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Abstract
Consider a social media platform with hundreds of millions
of online users at any time, utilizing a social graph that has
many billions of nodes and edges. The problem this paper
addresses is how to provide each user a continuously fresh,
up-to-date view of the parts of the social graph they are
currently interested in, so as to provide a positive interactive
user experience. The problem is challenging because the
social graph mutates at a high rate, users change their focus
of interest frequently, and some mutations are of interest to
many online users.
We describe Bladerunner, a system we use at Facebook

to deliver relevant social graph updates to user devices effi-
ciently and quickly. The heart of Bladerunner is a set of back-
end stream processors that obtain streams of social graph
updates and process them on a per application and per-user
basis before pushing selected updates to user devices. Sepa-
rate stream processors are used for each application to enable
application-specific customization, complex filtering, aggre-
gation and other message delivery operations on a per-user
basis. This strategy minimizes device processing overhead
and last-mile bandwidth usage, which are critical given that
users are mostly on mobile devices.

CCS Concepts: • Information systems → Data stream-
ing; Stream management; Service buses; Social networks; •
Computer systems organization→ Cloud computing;
• Networks→ Session protocols; • Software and its en-
gineering→ Publish-subscribe / event-based architec-
tures; • Applied computing→ Event-driven architectures.

Keywords: Internet-scale data dissemination, publish-sub-
scribe, mobile cloud infrastructure, event-driven stream pro-
cessing, request-stream protocol, scalability, social networks
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1 Introduction
Facebook operates a social media platform with hundreds of
millions of connected users from around the world at any
instance of time. Our platform utilizes a social graph that
has many billions of nodes and edges. Its data is distributed
and replicated across a number of globally distributed data
centers. Multiple layers of caches are used to provide low
latency access to the data and to reduce the load on backend
storage servers. Facebook’s social graph storage and caching
system is called TAO [13].
Given the scale we operate at and the fact that the social

graph is continuouslymutating, the fundamental problemwe
face is how to provide every one of our end-users with fresh
and up-to-date data of targeted interest on their devices1
so as to ensure a positive interactive user experience. In
particular, new updates that add, remove, or modify data to
areas of the social graph that are of current interest to any
user must reach the user’s devices in as real-time as possible.
How best to do this is the focus of this paper.

Challenges. The problem of keeping data of interest fresh
on devices is particularly challenging in our environment
because of the following factors:

1. Social graph mutability and relevance. Parts of the social
graph can mutate at a high rate — e.g., a live video broadcast
with one hundred million live viewers can result in over one
million live comments submitted per second, at peak. At
the same time, new graph data can be time sensitive — e.g.,
comments to a live video become uninteresting to the user
relative quickly.
2. Rapidly changing foci. Users change the focus of their

interest frequently; e.g., a user scrolling through displayed
posts in their News Feed is primarily interested in comments
related to the post they are currently focused on.
3. Legacy substrate. Most of the clients are on mobile de-

vices, and many of these devices have limited processing
and storage capacity — more than 60% of the world’s mo-
bile phones have less processing and memory capacity than
state-of-the-art phones of 6 years ago. Further, many parts
of the world still operate with older mobile communication
infrastructure where 50%+ of the users are limited to 2G
infrastructure; thus, mobile data bandwidth is often limited,
and many end-users must pay for the bandwidth they use.
Even with modern devices in 5G environments, the quality

1 We use the term device to refer both to mobile devices and browsers.
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Figure 1. Polling for social graph updates.

of mobile connectivity can vary significantly depending on
the location of the end-user; disconnections are common.

Polling solution. A straightforward approach to keep
targeted data fresh, and one we used for a number of years,
is to have devices periodically poll the backend infrastructure
for updates to the social graph using a query language such as
GraphQL [24] (see Fig. 1). This solution is attractive because
it is easy to implement client-side, and its request-response
model easily copes with server and connection failures.
However, we found polling to be problematic for three

reasons. First, it wastes network bandwidth and device bat-
tery, because in our environment 80% of the queries return
no new data, as no new updates have occurred since the
previous poll. While bandwidth and battery usage can be
managed to some degree by regulating the polling frequency,
in practice it is difficult to decide on an effective frequency
given that data updates often occur in unpredictable bursts,
and delayed data is less engaging to the user.

Second, frequent polling (i.e., every 1-2 seconds) burdens
the backend infrastructure with superflous overhead — in
our case on the order of a billion queries per second that
return no new data but incur the overhead of the queries.
Making matters worse, these queries are typically range
and intersect2 queries which incur particularly high over-
heads on the backend and typically require queryingmultiple
storage/caching servers. When we first rolled out support
for LiveVideoComments with an implementation based on
polling, our infrastructure team struggled to expand physi-
cal infrastructure rapidly enough to support the load from
the LiveVideoComments service as it scaled in use, in part
because the system has to be provisioned for peak load.

Thirdly, polling introduces extra delays in getting the rele-
vant data to the device, with the delay being a function of the
polling frequency, the load on the backend servers, and the
communication latency between device and server. These
extra delays negatively impact the end-user experience; e.g.,
comments on an event in the live video delivered late are far
less interesting and relevant to the user than timely ones.

A better solution was needed, one that (i ) pushes relevant
social graph updates to end-user devices as they occur, in
order to significantly reduce the amount of polling; (ii ) shifts
2 Intersect queries (e.g., SQL’s INTERSECT operator) return the intersection
of two or more queries.

Figure 2. Bladerunner high-level structure and data flow.

as much of the client processing of the data updates from the
devices to the backend; and (iii ) pushes data to devices only if
it is likely to be displayed to the end-user in order tominimize
last-mile communication bandwidth. Over the years, we had
either used or tried to use various existing approaches to
data dissemination, but, as we describe in §2, we found that
they all had serious drawbacks for our applications when
used at scale. This caused us to go back to the drawing board
and design a system that met the requirements above.

Bladerunner is the system we designed, implemented,
and now use to deliver relevant social graph updates to end-
user devices efficiently and in real-time (i.e., within a few
seconds). Over 100 applications3 have been onboarded to
use Bladerunner since it was first deployed. Some of the
more prominent ones, besides LiveVideoComments, include:
LiveVideoReactions, Messenger content delivery, NewsFeed-
PostComments and NewsFeedPostLikes, WebsiteNotifications,
per user StoriesTray and RoomTray updates, ActiveStatus
identifying friends that are currently online, and TypingIn-
dicator (e.g., in NewsFeedPostComments and Messenger).

At a high level, the Bladerunner architecture is comprised
of (i ) a set of backend streaming servers called BRASSes
that decide, on a per-client and per-application basis, what
data to push to client devices and at what rate; (ii ) a simple
and highly scalable backend publish/subscribe system called
Pylon to disseminate social graph updates to the BRASS
streaming servers; and (iii ) a request-stream protocol that
connects client devices to the BRASS streaming servers.
As shown in Fig. 2, each new update to the social graph

(e.g., a new LiveVideo comment) is created by an app running
on a user’s device and then sent from there to a target Web
Application Server (WAS), which in turn issues the update
request to TAO for storage. (This is the same WAS that poll
requests are sent to.) Bladerunner, however, additionally
requires the WAS to also “publish” (i.e., push) the update
to Bladerunner’s topic-based pub/sub service, Pylon, using
a topic that identifies the part of the social graph that was
updated.4 Pylon then pushes the update to the streaming
3 We use the term “application” to refer to a Bladerunner use case. An app
running on a device may use Bladerunner in multiple different ways, each
referred to as an application.
4 This is similar in spirit to in-memory caching solutions that require appli-
cations to mirror their DB writes to the cache.
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servers that expressed interest in receiving updates published
to that topic by having previously issued a subscribe request.
BRASSes (Bladerunner Application Stream Servers) are

responsible for obtaining relevant tsocial graph updates from
Pylon; filtering them on a per-user basis based on relevance,
timeliness, and privacy; and then pushing selected updates
to the user devices. Thus, Pylon and BRASSes together imple-
ment two levels of fanout for each update, which is necessary
given the scale we operate at. A key benefit of BRASSes is
that they offload client-specific processing from end-user de-
vices, and they reduce last-mile communication bandwidth
usage by pushing only data to the device that will likely be
made visible to the end-user.

Devices issue a subscribe request to an appropriate BRASS
for each area of the social graph they wish to receive updates
from. Each such request instantiates a request-stream, a core
Bladerunner abstraction for an application-level connection
between device and BRASS over which updates are deliv-
ered. A separate stream is instantiated for each part of the
social graph the device wishes to obtain updates from. For
each stream, the device specifies its interest using a frame-
work similar to GraphQL Subscriptions [48] or GraphQL
Live Queries [44].

A major benefit of this path for updates — from device to
WAS to Pylon to BRASSes and from there to interested de-
vices — is that it substantially reduces TAO query overhead
because it significantly reduces the need for polling. When
the LiveVideoComments service was switched over in pro-
duction from its polling implementation to its Bladerunner
implementation, the measured CPU load on the Web applica-
tion servers and the social graph queries-per-second related
to this application decreased by a factor of 10. Further, the
time from when a comment was created on the device to the
time it became visible on other devices decreased by a factor
of two. (Data collected from our production environment is
presented in §5.)

Unique aspects of Bladerunner. Four aspects of Blade-
runner’s design are unique and worth highlighting. First,
Bladerunner’s dissemination of updates is designed to be
best-effort only, which leads to a simpler and more efficient
overall design. Imposing Bladerunner to be reliable would
in part require replicating the updates being disseminated
across regions, which would add considerable overheads and
attendant delays in getting the updates to the devices. In-
stead, Bladerunner detects failures that might have caused an
update to be dropped, and then reliably informs all affected
parties, including affected end-devices, of the failure.
This approach effectively shifts the complexity and over-

head of dealing with failures to the exception handling parts
of the system. This strategy works because we can assume
(i ) backend communication and services exhibit a baseline
of reliability; (ii ) TAO already stores all social graph up-
dates persistently and in a replicated form; and (iii ) the
affected application can always obtain the latest social graph

data through a polling operation to recover from a failure if
needed. The strategy does, however, require that all partic-
ipating components, including the proxies through which
streams are routed, cooperate in the signaling of failures.
A second unique aspect of Bladerunner’s design is that

each Bladerunner application has its own set of BRASSes,
each with its own implementation. This separation of con-
cerns simplifies BRASS programming. BRASS is serverless
in the sense that a new instance is spooled up automatically
whenever a stream request arrives at a designated host that
doesn’t already have a running BRASS instance for the tar-
get application. Each application will have multiple running
BRASS instances distributed around the world.

A third unique aspect is that upon social graph mutations,
the data involved in an update itself is not pushed to Pylon
(and subsequently to BRASSes), but only a corresponding
update event, along with metadata characterizing and iden-
tifying the update in TAO. Thus, when a BRASS receives an
update event from Pylon, it first needs to query the WAS
to obtain the data before the data can be pushed to client
devices. This design choice may seem counter-intuitive, but
it substantially reduces bandwidth usage over cross-region
communication links, which are a limited resource. Each up-
date to the social graph already incurs cross-region commu-
nication overhead as TAO replicates updates across regions,
and having Bladerunner propagate the same updates across
regions again more than doubles cross region bandwidth
used for each update.
The overhead of the extra query is offset by the fact that

queries for individual updates from BRASSes incur far lower
overheads than polling queries. The former typically only in-
volve point queries while the latter involve (higher overhead)
range and possibly intersect queries. The former typically
obtain data from one TAO shard, while the latter obtain data
from many shards.5 Further, before data is sent to a client
device, it first needs to be privacy checked (e.g., to ensure a
user doesn’t receive data from blocked users). These privacy
checks are complex and sensitive, and in our operating en-
vironment are only performed within the WAS. As a result,
communication with the WAS is required for each update
being sent to a device in any case.

The final aspect of Bladerunner’s design worth highlight-
ing is that Bladerunner uses a new application-level commu-
nication protocol called BURST . BURST is a Request-Stream
(as opposed to a Request-Response) protocol that supports
5 Consider a LiveVideoComments query “fetch all comments on live video V
since timestamp X” in a scenario with a high volume of new comments for
V . V ’s comments and the index to the comments cannot be located on one
TAO shard because the shard would become far too hot for both reads and
writes, and hence a bottleneck. Increasing the number of TAO replicas will
not help mitigate the bottleneck, because of the high write volume. Thus,
the index and the comments need to be partitioned across many, many TAO
shards, all of which have to be accessed when compiling a response to the
query. In contrast, a query for a specific comment from BRASS requires
data from just one TAO shard.
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long-running streams that span across multiple hops of (pos-
sibly) different network protocols. We found it necessary to
create a new protocol because (i ) no single network protocol
is uniformly available across the diverse set of browsers and
mobile devices of our users; and (ii ) connections between
user devices and BRASSes involve multiple hops: first to a
Point of Presence (POP) at the edge, then to a reverse proxy
at the edge of the target datacenter, before ending at a BRASS.
One of the key features of BURST is that it reliably informs
the end points, as well as the nodes in between, of any failure,
enabling BRASSes to implement reliable in-order delivery of
updates if they so desire (§4).

The rest of the paper describes Pylon (§3.1), BRASS (§3.2),
and BURST (§3.5) in more detail. §4 describes how Blade-
runner handles failures. §5 presents scale and performance
metrics obtained from our production environment. We first
further motivate the need for a system like Bladerunner.

2 Motivation
The impetus for seeking a more effective solution for dissemi-
nating relevant social graph updates to end-user devices was
the LiveVideoComments application. It was the application
that drove the design of Bladerunner, and it is still the most
complex Bladerunner application in use today.
Our LiveVideo application may have over a hundred mil-

lion users around the world watching a popular event live,
such as a solar eclipse or live election results. The LiveVideo-
Comments application allow users to post comments to the
live video they are watching. A subset of these posted com-
ments should be displayed to end-users in as close to real-
time as possible. To increase user engagement, only those
comments that are “relevant” to the user should be displayed.
Doing so is complicated by the fact that as many as one
million comments may be posted within a few seconds at
peak. We note that predicting the rate at which comments
for a video are posted is infeasible. Some reasonably popu-
lar videos result in almost no comments, while less popular
videos may generate many.6 Further, some video streams
have very few comments for prolonged periods of time, but
then incur a burst of many comments; e.g., a video of a lunar
eclipse when the eclipse happens.

Processing posted comments to determine which ones to
show to which viewers is non-trivial. Many comments are
spam, irrelevant, or generally of low quality; these need to
be filtered out for all users. Comments older than n seconds
become irrelevant and can be discarded. Comments in a
language foreign to the end user need to be filtered out.
Comments posted by users blocked by the viewer also must
be filtered out. Comments posted by users the viewer does
not know are less meaningful and should obtain a low rank

6 E.g., a live video of a cake baking can (surprisingly) be more popular than
a streamed live presentation by the leading presidential candidate, yet the
former garners very few comments while the latter generates many.

Table 1. Distribution of number of updates within a 24h period to
targetted areas of interest in the social graph.

% areas: 83% 16% 0.95% 0.049% 0.0001%
updates: 0 < 10 < 100 > 1M > 100M

(unless perhaps the commenter is a celebrity). Because a
user cannot ingest more than one comment every second or
two, the remaining comments need to be ranked so that at
most one highly ranked comment is pushed to the viewer
per second. The key here is that the stream of comments
related to a live video needs to be filtered and rate limited on
a per-viewer basis. (Other applications will have their own,
different set of requirements for processing updates.)

We briefly review several different architectures we either
deployed or experimented with to target the LiveVideoCom-
ments application.
Client-side polling: As described §1, this is the simplest

solution but exhibits unacceptably high bandwidth consump-
tion at the last mile to the device, excessive device processing
overhead, and high querying load on TAO at the back end.
This is primarily due to the fact that most polled queries
return no new data. To illustrate this, we measured all areas
of the social graph that client applications had expressed
interest in receiving updates from in our current production
system, to see how many updates to those occurred within
a day. Tbl. 1 shows that the Pareto principle applies: roughly
80% of the areas have zero updates over a 24hr period, while
a few selected areas have very high update rates.

Sharding and replicated caching: Backend querying
bottlenecks are typically mitigated through sharding, repli-
cation, and distributed in-memory caches, as is done in
TAO [13]. This distributes the querying load and allows
queries to be serviced from a region close to the end-user. But
this also comes at a price in that the number of copies of data
being accessed needs to be large enough to accommodate
peak load. Moreover, with in-memory caching, new updates
have to be reliably pushed to the caches; otherwise, each
query to the cache would need to query backend storage to
check whether newer data is available.

Server-side polling: To reduce device and last-mile com-
munication overhead, a simple improvement to client-side
polling is to have a server-side agent, acting on behalf of the
client, perform all polling. The agent pushes updates, when
they become available, to the client. The client maintains
a persistent connection to the agent, and re-establishes the
connection whenever it fails. Server-side polling substan-
tially reduces client and last-mile network overheads. But it
still causes excessive backend server overhead for parsing,
evaluating, and executing each incoming query poll.

Overall, polling in the above approaches is generallywaste-
ful at the backend since the majority of polls come up empty.
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Having operatedMessenger using both (i ) polling with shard-
ing and caching and (ii ) a push message delivery implemen-
tation, we found the polling solution needed eight times the
hardware to achieve similar performance.

Distributed event logging:An alternative to polling TAO
is to make use of a replicated and distributed event logging
system, such as Kafka [6, 21, 31] or Pulsar [8]. Updates to
the social graph are simultaneously published to the log as
an event. Each different area of the social graph of interest is
assigned a unique topic, and updates are reliably published
to a topic with copies made across replicas. Clients regularly
poll the logging system for updates instead of polling TAO.
These polls incur less overhead (e.g., no intersect queries)
and the immutability of data appended to the log simplifies
replication.
In practice, however, existing logging systems are not

designed to accommodate 100million plus queries per second
on a single topic, as required by some of our applications.
Kafka is a good case in point. It is widely used in many
production settings, and it has been scaled (by LinkedIn)
to be able to handle as many as seven trillion events a day,
albeit with a customized implementation [33]. However, it
is not suitable for many of our applications. Kafka’s current
structure precludes it from supporting billions of topics that
are created dynamically; e.g., LinkedIn’s variant supports
only 100,000 topics. Further, the primary mechanism for
making Kafka scalable is partitions with events of a topic
distributed across partitions spread across nodes in a cluster.
Studies have indicated that Kafka does not scale well as the
number of partitions increases beyond 100 partitions per
broker; e.g., [50].7 Worse, each event is assigned to exactly
one partition, causing all accesses to an event to effectively
be serialized.

Pub/Sub triggering: As an alternative to repetitive pol-
ling, a triggering solution uses a publish/subscribe (pub/sub)
system [19, 51] to notify the client that an update of interest
has occurred, and only then does the client poll TAO. This
approach is similar to the one used by Thialfi [2]. It substan-
tially reduces the volume of polling, since polls that return no
data are eliminated. Publishing would entail first writing the
message to TAO and then publishing a notification that an
update has occurred, which in turn triggers a poll. However,
the pub/sub system would need to guarantee at-least-once
delivery of the notification to prevent clients from missing
some updates, which implies that notification events would
have to be replicated (across regions). The downside of this
solution is that devices could easily be overwhelmed with
update signals in some scenarios. Moreover, the triggered
poll would still be subject to the latency added by having to
use indexing in TAO.

7 In fact, the current recommendation is to limit the number of partitions
to 4,000 per broker and 200,000 per cluster.

Pub/sub data distribution: Applications like LiveVideo-
Comments naturally map onto the topic-based pub/sub par-
adigm [19, 51]. With this approach, the pub/sub system is
used to push updates directly to devices using a topic to
identify the area of the social graph the update occurred in.
Devices subscribe to the topics of interest to receive targeted
updates.
However, almost all of the pub/sub systems that have

gained traction are designed for backend operations that
offer reliable delivery — e.g., Wormhole [49]. They are not
well equipped to handle unreliable connectivity to mobile
devices. Further, using a pub/sub system to push updates
directly to devices will, in our environment, result in devices
receiving a firehose of data on occasion, overwhelming the
device and the last-mile connection. Finally, it is questionable
whether the existing pub/sub systems are scalable so as to
be able to handle the number and frequency of updates we
needed.

Some pub/sub systems offer various forms of broker-side
filtering to reduce the volume of data pushed to devices.
However, we have found the available filtering capabilities
far too limiting for more complex applications such as Live-
VideoComments, since they typically only offer a limited set
of filtering operations that can be combined using AND/OR
boolean connectives.We spent years trying to implement our
own generic pub/sub system with more complex server-side
processing capabilities (for user-specific filtering, ranking,
and privacy checking), but ultimately declared this initia-
tive to be a failure. We found that we had to add more and
more configuration parameters as new applications were
onboarded, causing the space of configuration parameters
to grow exponentially (something also observed in other do-
mains [56].) It became increasingly difficult to reason about
and configure applications correctly, in part because there
were implicit orderings for applying the configuration pa-
rameters. The system, over time, became increasingly brittle,
unwieldy, and unmaintainable. Exacerbating the situtation
was the fact that some configuration parameters had complex
interactions. Consider the interaction between rate-limiting
and privacy checks. Checking privacy on each message adds
unnecessary overhead, so it desirable to check only those
messages selected for delivery. But with privacy checking
after rate-limiting, the end-user may get fewer messages
than intended.
Our experiences with the above approaches led us to de-

sign a new system from scratch, albeit using elements from
the solutions described above.

3 Bladerunner design details
Recall from §1 and Fig. 2 the three server components in-
volved: Web application servers (WASes), Pylon and BRASS.
Typically, each update to the social graph is sent from an
app on a client device to a WAS, that in turn (i ) issues an
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update request to TAO, and (ii ) publishes the update to a
“topic” through Pylon. Pylon, in turn, pushes the updates to
BRASSes that have subscribed to the topic. Each area of the
social graph that might be of interest is mapped to its own
topic. Topics may be arbitrary strings, but in our domain
are structured similarly to file names; e.g., /LVC/videoID
for comments related to a live video, /TI/threadId/uid
for information on whether a user is currently typing, or
/Status/uid for information on whether a friend is cur-
rently online.

BRASSes subscribe to these topics with Pylon depending
on the current interest of their device clients. When a BRASS
receives published updates from Pylon, it processes the up-
dates and pushes selected updates to the client devices. In
doing so, BRASS filters, ranks, privacy checks, and applies
other varied business logic on the updates it receives on a
per client basis to determine which data and when to push
to the client.
An application on a client device that wishes to receive

updates, expresses its interest by issuing (for example) a
GraphQL subscription request to a BRASS, which is trans-
lated to a topic. If successful, a request-stream is established
between client device and the target BRASS. In practice, an
application will have multiple (10+) active request-streams si-
multaneously. Each request-stream is routed independently
and can fail independently. The BURST application-level
protocol is used to support request-streams.

In the subsections that follow, we describe Pylon, BRASSes,
and BURST in more detail, including how they are imple-
mented.

3.1 Pylon
Pylon is a simple pub/sub system used to deliver published
messages to BRASSes. It has two primary functions: (i ) keep-
ing track of BRASS subscriptions, and (ii ) streaming all con-
tent published to a topic to all BRASSes subscribed to that
topic. Pylon is content-agnostic and does not process pub-
lished messages in any way beyond providing low-latency
fan-out of messages to its BRASS subscribers. Pylon is de-
signed to be as simple as possible so as to be highly efficient.
It does not offer any guarantees on message delivery on
failures (see §4).

For each topic, Pylon maintains a list of BRASS subscribers
in a distributed in-memory key-value store that uses replica-
tion for durability. Rendezvous hashing on the topic is used
to identify the KV stores used to maintain the subscriber
information. The replicas are set up so that one is in the local
region and the others are in different remote regions. This
allows the service to be partially available during a partition-
ing event. A notable insight for Pylon was to decouple the
status of the subscription information from the availability of
data. From a CAP Theory point of view [12], the replication
of the subscription information is designed to be CP, while

delivery is designed to be AP, which enables applications to
recover from failures in a graceful way if they care.

On receiving a publish request with a social graph update
event, the target Pylon server first queries the appropriate
KV stores to obtain a list of BRASS subscribers for the tar-
get topic, and then forwards the message to each BRASS
host subscribed. For improved response time, Pylon initi-
ates the forwarding of a published message when it receives
the topic’s subscriber list from the first-responding storage
replica (typically in the local region). When the lists from the
other replicas arrive, Pylon forwards the message to the sub-
scribers that were not included in the subscriber list returned
by the earlier replicas. If Pylon identifies inconsistencies in
the subscriber information received from the replicas, it per-
forms patch operations based on a quorum of responses to
achieve eventual consistency on each Pylon storage node.

Our production environment operates with several thou-
sand Pylon servers, spread across multiple regions. Topics
are partitioned across 512K shards that are then mapped
onto the physical servers. Mapping multiple shards onto one
server allows incremental load rebalancing, one shard at a
time. The number of requests processed per second is kept
relatively low so there is headroom to absorb spikes when
needed.

3.2 BRASS
BRASS instances are responsible for application-specific
stream processing. Each instance is dedicated to a specific ap-
plication (e.g., LiveVideoComments, TypingIndicator , etc.), but
multiple instances per application are used for horizontal
scalability. Each BRASS runs in its own isolated environ-
ment (e.g., VM).

Using a separate BRASS for each application offers several
advantages: (i ) the implementation becomes simpler because
each BRASS addresses the requirements of only one applica-
tion; (ii ) debugging becomes easier, as only one application
is involved; and (iii ) the BRASS code becomes the vast ma-
jority of the configuration, so configuration-hell is avoided.
Per-application BRASS processing also provides operational
benefits when each instance runs in its own isolated envi-
ronment, as a misbehaving application can be isolated and
dealt with, without affecting the rest of the ecosystem.

BRASS is a general-purpose compute environment, allow-
ing any arbitrary form of processing; in particular, it may
invoke any backend service. We happen to use JavaScript
V8 engines for our BRASS instances, each offering a single-
threaded runtime environment similar to node.js. The JS VM
follows a traditional asynchronous environment where all
computation is powered by an event loop, executing logic
on each incoming (e.g., device subscribe or Pylon publish)
request and each backend service response.
When a new request-stream is being instantiated, the

BRASS will issue a subscription request with Pylon for the
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Figure 3. Data fetch and stream establishment.

appropriate topic if it is not already subscribed. When a so-
cial graph update event is received, the BRASS will fetch
the GraphQL data from a WAS when needed. Many BRASS
implementations are stateful so they can serve their clients
in a more meaningful way, but that state is ephemeral and
lost on a BRASS failure.8
We stack multiple BRASS applications on the same host

using multi-tenant design principles, allowing us to accom-
modate diverse application load requirements. Several thou-
sand hosts are dedicated to run BRASSes in our datacenters.
Each BRASS runs in its own VM,9 and in the common case,
the number of BRASSes per host is limited to two per core
to reduce context switching. The number of BRASSes instan-
tiated across different machines for a given application is
partly based on (memory and CPU) load, and can be scaled
up or down as needed, but locality may also be taken into
account. Some applications have predictable flows, while
others have spiky flows. Those with predictable flows are
well-suited for multi-tenant colocation, while those with
spiky flows are best isolated.

Proxies determine which BRASS host to route device sub-
scription requests to. This routing is based on load, topic, or
a combination of both, depending on application configu-
rations. For applications with low fanout (i.e., few clients),
routing is typically based on topic, so as to curtail the num-
ber of subscriptions maintained by Pylon, while applications
with high fanout are typically routed based on load. BRASSes
can also be configured to run on dedicated hosts for phys-
ical isolation, or on any host with available capacity. The
configuration information is maintained in ZooKeeper [28].

3.3 Query and data flows
We briefly outline the high level control and data flow of
Bladerunner’s operation.

Data fetch and stream establishment: (Fig. 3)
1. To obtain current TAO state, the client device issues an

initial GraphQL query to a WAS in a request/response
fashion (HTTP GET).

2. GraphQL Executor on the WAS issues read request(s)
to a TAO cache client.

8 Given that BRASS is a general compute platform, the BRASS application
can in theory make the stream data it is processing durable, but this is
effectively never done. §3.5 and §4 describe how BRASSes can implement
reliable delivery.
9 As an exception, there is a long tail of very simple applications that are
combined to share the same BRASS and VM.
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Figure 5. Update event fanout and data delivery.

3. Cache client issues reads from a TAO follower.
4. Afer receiving a response to the GraphQL query, the

client device renders its UI and asynchronously issues
a GraphQL subscription request to a BRASS.

5. BRASS calls WAS to resolve subscription request into
a concrete topic.

6. BRASS registers the BRASS host as a subscriber to the
topic with Pylon.10

These steps, if successful, will establish a bi-directional request-
stream between device and BRASS, and BRASS can now push
GraphQL payloads to the device at any time.

Mutation issue and publish: (Fig. 4)
1. Client device issues a GraphQL mutation to a WAS in

a request/response fashion (HTTP POST).
2. A GraphQL Executor on the WAS looks up the im-

plementation of the mutation field and converts the
mutation into a TAO write.

3. The Cache Client calls the appropriate TAO node,
which commits the write.

4. An update event is emitted based on business logic and
published to local Pylon client using the appropriate
topic. The event may include metadata such as uid,
quality score, etc.

5. The Pylon Client library in the WAS issues a publish
request to the appropriate Pylon server.

Update event fanout and data delivery. (Fig. 5)
With each publish request received from WAS ([5]):

6. Pylon fetches a list of BRASS hosts that have sub-
scribed to the topic.

7. Pylon fans out the update event to all target BRASS
hosts. On each BRASS host, a “subscription manager”
fans out the event to all subscribed BRASSes. BRASS
buffers and filters events on a per-device basis based
on event metadata.

10 Each BRASS host runs a Pylon subscription manager. Pylon subscription
requests from a BRASS are directed to this manager that only forwards
the registration to Pylon if no BRASS on the same host has an existing
subscription to the topic.
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8. BRASS makes a call to the WAS, if needed, to issue
a GraphQL query to obtain the GraphQL payload for
the target update and to privacy check the query.

9. WAS fetches data from TAO cache.
10. On a miss, cache client reads from a TAO storage node.
11. BRASS sends update to device, if warranted, where

product logic updates client-side state and triggers
re-rendering of UI.

3.4 Sample BRASS implementations
We briefly describe four widely-used Bladerunner applica-
tions and how they are implemented. Recall that each of these
applications is implemented and runs completely indepen-
dently of the other applications. Each of the implementations
requires at most a few hundred JS lines of BRASS code.

LiveVideoComments: As described in §2, the objective is
to allow clients to post comments on a live video. The most
relevant comments are made available to the other viewers
of the video at a prescribed maximum rate so the UIs can
display them. Comment relevancy is determined on a per
viewing client basis.

In a nominal implementation of this service, the WAS
creates an update event for each posted comment and tags
it with metadata, such as uid of the poster, quality score
(generated by an ML algorithm), language, timestamp, etc.,
before publishing it to Pylon using the topic /LVC/VideoID,
where VideoID identifies the video. Each device displaying
the video subscribes to this topic with a BRASS (that in
turn subscribes with Pylon if not already subscribed). Each
LiveVideoComments BRASS maintains a ranked buffer for
each stream-connected device to which it adds the incoming
updates after filtering them on a per user basis. For the most
relevant ones, BRASS fetches the comments from the WAS.
The highest-ranked comment in the buffer is pushed to the
device periodically at a prescribed rate.

This straightforward implementation does not scale to the
level we need for highly popular videos where a million com-
ments may be posted within a few seconds. To handle this
type of load, BRASS and the WAS switch strategy. The WAS
pre-ranks posted comments, discards low-ranked comments,
publishes extremely high-ranked comments as update events
to topic /LVC/VideoID, and publishes the remaining com-
ments as update events to topic /LVC/VideoID/uid, where
uid identifies the user who posted the comment. To populate
the ranked buffers, BRASS subscribes to /LVC/VideoID as
well to /LVC/VideoID/a-uid for each friend of each stream-
connected video viewer.

ActiveStatus: The objective is to display the online status
of a user’s friends.
Each device updates the client’s status to ONLINE with

the WAS every 30 seconds when online. WAS publishes this
update event to Pylon using topic /AS/uid, where uid is
the id of the client. When a device stream-connects to a
BRASS, the BRASS subscribes to topic /AS/f-uidwith Pylon

for each of the user’s friends, where f-uid is the id of the
friend. (Thus one device subscribe results in many BRASS
subscriptions.) When BRASS receives an update event from
Pylon, it updates a map of online friends for each stream-
connected client (taking a 30 second TTL into account), and
periodically pushes a batch update to the device. Pushing
batches only periodically prevents the device from receiving
too many updates.

TypingIndicator: The objective is to display dancing el-
lipses when a communicating counterparty is typing.
When a user starts/stops typing, the device application

issues a typing-indicator update to WAS, which publishes
the event to Pylon using topic /TI/threadId/uid, with
threadId identifying the communication thread and uid
the user. The device also subscribes to topic /TI/threadId/-
c-uid where c-uid is the id of the communicating counter-
party. Update events are pushed to the device as they arrive.

Stories: The objective is to allow users to highlight photos,
video clips, or other content to their friends. Stories are
organized into “containers,” with each container comprising
stories of one user. The stories are removed after a set period
of time (e.g., 24 hours). Each user’s UI displays thumbnails
of the n highest-ranked containers of their friends.

When a user creates a new story, the WAS publishes it to
Pylon, which in turn pushes it to subscribed BRASSes. The
publication includes metadata that identifies the user. Each
BRASS maintains, for each connected device, a list of con-
tainers with stories from the user’s friends, ordered by rank
(as determined by a ranking algorithm). BRASS then pushes
(i ) new stories that should be added to the device’s existing
containers, (ii ) containers that have become ranked high
enough so they should be displayed, and (iii ) container dele-
tion requests. Thus, the BRASS effectively manages what is
being displayed on the device. We note that with polling, two
intersect queries (with relatively high TAO overheads) are
required to obtain the n highest-rank containers. Thus, this
Bladerunner application substantially reduces client device
polling, because only one poll is needed when the application
commences, yet the displayed containers remain up-to-date.

3.5 BURST
BURST (Bladerunner Unified Request Stream Transport) is
a new application-layer protocol developed for Bladerun-
ner to support long-running request-streams that connect
client device applications and BRASSes. BURST objectives
are to (i ) provide a uniform networking API to Bladerunner
applications; (ii ) implement request-streams as first-class
citizens where each stream is routed independently across
multiple hops and can fail independently; and (iii ) simplify
how Bladerunner applications handle failures.
Regarding (i ), we note that no individual available net-

working API (e.g., WebTransport [53], WebSocket [39], XML-
HttpRequest [55], or Fetch [54]) is supported across all browsers.
Mobile devices, on the other hand, will support TCP and
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QUIC [32], or one of the protocols built on top of them (e.g.,
MQTT [27], HTTP/2, HTTP/3, or WebSocket). However, us-
ing a separate TCP connection per request-stream is too
heavy-weight. HTTP would be better suited and is the only
protocol we are aware of that has historically worked well
across multiple network hops with clear semantics for the
roles of proxies. Unfortunately, some client devices do not
support UDP so HTTP/3 cannot be used across the board,
leaving HTTP/2 as a fall back.
Regarding (ii ), each request-stream between device and

BRASS needs to be routed independently across at least two
hops: first through a POP (Point-of-Presence) access point
and then through a reverse proxy layer at the BRASS data
center. We note that the existing stream protocols all have
serious drawbacks. HTTP/SSE is a streaming protocol, but
is unidirectional so it has no way to pass information to
the server. MQTT, while specifically designed for pub/sub
systems supporting lightweight IoT edge devices, is a session-
oriented, point-to-point protocol where load balancing and
failure handling are performed on a per session basis, not
on a per-stream basis. RSocket, supports request-stream and
bidirectional stream communication [46], but load balancing
is the responsibility of the client, and flow control is based
on number of messages, not bytes, making it challenging
when messages have highly diverse sizes.

BURST offers a uniform request-stream abstraction to its
applications. Each stream is routed independently between
the client device and the handling BRASS instance (but rout-
ing is sticky, unless rerouting is needed for load rebalancing
or failure recovery). On each network hop, multiple streams
are multiplexed onto the underlying network protocol used
for transport. The core stream transport guarantee offered
by BURST mirrors the guarantees offered by TCP: (1) mes-
sages sent over a stream arrive in order, and (2) failures are
signalled to the participating nodes (analogous to TCP fail-
ures being signalled through socket disconnects). However,
because a stream spans multiple participants with routing
responsibilities, failure signalling is more differentiated than
just a socket disconnect, as described further below.

Without delving into details, BURST messages from client
applications support subscribe requests to instantiate a new
request stream, cancel requests to terminate a stream, and
acknowledgements. A subscription request includes (i ) a sid,
a unique id generated by the client, (ii ) a header used to
indicate the properties of the request, including the GraphQL
subscription; and (iii ) an optional body which is an opaque
binary blob of data that only the target BRASS needs to
understand. We happen to have standardized on a JSON
format for the header that may include fields, for example, to
inform BRASS to connect to a different data source because
developers are testing a new feature, or to express client
versioning so BRASS can understand the limits of the client.

Upon the establishment of a stream, the associated BRASS
will issue a sequence of stream responses. Each response con-
tains a batch of what we call deltas. The batch is transmitted
atomically in one unit (for networking efficiency), but is also
processed client side atomically (in an all or nothing fashion).
A batch may include zero or more social graph updates as
deltas. Other types of deltas include stream terminations and
flow-status messages to signal failures as described below.
POPs and proxies are central participants in the proto-

col. The subscription header is visible and interpreted by
the proxies as the it passes through, and used for routing
purposes. The proxies keep a copy of the current header
and body of each stream passing through them so they can
take recovery action when failures are detected (§4). (They
garbage collect this stream state when the stream is explicitly
terminated or when the connection to the device fails.)

Unique BURST features: Two features set BURST apart
from other existing streaming protocols. First, BURST guar-
antees that both failures and recovery from failures are sig-
nalled to all participants of the affected streams as they occur.
This is important so that the participants are aware of the
status of the streams in a timely fashion, given that a stream
may have no messages for prolonged periods of time. For
example, it allows the client app to display connectivity is-
sues to the user, and it allows proxies and BRASS to garbage
collect stream state after a timeout. The signaling occurs
even if the failure was temporary and quickly recovered
from (leaving the stream in tact). A flow_status delta is
used for this signalling. How it is used is described in §4.

The second unique feature of BURST is a mechanism that
allows BRASS to control the stream state used by the client
and intermediary proxies to reconnect after a failure. Gen-
erally the state is a copy of the subscription request, includ-
ing the header and optional body. By sending the client a
rewrite_request delta, BRASS is able to modify this state
at any time and override the existing header with a new one.
BRASS’s ability to rewrite the client state enables a number
of interesting features. We highlight three of them.

Sticky routing. When the connection to a device is dropped,
it is desirable for the device to reconnect each of its streams to
the same BRASS instance that previously served the stream
(e.g., to benefit from stream state not yet garbage-collected
or from improved cache hit rates). Bladerunner achieves this
by having the BRASS issue a rewrite request to patch the
request headers with information identifying the BRASS as
soon as a stream is instantiated. Then, when a device re-
subscribes after a failure, it will use this re-written header
so that the subscribe request lands on the BRASS that previ-
ously serviced it. Without rewrites, the (device, stream) to
BRASS mapping would have to be maintained explicitly by
the device or stored in some datastore.

Resumption. Some applications assign sequence numbers
to updates for a device so that when the device re-connects
after a dropped connection, it can identify the last sequence
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number it received and only receive subsequent updates.
With rewrites, the servicing BRASS can patch the header to
include the sequence number of the last update sent to the
device. Then when the client resubscribes after a failure, the
subscribe request will automatically identify the last message
that was received. This simplifies client logic because the
sequence numbers don’t have to be tracked explicitly. More
generally, BURST’s rewrite mechanism enables BRASS to
leverage any reliable messaging stack that depends on sync
tokens, sequencers, and other state. For example, the state
of a rate limiter can be stored in the header so that when
a BRASS failure occurs, the resubscribe will include this
information and the new servicing BRASS can take this state
into account.

Redirects. A BRASS may decide that a stream is to be redi-
rected to another BRASS, say for load balancing, BRASS
consolidation, or because the host on which the BRASS is
running is to be taken offline. This can be achieved by having
the current BRASS issue a rewrite request that patches new
routing information into the headers, and then terminate the
stream thus informing the device to retry.
All of these behaviors could also be achieved by having

the client maintain the individual states separately and have
BRASS send the client metadata that causes the state to be
updated on a state by state basis. However, rewrites offer
a general solution so that the client need not be aware of
the states, and in fact allows the introduction of new state
transparent to the client. The latter is particularly impor-
tant because mobile client software is often not updated for
long periods of time [45] and not conducive to continuous
deployment (in contrast to server software [47]).

4 Failure handling
Bladerunner delivers updates to client devices on a best effort
basis only. However, it goes to great effort to communicate
to all affected parties when it detects a failure that might
have caused an update message to be dropped. Fundamen-
tally, it is up to application logic to recover from messages
that were not reliably delivered, if the application so desires.
In practice, most of our applications can tolerate dropped
updates without negatively impacting the user experience,
if they occur infrequently; e.g., occasionally incorrect typing
indicators, friend status, or a missed live video comment.
While many aspects of failure recovery are omitted here

due to space limits, we briefly outline three axioms that
govern how failures are handled in Bladerunner. The first ax-
iom regards failure notification: if a component detects a
failure, then it informs the (upstream and downstream) com-
ponents to which it is still connected, and this information is

further propagated to the affected stream end points — either
client devices (if downstream) or BRASSes (if upstream).11
For example, if POP Pi fails, this will be detected by the

connected devices and each proxy Pj to which Pi was con-
nected. The devices inform the affected apps and the Pjs
inform the affected BRASSes. This allows the device app,
for example, to recover by issuing a WAS poll to get the
latest state and then reconnect to a BRASS. Or it may decide
recovery is not needed and simply resubscribe.
If a client device fails or loses TCP connectivity, POP Pi

will detect this, and it will inform all BRASSes servicing
streams instantiated by the device. If a BRASS host fails,
Pj will detect this and inform all devices whose streams
were being serviced by the host; Pylon also detects this and
removes all subscriptions from that host. Finally, if a Pylon
server fails such that a quorum is lost, then the connected
BRASSes will detect this and inform all their clients.
The second axiom regards connectivity recovery: the

component downstream from a failure that is closest to the
failure will re-establish connectivity and repair each affected
stream. To allow this, proxies keep a copy of the most re-
cent subscription request (potentially modified via a rewrite)
of each stream, which they use to resubscribe clients. The
recovered streams may now be routed through a different
POP or proxy, or be routed to a different BRASS. If routed
to the same BRASS, we note that the BRASS has the option
to keep the state of failed streams for a period of time to
make reconnections more seamless. Once a stream has been
re-established, BRASS informs the device of this, and the
device decides how to recover from the fact that it may have
missed some updates.

For example, if a device detects that the connection to POP
Pi has been dropped because Pi failed, it will re-establish a
connection to an alternative POP and then resubscribe to
the topic for each affected stream. In doing so, it will use
the currently stored subscription requests which, in the com-
mon case, go to the same BRASSes that previously served
the streams. If proxy Pj fails, each affected POP Pi will re-
establish a TCP connection to an alternate proxy P ′j , resub-
scribe to the topic on behalf of each affected client stream
using the header last rewritten by BRASS to the client.12 If a
BRASS fails, then affected proxies, Pjs, connect to alternate
BRASS instances, and if a Pylon server fails, then BRASS
connects to an alternate Pylon server instance.

The third axiom regards stream state recovery; BRASSes
are generally responsible for the recovery of the stream state
if needed by the application. (As we noted earlier, retaining
stream state with its attendant overhead is not critical for
the vast majority of our use cases; e.g., applications with a

11 One of the challenges is detecting failures in a timely fashion. For example,
waiting for TCP to signal a failure may take too long. We employ a number
of techniques to detect such failures more quickly; e.g., by using heartbeats.
12 Proxy handling of failures may be application-dependent.
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BRASS rate limiter may see a slight burst of message deliv-
eries to the client.) If the retention of stream state is needed,
then the state can either be persisted in the stream (through
rewrites) or on a backend store. In both cases, the state can
be recovered after a BRASS failure.
In effect, Bladerunner’s design objective with respect to

failure handling is to have the system deliver updates quickly,
albeit unreliably, and instead enable applications to imple-
ment fault tolerance if they desire. It is based on the fact that
failures at the backend (within datacenters) are exceedingly
rare (as shown in §5) and most failures occur at the last mile.
For those applications that cannot tolerate dropped updates,
the applications can implement the reliability they need and
in their own way.
Application-specific logic is implemented within three

components: the WAS, the BRASS, and the device. Together,
they are responsible for implementing the level of fault toler-
ance needed by their application. One approach is to simply
have the device reissue a poll and resubscribe whenever it
detects that a failure that affected the stream has occurred.
Another approach is to have the WAS add sequence num-
bers to the updates sent out to Pylon, and if, for example,
BRASS detects missing updates, it can query the WAS for
the missing data. Further, BRASS can rely on device acks to
ensure the device receives each update.
As an example, consider Messenger that requires reliable

delivery of messages. On the backend, each user has a mail-
box, organized as a list of communication threads that in
turn have a list of messages ordered by time. If a thread has,
say, five users, then each new message to the thread will be
seperately added to all five mailboxes. Each time a message
is added to a mailbox, it is assigned the next consecutive
sequence number for the mailbox. This allows dropped mes-
sages to be detected both at the BRASS and at the device,
although BRASS will recover the dropped message so the
device does not have to. If the connection to the device fails,
the device will resubscribe with the latest sequence number
it obtained, at which point the BRASS polls the mailbox to
obtain all subsequent messages.

5 Metrics from our production deployment
In this section we present Bladerunner metrics that were
obtained from our live production environment. We first
describe observed effects of switching the LiveVideoCom-
ments application from a polling solution to Bladerunner
at the time the switchover occurred. We then characterize
the current Bladerunner workload and quantify the scale at
which Bladerunner operates. We also identify the magnitude
of failures that Bladerunner must cope with.

Polling vs. Bladerunnermetrics.When LiveVideoCom-
ments switched from a polling solution to Bladerunner, var-
ious metrics were collected to be able to compare the two
approaches. Fig. 6 depicts the distribution of latencies for
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Figure 6. Latency distribution for LiveVideoComments

Table 2. Request-stream lifetime distribution.

<15 min 15min–1hr 1hr–24h 24hr+
45% 26% 25% 4%

LiveVideoComments from when comments were posted to
when they became available at the edge. The key observa-
tion is that polling exhibits a long tail in latencies while
Bladerunner does not. Eliminating this long tail stabilized
the expected latency from 4.8 seconds to 3.4 seconds, reduced
p75 latency from 6 seconds to 4 seconds, and reduced p95
latency from 14 seconds to 6 seconds, on average. Further,
Bladerunner was able to better fit the product requirements
by buffering comments up to a maximum of 10 seconds so
it only pushes the most relevant comments. (Note that the
choice of 10 seconds here was made by the product team
as a reasonable tradeoff between timeliness and displayed
comment relevancy for this particular application.)

When switching over to Bladerunner we also observed a
0.7% reduction in TAO queries, and a 0.4% reduction of CPU
load at the Web application tier on average. This may not
sound like much, but translates into a savings of thousands
of hosts. More dramatic, on peak loads, we observed up to a
5% reduction on global IOPS on TAO, and a 2.5% reduction of
CPU load on the WASes.13 There are two reasons for these
reductions. First, duplicate comment queries per viewer are
eliminated with Bladerunner. Second, the pressure on the
graph index which binds comments to a video was substan-
tially reduced. While Bladerunner still requires BRASS to
query WAS for each comment and user, these queries are
point queries with good caching characteristics and hence
straightforward to scale; in contrast, polling queries involve
range and intersect queries (e.g., to fetch comments from
a user’s acquaintances), and the indices required for these
queries do not easily scale when rapidly changing.

Workload characterization. Devices running Bladerun-
ner applications typically have request-stream connections
that number in the tens. Recent data shows each browser
13 The factor 10 decrease in number of polls mentioned in the §1 was
specific to the LiveVideoComments application, whereas the reductions here
are relative to all traffic.
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Figure 8. Per-user metrics from our production environment for
a typical day. Each data point represents a 15 minutes interval
and shown as the average of 15 measurements, one taken for each
minute.

tab can have up to 60 concurrent streams and each mobile
app up to 20.
The metrics that follow were obtained on a typical day

in March 2020. Figure 7 shows per request-stream update
activity. We selected twelve points in time, two hours apart,
identified the request-streams that were active at that time,
and counted the total number of update events targeting
each request-stream’s subscription during the stream’s entire
lifetime. The graph shows that 75% of the client subscriptions
involve no updates at all. Fewer than 0.7% have 100 or more
updates. These numbers support the thesis that any solution
based on polling would be wasteful. Table 2 characterizes
the lifetime of request-streams: 45% last less than 15 minutes
and over 70% last less than one hour.

Bladerunner scalability. Fig. 8 shows Bladerunner ac-
tivity over the course of 24 hours. The numbers presented
are normalized to be on a per-user basis, whether online or
not. The top curve shows that the total number of active
Bladerunner request-streams follows a diurnal pattern. Each
data point represents a 15 minutes interval and shows the
average of 15 measurements, one taken for each minute. The
average number of device subscription requests per minute

Table 3. Latency of Bladerunner sub-operations. All times in mil-
liseconds. WAS: Web Application server. LVC: LiveVideoComments.
Data shown are average times, as obtained from sampling 0.1% of
all operations over a period of one week. Pylon latencies are shown
separately for streams with fewer than 1,000 subscribers, between
1,000 and 10,000 subscribers, and streams with more than 10,000
subscribers. The BRASS overhead shown are for those applications
that do not buffer and rank updates. Of the 76ms, 60ms is used to
query WAS and the rest is for BRASS processing.

WAS receives update request LVC 2,000
→ request sent to Pylon other 240
Pylon receives update publish request subscribers
→ update sent to n BRASSes <10,000 100

≥ 10,000 109
BRASS receives update request
→ sent to devices 76
Subscription request arrives at Gateway
→ replicated onto Pylon 73

varies between 0.5 and 0.75 per user, which corresponds
to slightly over 5,000 subscriptions per second per BRASS
host. At peak, we have measured 3B device subscriptions
per minute. Request-stream terminations are not shown but
complement the subscription requests to arrive at the total
number of active streams. The average number of publica-
tions emitted from Pylon per minute varies between 0.8 and
1.5 per user. Publications cause the BRASSes, in aggregate, to
make between 1.1 to 3.2 decisions per minute per user to de-
termine whether or not to deliver a message to a device. The
number of decisions tends to be more variable as it is based
on the particular workload active at the time; moreover some
applications can exhibit high volatility; e.g., LiveVideoCom-
ments has an almost steady state of 25M decisions per minute
but can quickly jump to 4B decisions per minute. Finally, the
number of updates delivered to devices varies between 0.1
and 0.25 per minute per user on average. At peak, we have
measured well over 1B update deliveries per minute.

While most request-streams receive no updates, we have
observed that when streams become “hot,” they can become
exceptionally hot — to the point where many devices would
have difficulty receiving and processing the high incom-
ing flow. This justifies our decision to filter and rate-limit
messages on the BRASS side. In effect, one of the primary
responsibilities of BRASSes is to drop messages intelligently,
as 80% of messages are filtered out at BRASS instances (1-
(deliveries/decisions). Because effective per-stream filtering
and rate limiting require application insight, they become
easier to implement when done on a per-application basis.
The number of client subscription requests and stream can-
cellations is substantial, justifying the need to make these as
lightweight as possible.

Bladerunner Latencies. Table 3 presents the latencies
incurred at individual Bladerunner components. They were
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Figure 9. Cumulative Distribution of update latencies in millisec-
onds for two applications obtained from randomly sampling 100,000
updates to data related to these applications. Note the scale of the
y axes are different in each of the graphs and that they don’t start
from zero. All graphs except the top one are in log scale.

obtained from system logs by sampling 0.1% of measured
events over a period of one week. We note that the aver-
age latency for processing a LiveVideoComments update at
WAS is roughly 2 seconds when measuring from the time
the corresponding TAO mutation has completed to when the
update has been sent to Pylon. On average, 1,790ms of this
time is spent on ranking the quality of the comment, so only
quality comments reach the BRASSes. Update requests that
do not require ranking at the WAS take 240ms on average (as
indicated by “other” in the table). The latency incurred at Py-
lon is reasonably modest: for streams with fewer than 10,000
device subscribers, the latency is 100ms on average with
P90 and P99 percentile values at 160ms and 310ms, respec-
tively. The latency of registering a BRASS subscription with
Pylon is also modest when only including backend (datacen-
ter) operations. However, the latency is considerably higher
when measuring the latency from when the devices issues a
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Figure 10. Top: number of last-mile connections dropped per
minute. Bottom: stream reconnections per minute initiated by prox-
ies. Each data point represents a 15 minutes interval and shown as
the average of 15 measurements, one taken for each minute. Note
that the y axis is different for the two graphs and neither starts at 0.

subscription request, primarily due to mobile network over-
heads: the average is 490ms (P90: 540ms) for subscribers in
North America and Europe and 970ms (P90: 1,360ms) when
measured for subscribers in all countries.

Fig. 9 depicts the cumulative distributions of update distri-
bution latencies for TypingIndicator and LiveVideoComments,
with clients located around the world. The metrics were
obtained by randomly sampling 100K update events. The
TypingIndicator application here is a generalized version
of the one described in §3.4. Both applications require the
BRASS application to perform privacy checking and device-
specific transformations by making calls to backend services.
The top three sets of graphs show different components of
the total latencies (shown at the bottom): (i ) latency of up-
date requests from the edge proxy to a WAS, (ii ) latency of
request handling within a BRASS server which includes all
interactions with Pylon and backend services as well as the
batching of requests, and (iii ) the latency for pushing the
update to the device. LiveVideoComments rate limits each
stream to one message every two seconds and the ranking
is held fixed at 5 elements. Further, the latency of sending
LiveVideoComments updates from the edge to devices is sig-
nificantly higher than for the other applications because it
competes with video bandwidth at the edge.

Failure handling. The top graph in Fig. 10 shows the
number of last-mile connections to devices that are uninten-
tionally dropped per minute. Each of these connections may
have supported multiple streams. Thus, each BRASS host
deals with thousands of disconnected steams each minute.
With respect to failures on the infrastructure side, the

overwhelming majority of system events requiring a proxy
to reconnect streams occur because of BRASS software up-
grades and load rebalancing, with outright BRASS failures
occurring very rarely. The bottom graph in Fig. 10 depicts
the number of such proxy-induced stream reconnects. As a
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point of comparison, from March 30 to April 5 there were a
total of 33 failure events due to quorum breakage in Pylon.

6 Related Work
Over the years, numerous systems have been designed for
disseminating data efficiently, often referred to as publish/-
subscribe, reliable messaging queue/bus, stream processing,
log/data collection/aggregation, event sourcing or log repli-
cation systems [2, 5, 9–11, 14–20, 25, 26, 30, 36–38, 41, 49, 57].
Cloud providers offer numerous such servies (e.g., [3, 4, 23,
34, 35], and there are open source solutions such as Rab-
bitMQ [40] and ActiveMQ [7] as well as commercial offer-
ings such as TIBCO’s Rendezvous [52]. However, as outlined
in §2, none of these systems are able to meet the needs of our
applications in our target environment. They either do not
scale sufficiently, are not able to offer the degree of user- and
application-specific processing, or are ill-suited for dealing
with unreliable last-mile connections.

Many of the existing pub/sub systems target in-datacenter
server-to-server workloads where they can assume com-
munication channels are robust. For example Facebook’s
Wormhole delivers 5 trillion messages a day [49], but it can-
not cope with unreliable connectivity, and it cannot offer
per-client message processing.14 Google’s Thialfi is a scal-
able pub/sub service that notifies clients when stored ob-
jects have changed so they can poll the backend store to
obtain the latest version[2]. Thialfi’s notifications are reli-
able with at least once delivery guarantees, but with atten-
dant overheads for the common case, and they would still
cause excessive range and intersect query overheads, given
that Bladerunner’s BRASSes filter out over 80% of all update
events. Kafka, a scalable message bus with a pub/sub API
developed by LinkedIn [6, 31] is able to process 7 trillion
messages a day [33]. However, it is fundamentally a polling
solution and would be inefficient for our workload for which
most polls return no new data. Further, its structure pre-
cludes it from supporting billions of topics that are created
dynamically — LinkedIn’s variant customized for scalability
supports 100,000 topics [33].

Ably [1], PubNub [42], and Pusher [43] are closer in spirit
to Bladerunner as they target real-time server-to-device
workloads. However, their internal architectures are not pub-
licly known, and it is unclear whether they are anywhere
close to Bladerunner’s scalability.
Finally, Bladerunner is loosely related to serverless edge

compute platforms like Cloudflare Workers [29] and Fastly
Compute@Edge [22]. In contrast to these systems, Bladetun-
ner focuses on supporting long running streams and chooses
to operate BRASSes within datacenters instead of at POPs,
primarily because it needs to perform many TAO queries on
behalf of each stream-connected client.

14Wormhole supports a simple form of broker-side filtering that is far to
limiting for our needs.

7 Concluding remarks
We described the architecture of Bladerunner, a framework
for efficiently delivering relevant data mutations in backend
datastores to user devices at the edge in a timely manner
as the mutations occur. Bladerunner enables device UIs to
display relevant up-to-date data. Datacenter-based BRASS
stream servers play a key role in Bladerunner. They process
streams of data updates on a per-application and per-user,
customized basis. BRASSes significantly reduce querying
load on backend datastores and the volume of data sent to
devices. Bladerunner itself disseminates data updates on a
best-effort basis. However, the fact that failures, which may
have caused data to be dropped, are reliably detected, and the
affected components are reliably informed, allows BRASS
stream servers and devices to build a layer that offers relia-
bility, if needed. Our experiences over five years operating
Bladrunner in production have been positive; the trajectory
of applications being onboarded continues to increase.
Portions of Bladerunner’s design was influenced by the

need to operate at very large scale, as evidenced in §5. This
raises the question of whether it would be suitable for en-
vironments operating at lower scale. We argue that using
serverless stream processors like BRASS, brings substan-
tial benefits regardless of scale, as they significantly offload
backend data servers, devices, and/or last-mile communica-
tion channels. However, two aspects of Bladerunner’s de-
sign may be worthy of reconsideration when operating at
lower scale. First, one might consider replacing Pylon (a best-
effort pub/sub system designed for fast data dissemination
to BRASS stream servers) with a logging system (e.g., Pul-
sar) that offers ordering and delivery guarantees, if it can
support the scale needed. Second, one might consider using
separate BRASS stream processors for each request-stream,
instead of having BRASSes service thousands of streams.
This would provide better isolation and further simplify the
programming of these stream servers.
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