across partitions. As an application grows
organically, new partitions can be added to scale it out.

Figure 14 shows SM’s scale-out architecture. The frontend
provides a global entry point. The application registry as-
signs applications to application managers. An application
manager usually maps an application to one partition, but
may divide a large application into multiple partitions. The
partition registry assigns partitions to mini-SMs. A mini-SM
can manage multiple partitions. As the system scales, more
mini-SMs can be added to scale out. The shard scaler in-
creases or decreases a shard’s replica count in response to its
load changes. The read service builds indices on mini-SM’s
metadata to serve queries.

6.2 Control Plane Fault Tolerance

SM is fault tolerant. Every component in Figure 14 has mul-
tiple replicas running in different regions. The frontend is
stateless. Other components are stateful and use a primary-
secondary setup. Every SM control-plane component in Fig-
ure 10 also has multiple replicas either running in the same
region if it manages regional deployments, or running in
different regions if it manages geo-distributed deployments.
We perform a staged rollout of a new release of the SM
control plane over multiple days to prevent a bug from bring-
ing down the entire SM control plane instantaneously. Even
if all SM control-plane components are down, application
clients can continue to send requests to application servers,
although new shard assignments would not be generated.

7 Further Boosting SM’s Adoption

Why adoption matters. In the first nine years of SM’s his-
tory, its adoption was organic and rapid (Figure 2). In the
past year, we switched from organic adoption to treating it
as a priority to migrate legacy applications to SM because
our infrastructure started to impose stronger contracts on ap-
plications. Without SM’s help, each application would have
to develop its own and often suboptimal solution to stay
compliant with the following requirements.

Our infrastructure expects applications to improve re-
silience, agility, and efficiency, by 1) spreading a shard’s repli-
cas across large fault domains, 2) quickly draining shards out
of a fault domain within a deadline, 3) dynamically adjusting
shard placement as an auto-scaler adjusts the application’s
container count in response to load changes, and 4) maintain-
ing high machine utilization via better LB and elimination of
excessive regional deployments and excessive shard replicas.

Moreover, many applications use taskIDs for static shard-
ing (§2.2.1), but sequential taskIDs are being deprecated.
Burns et al. [11] called out that sequential taskIDs “make it
very hard to support jobs that span multiple clusters in a layer

563

SOSP 21, October 26-29, 2021, Virtual Event, Germany

above (Google’s) Borg.” We are rolling out a global federation
layer atop Facebook’s regional cluster managers (Twine [60]),
which leads to the deprecation of sequential taskIDs.

The above forces that motivate the adoption of a shard-
ing framework apply outside Facebook as well since the
infrastructure contracts generally make applications better
managed, and it has been a general trend to get rid of se-
quential taskIDs such as in Kubernetes.

Migrate legacy applications that use static sharding or
consistent hashing. These applications account for 45%
of Facebook’s sharded applications (Figure 4). They often
use extra hardware to compensate for the limitations of a
simple sharding scheme (e.g., using excessive shard replicas
to maintain availability) or simply bear with the risks (e.g.,
reduced availability in the event of a large fault-domain
outage). However, these practices are problematic, and we
expect most of these applications to migrate to SM in 1.5
years. Moreover, as the SM ecosystem is composable and
supports incremental adoption of individual SM components,
about 100 of these applications already adopted our generic
shard TaskController [60] without using SM’s APIs, allocator,
or orchestrator. The generic shard TaskController uses an
application-supplied shard map to decide whether certain
container operations would endanger shard availability and
instructs the cluster managers to operate accordingly.

Migrate legacy applications that use custom sharding.
These applications account for only 1% of applications but

27% of server usage (Figure 4). Among them are Facebook’s

largest and most complex data stores [10, 43, 52]. It is imprac-
tical to fit them into SM’s simple add_shard()/drop_shard()
APIs. SM assumes that these APIs are implemented by the

application servers, whereas these complex data stores have

their custom central orchestrator to execute shard-assignment
changes. For example, when adding a new database shard,
their orchestrator may create both a database container and

a sidecar container that does background maintenance and

coordinates online schema changes.

These complex data stores still need to comply with the
infrastructure contracts. SM’s composable ecosystem allows
them to benefit from SM’s individual components without
adopting the whole SM framework. Using Figure 10 as a
reference, our strategy is to 1) allow them not to adopt SM’s
APIs, 2) keep their custom orchestrator, 3) develop their own
TaskController based on the standard TaskControl protocol,
4) optionally reuse SM’s service-discovery system to distrib-
ute their shard map, and 5) reuse a derived SM allocator
called Data Placer. Data Placer saves significant efforts from
the owners of these complex data stores as it can gener-
ate shard-to-server assignments that take into account both
application-specific placement constraints and the infras-
tructure contracts. Most of the infrastructure contracts are
related to shard-placement and load-balancing requirements,
which are well handled by Data Placer. Data Placer is already

SOSP 21, October 26-29, 2021, Virtual Event, Germany

> + Regional mini-SM
§ ’g 1.5M

£ = 1.0M

= £ 05M

172} . v

e T o

= 1 10 100 1K 10K 100K S 100

n Servers (logscale) n

* Geo-distributed mini-SM

-t

R YOV 3
PRI S i
1K
Servers (logscale)

100%

we YWV B UVUVTY
96% SM

94%

92%

90%

88%

0 400

L 3
o

Ph e —no graceful migration

g4

no graceful migration
& no TaskController

1,200 1,600

Request Success Rate

10K 100K

800
Time (seconds)

Figure 15. (Production) Scale of SM
applications that run in production.

integrated with these complex data stores and its production
rollout is in progress.

8 Evaluation

We use both production data and experiments to answer the
following questions:

e Overall, is SM scalable in production?

o Is SM effective in gracefully handling application up-
grades to uphold application availability?

o Is SM effective in supporting geo-distributed applica-
tions?

e Is SM’s constraint solver scalable and does it produce
high-quality placement solutions?

8.1 Scale of SM in Production

Figure 15 shows the scale of SM applications, where each
dot represents an application deployment that uses a certain
number of servers to host a certain number of shards. The
largest deployments use ~19K servers and ~2.6M shards.
Most deployments are small, but 14% of the deployments use
1,000 or more servers. SM’s scale-out architecture (Figure 14)
is able to support many small and large applications, as it
can add mini-SMs as needed. Currently, we operate 139 and
48 mini-SMs that manage regional and geo-distributed de-
ployments (§2.2.2), respectively. Figure 16 shows the scale
of these mini-SMs, where each dot represents a mini-SM
that manages a certain number of servers and shards. The
largest mini-SMs in production manage ~50K servers and
~1.3M shards. Each mini-SM runs on an 18-core 64GB RAM
machine, with P90 CPU utilization at ~30% and P90 mem-
ory utilization at #38%. In total, SM manages hundreds of
applications’ nearly 100M shards hosted on over one million
servers, and those applications process billions of requests
per second. SM gracefully handles millions of machine and
network maintenance events per month.

8.2 Upholding Application Availability

Figure 17 evaluates how SM upholds application availabil-
ity during application upgrades. We deploy a primary-only
application with 10,000 shards on 60 servers. The applica-
tion’s configuration allows up to 10% of its containers to be
restarted concurrently during a rolling upgrade. By grace-
fully handling container restarts (§4.1) and primary-replica
migration (§4.3), the application client’s request success rate

Figure 16. (Production) Scale of
mini-SMs that run in production.

564

Figure 17. (Experiment) SM upholds
availability during software upgrades.

stays at #100%. Without graceful primary-replica migra-
tion, the success rate drops to ~ 98%. With neither graceful
primary-replica migration nor graceful handling of container
restarts, although the upgrade finishes earlier (800 seconds
vs. 1,500 seconds), the success rate further drops below 90%.
Figure 18 uses production data to show that SM indeed up-
holds application availability. Facebook’s instant-messaging
product uses a queue service [22] to guarantee in-order mes-
sage delivery to mobile devices. The service is a primary-only
SM application. Its “client request rate” in Figure 18 follows
a diurnal pattern. At peak, the service processes billions of
requests per second. The service does a rolling upgrade every
weekday. It starts with small-scale upgrades, which cause the
small spikes in the “shard moves” curve, as SM gracefully mi-
grates primary shards out of the impacted application servers.
If no problem is detected, after three hours, it progresses to
full-scale upgrades, which cause the big spikes in the “shard
moves” curve. Despite the large number of concurrent shard
moves, the “client error rate” curve hardly changes, showing
that SM is effective in upholding the service’s availability.

8.3 Supporting Geo-distributed Applications

In this experiment, we deploy a secondary-only application
with 1,000 shards and two replicas per shard across three
regions located at FRC (east coast of United States, Forest
City, NC), PRN (west coast of United States, Prineville, OR)
and ODN (Odense, Denmark), using 30 servers per region.
Out of the 1,000 shards, 400 so-called east-coast (EC) shards
are configured with a region preference for FRC because
those shards are often accessed by east-coast users. In a
steady state, each EC shard has one replica at FRC for locality
and another replica at either PRN or ODN for fault tolerance.

Figure 19 shows the latency experienced by an application
client located at FRC when it accesses the EC shards. In a
steady state, it accesses the EC shards’ replicas at FRC and
the latency is low. At time 90 seconds, the servers at FRC
fail and the client requests are routed to shard replicas at
PRN or ODN, incurring a longer latency. The shard replicas
originally at FRC also fail over to either PRN or ODN. The
initial latency spike is due to request retries and requests
bouncing between replicas at PRN and ODN until they sta-
bilize on replicas that are closer. At time 450 seconds, the
servers at FRC recover and SM migrates one replica of each
EC shard back to FRC, bringing the client latency back to

Shard Manager: A Generic Shard Management Framework for Geo-distributed Applications

SOSP 21, October 26-29, 2021, Virtual Event, Germany

/ .
/ wem request rate \

client
error rate

shard moves

Time over two days

@
S

ﬂ
\E,‘ 100 ‘ failover ends
2 shards move back
5 W e
= 50 ‘ . ‘
— failure starts ‘
0 \
100 200 300 400 500
Time (s)

latency between AppShard and DBShard

Time over two hours

number of
. AppShard
moves

number of
DBShard

moves

Figure 18. (Production) No increase
in client errors during upgrades,
thanks to graceful shard migration.

Figure 19. (Experiment) SM migrates
a geo-distributed application’s shards
across regions to handle failures.

Figure 20. (Production) SM migrates
AppShards across regions to follow
DBShards to reduce network latency.

(thousands)
(hundreds)

Number of Violations
Number of Violations

80
Time (seconds)

120

=1

50 100

150
Time (seconds)

p99 CPU

avg CPU
W
shard

| \
i
IV‘V‘I‘

Baseline

CPU Utilization

|, moves 4| |

J
f

if AL A
ey L [A I
WSl Vi THY, ‘;\\M' W

200 250 300

violations

Violations & Shard Moves

Time over three days

Figure 21. (Experiment) SM allocator
scalability w.r.t. the problem size.

normal. In summary, this experiment showcases a typical
example of how a geo-distributed application benefits from
SM’s support for region-aware shard placement and SM’s
ability to migrate shards across regions.

Figure 20 uses production data to demonstrate how SM-
migrates shards across regions to reduce latency. Facebook’s
instant-messaging product stores messages in a sharded SQL
database, which is not managed by SM. The application logic
to process messages is implemented as an SM-based primary-
only soft-state service (§2.4). All accesses to a given SQL
database shard (so-called DBShard) must go through the
same application shard (so-called AppShard). A pair of DB-
Shard and AppShard should always run in the same region
to minimize latency. In Figure 20, as part of a real production
operation (i.e., not for the sake of collecting experimental
data), an administrator initiates the first batch of DBShard
moves across four regions, which causes a spike in latency
because many pairs of DBShard and AppShard are separated
into different regions. The administrator updates the regional
placement preference for the impacted AppShards, which
triggers SM to move the AppShards to co-locate with their
DBShards. As a result, the latency goes back to normal. Half
an hour later, the administrator initiates the second batch of
DBShard moves and the process repeats again.

8.4 Scalability and Effectiveness of the SM Allocator

Figure 21 evaluates SM allocator’s scalability. We take a snap-
shot of the server-capacity and shard-load information from
a production deployment of ZippyDB [45]. SM balances load
on three metrics: storage, CPU, and shard count. The shard
load varies drastically—the largest shard’s load is 20 times
higher than that of the smallest shard. The server hardware

Figure 22. (Experiment) Optimiza-
tions help scale the constraint solver.

565

Figure 23. (Production) SM balances
load in an ever-changing environment.

is heterogeneous; e.g., the storage capacity varies by up to
20%. One load-balancing (LB) goal is to prevent a server’s
resource utilization from going above 90%; otherwise, it is
considered a violation. Another LB goal is to cap the dif-
ference of server utilization within 10%; i.e., if a server’s
utilization exceeds the average utilization of all servers by
10%, it is also considered a violation.

Each experiment run’s initial state starts with a random
shard-to-server assignment in order to stress test the allo-
cator with an unusually large number of violations to fix.
We run the allocator at different scales and it is able to fix
all violations in all stress tests, showing that it produces
high-quality placement solutions. As the problem size grows
5x from 75K shards on 1K servers to 375K shards on 5K
servers, the total solving time grows by 6.8x from 30 seconds
to 205 seconds, indicating that the allocator is scalable. In
our production environment, applications have much fewer
violations than a random assignment and hence the solving
time is much shorter, with P90 and P99 at 10 seconds and
~50 seconds, respectively.

Figure 22 evaluates the effectiveness of optimization 4 de-
scribed in §5.3, i.e., SM using domain knowledge to speed up
local search. We compare the solving time for the 75K-shard
problem with and without the optimization. Without the
optimization, the allocator cannot even finish in 300 seconds
and the resulting solution requires 22% more shard moves,
which emphasizes the importance of the optimization.

Figure 23 uses production data to show how LB works
in reality. It plots the CPU utilization, number of LB viola-
tions, and number of shard moves of a ZippyDB deployment,
which all follow a diurnal pattern. As the number of viola-
tions in production is small, the SM allocator almost always

SOSP 21, October 26-29, 2021, Virtual Event, Germany

produces a new shard placement that can fix all existing
violations. However, a small number of new violations con-
stantly emerge on different servers due to the large system
size (12K machines) and the ever-changing load driven by
billions of Facebook product users’ realtime activities. De-
spite the constant load changes, LB consistently keeps the
P99 CPU utilization under 80%. This figure shows that LB is a
continuous-optimization process as load constantly changes
in production.

9 Related Work

Sharding frameworks. Slicer [4], Helix [27], Azure Service
Fabric (ASF) [35], and Centrifuge [2] are closest to SM. ASF,
Helix, Slicer, and SM all support some form of the primary
and secondary roles. §3.1 compares the difference in sharding
abstraction among Slicer, ASF, and SM. §2.4 further compares
their difference in application-data persistency strategy. Our
contributions listed in §1.2 distinguish SM from other shard-
ing frameworks. Those advanced features have helped SM
to gain a wide adoption (54%) that likely far exceeds what
other sharding frameworks have achieved.

Application lifecycle management. Twine [60] allows an
application to negotiate container starts or stops with the
cluster manager. SM goes one step further to 1) gracefully
handle primary-replica migration (§4.3), 2) globally coor-
dinate container lifecycle operations across multiple geo-
distributed cluster managers (§2.2.2), and 3) demonstrate
that a common lifecycle manager (i.e., SM’s TaskController)
can be reused across hundreds of sharded applications. ASF
“provides full lifecycle management [35],” but no information
is available about whether or how ASF negotiates lifecycle
events with the underlying data-center or physical-machine
management layer. Regardless, since an ASF deployment
cannot span across multiple clusters, it cannot coordinate
lifecycle events across geo-distributed clusters.

Geo-distributed systems. SM draws inspiration from many
geo-distributed systems [7, 14, 16, 40-42, 58, 65] and im-
proves upon them by offering a generic framework to sup-
port diverse geo-distributed applications. Tuba [7] dynami-
cally reconfigures the replica-placement policy for a specific
geo-replicated storage system. Volley [5] automatically gen-
erates placement policies for geo-distributed cloud services
based on request logs. SM provides a mechanism to enforce
placement policies for diverse applications while uphold-
ing application availability. Currently, SM does not generate
placement policies by itself, which is an active area of our
ongoing work. At Facebook, Akkio [6] generates placement
policies for micro shards and can be used along with SM.
Kubernetes [37] can manage containers from a public cloud’s
geo-distributed regions, but cannot control the underlying
cloud’s VM lifecycle operations.

566

Using constraint solvers. Most cluster managers use hand-
crafted heuristics for resource allocation [4, 9, 13, 17-20, 32,
34, 37, 39, 60, 61, 63, 64, 66]. Systems using various solvers
have been proposed [24, 26, 28-31, 33, 53, 57, 59, 62], but
their production usage is rarely reported. Medea [24] uses a
MIP solver to place long-running applications, and RAS [48]
uses ReBalancer with a MIP solver to perform data-center
resource allocation at Facebook. However, MIP is not scal-
able enough for near-realtime shard placement at a global
scale. ASF attempted to use LP/IP and genetic algorithms,
but found them not scalable or producing inferior solutions,
and eventually adopted simulated annealing. Compared with
simulated annealing, SM’s local search employs advanced
optimizations to speed up search (§5.3). SM can benefit from
Wrasse’s [53] approach of using GPUs to gain further speedup.

We scale a constraint solver beyond what was reported
before and prove its practicality in production. The largest
placement problem evaluated in DCM [57] involves 91K as-
signment variables, whereas the largest problem that SM
solves in Figure 21 involves 1.9 billion variables. We solved
many pending scalability issues reported in the DCM paper.
For example, regarding “it is likely overkill to evaluate ev-
ery single node”, SM’s allocator groups similar servers and
samples them. Regarding “this forces our generated code to
construct models with redundant variables,” ReBalancer elimi-
nates redundant variables by automatically identifying equiv-
alent shards. DCM’s declarative SQL interface is easier to
use, whereas ReBalancer’s imperative API interface allows
using domain knowledge to speed up the solver.

10 Conclusion

We analyzed all sharded applications at Facebook and iden-
tified two barriers that fundamentally limit the adoption
of existing sharding frameworks: 1) lack of support for geo-
distributed applications and 2) inability to uphold application
availability during planned events. To uphold availability,
SM negotiates with the cluster managers about when to
safely execute container lifecycle operations and also en-
sures that an application drops no request during a graceful
shard migration. SM supports geo-distributed applications
via region-aware shard placement and global coordination
across regional cluster managers. We sped up a constraint
solver to perform near-realtime shard placement at a global
scale. Finally, SM is composable and allows applications to
adopt its individual components to gain incremental benefits.

Our future work includes 1) accelerating the migration
of legacy applications to SM (§7), 2) providing a smooth
path to convert regional deployments to geo-distributed de-
ployments (§2.2.2), and 3) managing an application’s global-
placement policy and capacity need, i.e., forecasting the num-
ber of servers needed for each region and placing shards
intelligently to meet the application’s global clients’ latency
requirements while minimizing the number of shard replicas.

Shard Manager: A Generic Shard Management Framework for Geo-distributed Applications SOSP °21, October 26-29, 2021, Virtual Event, Germany

References Ran Lei, Nikhil Simha, Wei Wang, Kevin Wilfong, Tim Williamson,

and Serhat Yilmaz. 2016. Realtime Data Processing at Facebook. In
[1] Emile Aarts, Emile HL Aarts, and Jan Karel Lenstra. 2003. Local Search z &

—

—

—

[t

-

—

—

=

in Combinatorial Optimization. Princeton University Press.

Atul Adya, John Dunagan, and Alec Wolman. 2010. Centrifuge: In-
tegrated Lease Management and Partitioning for Cloud Services. In
NSDI, Vol. 10. 1-16.

Atul Adya, Robert Grandl, Daniel Myers, and Henry Qin. 2019. Fast
Key-Value Stores: An Idea Whose Time Has Come and Gone. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems. 113-119.
Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek,
Vishesh Khemani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri,
Jason Hunter, et al. 2016. Slicer: Auto-sharding for Datacenter Appli-
cations. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 739-753.

Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec
Wolman, and Harbinder Bhogan. 2010. Volley: Automated Data Place-
ment for Geo-Distributed Cloud Services. In 7th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 10). USENIX As-
sociation, San Jose, CA. https://www.usenix.org/conference/nsdi10-
0/volley-automated-data-placement-geo-distributed-cloud-services
Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas,
Igor Zinkovsky, Luning Pan, Tony Savor, David Nagle, and Michael
Stumm. 2018. Sharding the Shards: Managing Datastore Locality at
Scale with Akkio. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 445-460.

Masoud Saeida Ardekani and Douglas B Terry. 2014. A Self-
configurable Geo-replicated Cloud Storage System. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
367-381.

Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel.
2010. Finding a Needle in Haystack: Facebook’s Photo Storage. In 9th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 10). USENIX Association, Vancouver, BC. https://www.usenix
.org/conference/osdi10/finding-needle-haystack-facebooks-photo-
storage

Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and
Coordinated Scheduling for Cloud-Scale Computing. In Proceedings of
the 11th USENIX Symposium on Operating Systems Design and Imple-
mentation.

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter
Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,
Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkat Venkataramani. 2013. TAO: Facebook’s Distributed Data
Store for the Social Graph. In Proceedings of the 2013 USENIX Annual
Technical Conference. 49-60.

Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and
John Wilkes. 2016. Borg, Omega, and Kubernetes. Queue 14, 1 (2016).
Sergey Bykov, Alan Geller, Gabriel Kliot, Jim Larus, Ravi Pandya, and
Jorgen Thelin. 2011. Orleans: Cloud Computing for Everyone. In ACM
Symposium on Cloud Computing (SOCC 2011).

Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Sriram Rao,
Giovanni M. Fumarola, Botong Huang, Kishore Chaliparambil, Arun
Suresh, Young Chen, Solom Heddaya, Roni Burd, Sarvesh Sakalanaga,
Chris Douglas, Bill Ramsey, and Raghu Ramakrishnan. 2019. Hydra:
A Federated Resource Manager for Data-center Scale Analytics. In
Proceedings of the 16th USENIX Symposium on Networked Systems
Design and Implementation.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Debo-
rah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E Gruber. 2008. Bigtable: A Distributed Storage System for
Structured Data. ACM Transactions on Computer Systems (TOCS) 26, 2
(2008), 1-26.

[15] Guogiang Jerry Chen, Janet L Wiener, Shridhar Iyer, Anshul Jaiswal,

Proceedings of the 2016 International Conference on Management of
Data. 1087-1098.

[16] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, et al. 2013. Spanner: Google’s
Globally Distributed Database. ACM Transactions on Computer Systems
(TOCS) 31, 3 (2013), 1-22.

[17] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. 2017. Resource Central: Understand-
ing and Predicting Workloads for Improved Resource Management in
Large Cloud Platforms. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles.

[18] Carlo Curino, Djellel E Difallah, Chris Douglas, Subru Krishnan, Raghu
Ramakrishnan, and Sriram Rao. 2014. Reservation-based Scheduling:
If You're Late Don’t Blame Us!. In Proceedings of the ACM Symposium
on Cloud Computing. 1-14.

[19] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-
Aware Scheduling for Heterogeneous Datacenters. In Proceedings of the
18th International Conference on Architectural Support for Programming
Languages and Operating Systems.

[20] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In Proceedings of the
18th International Conference on Architectural Support for Programming
Languages and Operating Systems.

[21] Jeffrey Dunn. 2016. Introducing FBLearner Flow: Facebook’s Al back-
bone. https://engineering.fb.com/ml-applications/introducing-
fblearner-flow-facebook-s-ai-backbone/.

[22] Jeremy Fein. 2014. Building Mobile-First Infrastructure for Messenger.

https://engineering.fb.com/2014/10/09/production-engineering/buil
ding-mobile-first-infrastructure-for-messenger/.

[23] Fullmatix. 2014. https://github.com/kishoreg/fullmatix.

[24] Panagiotis Garefalakis, Konstantinos Karanasos, Peter Pietzuch, Arun
Suresh, and Sriram Rao. 2018. Medea: Scheduling of Long Running
Applications in Shared Production Clusters. In Proceedings of the Thir-
teenth EuroSys Conference. 1-13.

[25] Gizzard. 2019. https://github.com/uber-node/ringpop-node.

[26] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N.M. Watson, and
Steven Hand. 2016. Firmament: Fast, Centralized Cluster Scheduling
at Scale. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation.

[27] Kishore Gopalakrishna, Shi Lu, Zhen Zhang, Adam Silberstein, Kapil
Surlaker, Ramesh Subramonian, and Bob Schulman. 2012. Untangling
Cluster Management with Helix. In Proceedings of the Third ACM
Symposium on Cloud Computing. 1-13.

[28] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram
Rao, and Aditya Akella. 2014. Multi-resource Packing for Cluster
Schedulers. ACM SIGCOMM Computer Communication Review 44, 4
(2014), 455-466.

[29] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh
Ananthanarayanan. 2016. Altruistic Scheduling in Multi-resource
Clusters. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 65-80.

[30] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and
Janardhan Kulkarni. 2016. Graphene: Packing and Dependency-aware
Scheduling for Data-parallel Clusters. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 81-97.

[31] Ajay Gulati, Anne Holler, Minwen Ji, Ganesha Shanmuganathan, Carl
Waldspurger, and Xiaoyun Zhu. 2012. VMware Distributed Resource
Management: Design, Implementation, and Lessons Learned. VMware
Technical Journal 1, 1 (2012), 45-64.

[32] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E
Greeff, David Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark

https://www.usenix.org/conference/nsdi10-0/volley-automated-data-placement-geo-distributed-cloud-services
https://www.usenix.org/conference/nsdi10-0/volley-automated-data-placement-geo-distributed-cloud-services
https://www.usenix.org/conference/osdi10/finding-needle-haystack-facebooks-photo-storage
https://www.usenix.org/conference/osdi10/finding-needle-haystack-facebooks-photo-storage
https://www.usenix.org/conference/osdi10/finding-needle-haystack-facebooks-photo-storage
https://engineering.fb.com/ml-applications/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/ml-applications/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/2014/10/09/production-engineering/building-mobile-first-infrastructure-for-messenger/
https://engineering.fb.com/2014/10/09/production-engineering/building-mobile-first-infrastructure-for-messenger/
https://github.com/kishoreg/fullmatix
https://github.com/uber-node/ringpop-node

SOSP 21, October 26-29, 2021, Virtual Event, Germany

(33

(35

(36

(38

(39

(40

[41

[42

(43

(44

[45

[46

[47

[utr}

—

]

—

[t

—

—

—

—

]

=

]

—

Russinovich, and Thomas Moscibroda. 2020. Protean: VM Allocation
Service at Scale. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). USENIX Association, 845-861.
Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal
Talwar, and Andrew Goldberg. 2009. Quincy: Fair Scheduling for
Distributed Computing Clusters. In Proceedings of the 22nd ACM Sym-
posium on Operating Systems Principles.
Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur
Narayanamurthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov,
iﬁigo Goiri, Subru Krishnan, Janardhan Kulkarni, and Sriram Rao.
2016. Morpheus: Towards Automated SLOs for Enterprise Clusters.
In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation.
Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan,
Todd Pfleiger, Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell,
Vipul Modi, Mansoor Mohsin, Ray Kong, Anmol Ahuja, Oana Pla-
ton, Alex Wun, Matthew Snider, Chacko Daniel, Dan Mastrian, Yang
Li, Aprameya Rao, Vaishnav Kidambi, Randy Wang, Abhishek Ram,
Sumukh Shivaprakash, Rajeet Nair, Alan Warwick, Bharat S. Narasim-
man, Meng Lin, Jeffrey Chen, Abhay Balkrishna Mhatre, Preetha Sub-
barayalu, Mert Coskun, and Indranil Gupta. 2018. Service Fabric:
A Distributed Platform for Building Microservices in the Cloud. In
Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal) (Eu-
roSys ’18). Association for Computing Machinery, New York, NY, USA,
Article 33, 15 pages.
Manolis Karpathiotakis, Dino Wernli, and Milos Stojanovic. 2019.
Scribe: Transporting Petabytes per Hour via a Distributed, Buffered
Queueing System. https://engineering.fb.com/2019/10/07/data-
infrastructure/scribe/.
Kubernetes. 2020. https://kubernetes.io/.
Leslie Lamport et al. 2001. Paxos Made Simple. ACM Sigact News 32, 4
(2001), 18-25.
Sangmin Lee, Rina Panigrahy, Vijayan Prabhakaran, Kunal Talwar,
Udi Wieder, and Rama Ramasubramanian. 2011. Validating Heuristics
for Virtual Machines Consolidation. Technical Report MSR-TR-2011-9.
Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno
Preguica, and Rodrigo Rodrigues. 2012. Making Geo-replicated Sys-
tems Fast as Possible, Consistent when Necessary. In 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
265-278.
Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G
Andersen. 2013. Stronger Semantics for Low-latency Geo-replicated
Storage. In 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 313-328.
Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo
Alvisi, Mike Dahlin, and Michael Walfish. 2011. Depot: Cloud Storage
with Minimal Trust. ACM Trans. Comput. Syst. 29, 4, Article 12 (Dec.
2011), 38 pages.
Mark Marchukov. 2017. Facebook’s Distributed Data Store for Logs.
https://engineering.fb.com/2017/08/31/core-data/logdevice-a-
distributed-data-store-for-logs/.
MarginSimulator. 2018. https://github.com/Dishan006/MarginSimu
lator.
Sarang Masti. 2021. How We Built a General Purpose Key Value Store
for Facebook with ZippyDB. https://engineering.fb.com/2021/08/06/
core-data/zippydb/.
Yuan Mei, Luwei Cheng, Vanish Talwar, Michael Y. Levin, Gabriela
Jacques-Silva, Nikhil Simha, Anirban Banerjee, Brian Smith, Tim
Williamson, Serhat Yilmaz, Weitao Chen, and Guogiang Jerry Chen.
2020. Turbine: Facebook’s Service Management Platform for Stream
Processing. In 2020 IEEE 36th International Conference on Data Engi-
neering (ICDE). 1591-1602.
Akshay Nanavati and Girish Joshi. 2021. FOQS: Scaling a Distributed
Priority Queue. https://engineering.fb.com/2021/02/22/production-

568

engineering/fogs-scaling-a-distributed-priority-queue/.

[48] Andrew Newell, Dimitrios Skarlatos, Jingyuan Fan, Pavan Kumar,
Maxim Khutornenko, Mayank Pundir, Yirui Zhang, Mingjun Zhang,
Yuanlai Liu, Linh Le, Brendon Daugherty, Apurva Samudra, Prashasti
Baid, James Kneeland, Igor Kabiljo, Dmitry Shchukin, Andre Rodrigues,
Scott Michelson, Ben Christensen, Kaushik Veeraraghavan, and Chun-
qiang Tang. 2021. RAS: Continuously Optimized Region-Wide Data-
center Resource Allocation. In Proceedings of the 28th ACM Symposium
on Operating Systems Principles.

[49] Ruoming Pang, Ramon Caceres, Mike Burrows, Zhifeng Chen, Pratik
Dave, Nathan Germer, Alexander Golynski, Kevin Graney, Nina Kang,
Lea Kissner, Jeffrey L. Korn, Abhishek Parmar, Christopher D. Richards,
and Mengzhi Wang. 2019. Zanzibar: Google’s Consistent, Global
Authorization System. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). USENIX Association, Renton, WA, 33-46.

[50] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind
Kalaiah, Daya Khudia, James Law, Parth Malani, Andrey Malevich,
Satish Nadathur, et al. 2018. Deep Learning Inference in Facebook Data
Centers: Characterization, Performance Optimizations and Hardware
Implications.

[51] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi
Huang, Justin Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast,
Scalable, in-Memory Time Series Database. Proc. VLDB Endow. 8, 12
(Aug. 2015), 1816-1827.

[52] Shlomo Priymak. 2013. Under the hood: MySQL Pool Scanner (MPS).

https://engineering.fb.com/2013/10/22/core-data/under-the-hood-
mysql-pool-scanner-mps/.

[53] Anshul Rai, Ranjita Bhagwan, and Saikat Guha. 2012. Generalized
Resource Allocation for the Cloud. In Proceedings of the Third ACM
Symposium on Cloud Computing. 1-12.

[54] Ringpop. 2017. https://github.com/uber-node/ringpop-node.

[55] Alon Shalita, Brian Karrer, Igor Kabiljo, Arun Sharma, Alessandro
Presta, Aaron Adcock, Herald Kllapi, and Michael Stumm. 2016. Social
Hash: An Assignment Framework for Optimizing Distributed Sys-
tems Operations on Social Networks. In 13th USENLX Symposium on
Networked Systems Design and Implementation (NSDI). 455-468.

[56] Yogeshwer Sharma, Philippe Ajoux, Petchean Ang, David Callies, Ab-
hishek Choudhary, Laurent Demailly, Thomas Fersch, Liat Atsmon
Guz, Andrzej Kotulski, Sachin Kulkarni, Sanjeev Kumar, Harry Li,
Jun Li, Evgeniy Makeev, Kowshik Prakasam, Robbert Van Renesse,
Sabyasachi Roy, Pratyush Seth, Yee Jiun Song, Benjamin Wester,
Kaushik Veeraraghavan, and Peter Xie. 2015. Wormbhole: Reliable
Pub-Sub to Support Geo-replicated Internet Services. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15). USENIX Association, Oakland, CA, 351-366. https://www.usen
ix.org/conference/nsdi15/technical-sessions/presentation/sharma

[57] Lalith Suresh, Jodo Loff, Faria Kalim, Sangeetha Abdu Jyothi, Nina
Narodytska, Leonid Ryzhyk, Sahan Gamage, Brian Oki, Pranshu Jain,
and Michael Gasch. 2020. Building Scalable and Flexible Cluster Man-
agers Using Declarative Programming. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 827-844.

[58] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jor-
dan Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin,
Raphael Poss, Paul Bardea, Amruta Ranade, Ben Darnell, Bram Gruneir,
Justin Jaffray, Lucy Zhang, and Peter Mattis. 2020. CockroachDB: The
Resilient Geo-Distributed SQL Database. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (Port-
land, OR, USA) (SIGMOD’20). Association for Computing Machinery,
New York, NY, USA, 1493-1509.

[59] Chungiang Tang, Malgorzata Steinder, Michael Spreitzer, and Gio-
vanni Pacifici. 2007. A Scalable Application Placement Controller
for Enterprise Data Centers. In Proceedings of the 16th international
conference on World Wide Web. 331-340.

[60] Chungiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor,

https://engineering.fb.com/2019/10/07/data-infrastructure/scribe/
https://engineering.fb.com/2019/10/07/data-infrastructure/scribe/
https://kubernetes.io/
https://engineering.fb.com/2017/08/31/core-data/logdevice-a-distributed-data-store-for-logs/
https://engineering.fb.com/2017/08/31/core-data/logdevice-a-distributed-data-store-for-logs/
https://github.com/Dishan006/MarginSimulator
https://github.com/Dishan006/MarginSimulator
https://engineering.fb.com/2021/08/06/core-data/zippydb/
https://engineering.fb.com/2021/08/06/core-data/zippydb/
https://engineering.fb.com/2021/02/22/production-engineering/foqs-scaling-a-distributed-priority-queue/
https://engineering.fb.com/2021/02/22/production-engineering/foqs-scaling-a-distributed-priority-queue/
https://engineering.fb.com/2013/10/22/core-data/under-the-hood-mysql-pool-scanner-mps/
https://engineering.fb.com/2013/10/22/core-data/under-the-hood-mysql-pool-scanner-mps/
https://github.com/uber-node/ringpop-node
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/sharma
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/sharma

Shard Manager: A Generic Shard Management Framework for Geo-distributed Applications

[61]

(62]

(63]

Scott Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew
Clark, Kabir Gogia, Long Cheng, Ben Christensen, Alex Gartrell,
Maxim Khutornenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas
Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaishnavi Venkatesan,
and Peter Zhang. 2020. Twine: A Unified Cluster Management System
for Shared Infrastructure. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). USENIX Association, 787—
803.

Muhammad Tirmazi, Adam Barker, Nan Deng, Md E Haque, Zhi-
jing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.
2020. Borg: the Next Generation. In Proceedings of the Fifteenth Euro-
pean Conference on Computer Systems. 1-14.

Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch,
Mor Harchol-Balter, and Gregory R Ganger. 2016. TetriSched: Global
Rescheduling with Adaptive Plan-ahead in Dynamic Heterogeneous
Clusters. In Proceedings of the Eleventh European Conference on Com-
puter Systems. 1-16.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad

569

[64]

[65]

[66]

SOSP 21, October 26-29, 2021, Virtual Event, Germany

Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, et al. 2013. Apache Hadoop YARN: Yet An-
other Resource Negotiator. In Proceedings of the 4th annual Symposium
on Cloud Computing.

Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Op-
penheimer, Eric Tune, and John Wilkes. 2015. Large-scale Cluster
Management at Google with Borg. In Proceedings of the European
Conference on Computer Systems (EuroSys).

Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and
Harsha V Madhyastha. 2013. Spanstore: Cost-effective Geo-replicated
Storage Spanning Multiple Cloud Services. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. 292-308.
Yunqi Zhang, George Prekas, Giovanni Matteo Fumarola, Marcus
Fontoura, ffiigo Goiri, and Ricardo Bianchini. 2016. History-Based
Harvesting of Spare Cycles and Storage in Large-Scale Datacenters.
In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation.

	Abstract
	1 Introduction
	1.1 Adoption Barriers for Sharding Frameworks
	1.2 Our Contributions

	2 Analysis of Sharded Applications
	2.1 Sharding Basics
	2.2 Demographics of Sharded Applications
	2.3 Using Data to Elaborate on Adoption Barriers
	2.4 Data-Persistency Options
	2.5 Put It Together via Example Applications

	3 SM Overview
	3.1 Sharding Abstraction
	3.2 SM Architecture
	3.3 SM Programming Model
	3.4 SM Features

	4 Maximize Application Availability
	4.1 Graceful Handling of Negotiable Events
	4.2 Graceful Handling of Non-negotiable Events
	4.3 Graceful Primary-Replica Migration

	5 Shard Placement and Load Balancing
	5.1 Hard Constraints and Soft Goals
	5.2 Using a Generic Constraint Solver
	5.3 Scaling the Constraint Solver

	6 SM Scalability and Fault Tolerance
	6.1 SM's Scale-out Global Control Plane
	6.2 Control Plane Fault Tolerance

	7 Further Boosting SM's Adoption
	8 Evaluation
	8.1 Scale of SM in Production
	8.2 Upholding Application Availability
	8.3 Supporting Geo-distributed Applications
	8.4 Scalability and Effectiveness of the SM Allocator

	9 Related Work
	10 Conclusion
	References

