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ABSTRACT

Spiking neural networks (SNNs) have the potential to reach the
same accuracy level as their counterpart artificial neural networks
(ANN ) through ANN-to-SNN conversion. However, this relies sig-
nificantly on artificially modifying the voltage reset mechanism in
the Integrate-and-Fire (IF) neuron model to support bias and batch
normalization. This paper shows that our proposed MCR-Norm
(minimum chain rule normalization) can enable the modeling of
these two key elements by using the standard IF model. The SNNs
built by the IF model can thus reach the same accuracy level as the
SNNss built by the artificially modified IF model. While previous
approaches tended to push deep SNNs towards very high firing
rates, we found that the IF neuron is suitable to run in a low firing
rate range. This is in line with biological observations and is also
crucial to go beyond SNN simulation and apply it to real neuro-
morphic hardware. In addition, tuning the neural network inputs is
dismissed in earlier work, but we claim that it is closely related to
the success of parameter normalization inside the SNNs built by the
standard IF model, and can be integrated naturally into MCR-Norm.
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1 INTRODUCTION

SNNs are neural network models using spiking neurons as com-
putational units and spikes as information carriers between these
units, with the aim of achieving high computational performance
by imitating the human brain [2, 14]. SNNs have been successfully
adopted by computational neuroscientists to describe the dynamics
of biological neural systems and neural circuits [4, 15], benefiting
from their biological plausibility and computational capability. With
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these successes in biological neural modeling and promoted by the
parallel achievements of deep learning, there have been many ap-
proaches proposed to build deep SNNs to achieve power-efficient,
event-based and low-latency computing [1, 3, 5, 7, 9, 11, 16, 17, 22].

The most successful approach to date trains an artificial neural
network (ANN) using supervised learning and converts the trained
ANN into a rate-based SNN [1, 9, 13]. Lossless conversion can
be achieved by this method, but it usually requires using spiking
neuron models that are “artificially” modified to transmit precise
information to the subsequent layer [18, 20, 21]. These methods can
achieve good accuracy on many benchmarks but work against the
original objective of using spiking neurons in deep neural networks.

We believe that using more biologically plausible spiking neuron
models to build functional SNNs is a desirable way to go. Though
there will be many obstacles to this research direction, this is an
unavoidable process if we wish to unlock the mysteries of the
human brain and duplicate them on the machine. Previous work has
explored building deep SNNs using the standard IF model [19], but
the modeling of bias and batch normalization remains unaddressed
until now. These two elements directly affect the inference accuracy
in ANNs which is also the target accuracy of SNNs. Lacking of
these elements is obstructing the performance of SNNs built by the
standard IF model as well as their further applications

In this paper, we will demonstrate that it is possible to retain
both high performance and biological plausibility in SNNs. Also,
some insights into managing the firing rate range in deep SNNs are
offered. The main contributions of this paper are:

e We achieve state-of-the-art (SOTA) accuracy on the MNIST
and CIFAR-10 data sets on deep SNNs built using the stan-
dard IF model.

e Bias and batch normalization are modeled in deep SNNs
whilst retaining biological fidelity.

e Our method features a 2.5 to 7.5 times lower spike rate than
previous SOTA ANN-to-SNN conversion methods, so paves
the way to run these networks on neuromorphic hardware.

e We emphasize the significance of input normalization for
SNNs and integrate it into MCR-Norm to form the first sys-
tematic parameter normalization strategy for SNNs.

2 RELATED WORK

Several successful parameter normalization approaches have been
proposed in deep SNNis to facilitate ANN-to-SNN conversion [3, 18,
19].

Data-based normalization scales weights according to the input
patterns of spiking neurons. The input patterns of the test data set
are estimated from the input patterns of the training data set. This
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Figure 1: The response curves of the IF model and ReLU. The input is a constant current injection, and the synapse model is
the delta model. (a) The response curve of the IF model and ReLU. (b) Changing the input to a statistical current injection.

estimation relies on an independent and identically distributed (IID)
hypothesis between the training data set and the test data set.

Percentile data-based normalization provides an additional bias
normalization equation on the basis of data-based normalization
[18]. The balance of weights and biases in SNNs are maintained
by adding an extra membrane potential reset mechanism to the IF
model. The outliers of the neuron inputs are discarded to improve
firing rates. However, this discard may bring accuracy loss if the
outliers contain important information.

Spike-Norm calculates the maximum inputs in spiking neurons
layer-by-layer in a sufficiently long time window to determine the
values of the thresholds [19]. Spike-Norm successfully applies the
original IF model to challenging data sets, but does not include the
normalization of biases and batch normalization layers. Due to the
inherent noise in SNNs, the normalized thresholds calculated by
this method vary in different trials and with different lengths of
time-window.

3 BACKGROUND ON ANN-TO-SNN
CONVERSION

ANN-to-SNN conversion generally involves training an ANN and
then converting it into a rate-coded SNN. Usually, normalization of
weights and biases is applied to reduce the accuracy loss originat-
ing from the different neuronal dynamics in artificial and spiking
neurons [3, 18].

When the activation function in the ANN is ReLU, the weights
wp, and biases by, in layer n are normalized as A,—1/A, * w, and
bn /An respectively [18]. The issue of thresholds is ignored and is set
arbitrarily to 1 for all spiking neurons. A, is the maximum activation
value in the artificial neurons of layer n, and A is set to 1. With this
parameter normalization, the weights and biases in layer n will be
scaled by 1/, to map the activation values of the artificial neurons
to the output firing rates of the spiking neurons. In addition, the
weights need to be scaled by A,,—1 to compensate for the effect of

the scaling in previous layers. This additional scaling stems from
the fact that in neural networks, weights receive information from
the previous layer whereas biases are fed directly into the current
layer, therefore only the weights are affected by the scaling in the
previous layer. If using a chain rule to accumulate the impact of the
scaling in all previous layers, the weight normalization equation
will have the same scale factor as in the bias normalization equation:

L Ak 1
~ -1
Wn = ——— kWp = T %W 1
n ﬂ W= e (M
Batch normalization (BN) scales the inputs of artificial neurons
according to the input distributions and learnable parameters. These
computations are linear, so a BN layer can be modeled by weight
and bias scaling in SNNs [18].

";‘;n = Y_n * Wp (2)
On
—_ Yn
bp = — % (bn — pin) + P 3
On

4 TWO CHALLENGES IN APPLYING THE
STANDARD IF MODEL TO DEEP SNNS

The difficulties in using the standard IF model after ANN-to-SNN
conversion come from the “firing rate degeneration" phenomenon
in deep SNNs. Figure 1(a) illustrates the response curve of the
standard IF model to constant current injection and a comparison
with the target response curve, e.g. ReLU, in ANNs. We can see
that in this figure the shape of the IF response curve is unevenly
stepped and a gap exists between these two curves.

The stepped shape can almost be eliminated when the input is
noisy. The noisy input can be generated by changing constant cur-
rent injection to Gaussian current injection. In deep SNNs, the input
of a spiking neuron is noisy as well since it receives randomly gen-
erated spikes from spiking neurons in the previous layer. A typical
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Figure 2: The firing rate degeneration phenomenon on deep
SNN . The figures with labels (a) to (d) show the response
curves in layers 1, 2, 6 and 8 respectively. The neural model
is the standard IF model and the weights are normalized by
the traditional parameter normalization method [18].

response curve of the IF model smoothed by noisy input is shown
in figure 1(b). We can see that the response curve of the IF model is
now similar to ReLU, especially when the input value is small. How-
ever, the output firing rate is still lower than the expected ReLU-like
shape; we call it the "firing rate degeneration" phenomenon in the
IF model. This phenomenon imposes two challenges to deep SNNs
that are converted from ANNs:

(1) The degenerated firing rate in one layer generates a ripple
effect in subsequent layers. More specifically, with the network
going deeper, the spike firing rate range gradually moves towards
a lower region. (Figure 2). When the network is deep, the spiking
neurons in deep layers are rarely activated so require more time
steps to transmit the same amount of information, which eventually
leads to a long inference latency.

(2) When conducting data-based normalization, weights are
scaled additionally by a factor A,-1 more than the bias to com-
pensate for the weight scaling in the previous layer. Nevertheless,
since the response curve of the spiking neuron suffers from firing
rate degeneration (as well as its ripple effect in subsequent layers),
this scaling is actually bigger than it should be. For this reason, the
weights and biases are mismatched and, consequently, the inference
accuracy drops. In other words, the key problem is that the degree of
firing rate degeneration is inestimable, which makes all the weight
and bias normalization relying on deterministic calculation fail.

5 MCR-NORM

To overcome these challenges caused by firing rate degeneration,
and to achieve high-performance deep SNNs using the standard IF
model, we propose a normalization method called MCR-Norm, an
abbreviation of minimum chain rule normalization. The “minimum”
in this term emphasizes that the firing rate range in every layer after
applying MCR-Norm is maintained identically at a low level. “chain
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Figure 3: The response curves of spiking neurons under dif-
ferent parameter normalization methods.

rule” emphasizes that the normalization is performed layer-by-layer
under a chain rule.

The essence of MCR-Norm is that the accuracy of deep SNNs
depends on achieving a balance between weight and bias - by
scaling weights correctly; the inference latency of deep SNNs needs
to be reduced by preventing too low firing rates in deep layers - by
normalizing the firing rate to an identical range in all layers.

Figure 3 compares the response curves of spiking neurons in
MCR-Norm and other parameter normalization strategies. All these
approaches normalize thresholds proportional to the maximum
activation A. Note that this diagram is simplified to show the essence
of these parameter normalization methods. The real response curve
of spiking neurons has variation and noise. We can see that for
the same inputs, the spike firing rate after using MCR-Norm is 2.5
times smaller than data-based normalization and 7.5 times smaller
than percentile data-based normalization (if ignoring the 0.1% to
1% outlier neurons).

6 INSPIRATION FROM MACHINE LEARNING
AND CONSIDERATIONS OF
NEUROMORPHIC HARDWARE

The firing behaviour of spiking neuron can be controlled by one
hyper-parameter threshold: a high threshold causes a low output
firing rate and a low threshold results in a high output firing rate.
In MCR-Norm, we adjust weights (which is inversely equivalent to
changing thresholds) slightly to compensate for the effect of firing
rate degeneration in the IF neuron. Then the firing rate range is
identical in every layer, and biases can be normalized according to
this determined firing rate range.

The phenomenon of firing rate degeneration occurs in every
layer so the weights (thresholds) need to be tuned in each layer.
Inspired by batch normalization in ANNs which normalizes the
inputs in each layer to the same distribution, our normalization is
conducted layer-wise and the spike firing rate is normalized to the
same range.
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Figure 4: Inference accuracy loss after ANN-to-SNN conver-
sion and inference latency for different firing rates. The data
set is CIFAR-10 [18].

One main goal of neuromorphic hardware is conducting the
simulation of biological neural networks. The biological neural
network is naturally sparse and the maximum firing rate is below
200Hz [12], rather than 1000Hz as used in most SNN simulations.
From the hardware viewpoint, the construction of neuromorphic
hardware usually considers the worst situation during running.
For example, the highest spike rate that might be received by one
hardware node, and whether this traffic upper bound is the same in
different hardware nodes. This consideration of the highest firing
rate is reflected in our proposed MCR-Norm, where the firing rate
upper bound is limited to an identical low value in every layer.
Consequently, when the simulated results are applied to the real
neuromorphic hardware, the spike traffic upper bound is low and
identical in hardware nodes.

7 NORMALIZING WEIGHTS VS
NORMALIZING BIASES

To maintain the balance between weights and biases under the firing
rate degeneration phenomenon, there are two feasible solutions:
scaling weights to match biases, or scaling biases to match weights.
The latter solution can achieve a balance between parameters but
cannot solve the firing rate degeneration problem. With that in
mind, we choose to scale weights in our method.

8 LOW FIRING RATES VS HIGH FIRING
RATES

MCR-Norm scales weights to make the firing rate rage in every
layer identical. In this section, we quantitatively explore the optimal
firing rate range to achieve high performance. Under the same
experimental conditions (listed in the supplementary materials), we
adjust the upper bound of the firing rate range and record its impact
on the network performance, specifically, inference accuracy and
inference latency as shown in Figure 4. We can see that the accuracy
drops when the firing rate is high, while high latency appears at
low firing rates. The results suggest that unlike modified IF models,
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there is a trade-off inside the choice of the working zone of the
standard IF model. The balance point is approximately between
200Hz - 400Hz. This is in line with some biological observations that
neurons usually fire below 200Hz as the cost of spike generation is
high [12].

9 MCR-NORM EQUATIONS

The equations used in MCR-Norm are shown below. A, and 1,1
are the maximum activations in layer n and layer n — 1 respectively.
Compared with the traditional parameter normalization method,
there are three additional scaling factors gn—1, gn and h,—1 added
to the normalization equations. The subscript of these scale factors
represents the layer in which the scaling calculation happens. Since
the normalization is performed layer-by-layer, only two scale fac-
tors gn and hy, needed to be calculated in layer n. The value of Ag,
go and hy are set to 1.

Fn = Wy * A1 gn (4)
/1n *gn-1

~ B -

by = by, + 2zl 9n (5)
An - gn-1

To normalize weights in layer n, only the value of g, needs to be
determined, as g,—1 was derived in the previous layer. g, is found
by scanning different values of g, in layer n and choosing the one
that makes the maximum firing rate in this layer equal to the target,
e.g. 200Hz.

For the bias normalization in layer n, h,—1 needs to be deter-
mined besides g,—1 and g, calculated in weight normalization. The
scaling factor h,_1 is predefined to represent the target firing rate
in the previous layer n — 1, e.g. hy—1 is set to 0.2 if the target firing
rate range is (0, 200Hz).

According to Equation 4 and 5, the weights are normalized addi-
tionally by a factor A,,—1/hp—1 than biases. This additional scaling
compensates for the mapping in the previous layer n — 1 from the
ANN activation in the range of [0, A,—1] to the SNN firing rates
in the range of [0, hy—1/7]. More detailed information is in the
supplementary material.

10 MCR-NORM INPUT NORMALIZATION

In addition to normalizing the weights and biases inside the net-
work, the normalization of the inputs fed into the network also
has a major impact on the performance of the SNN. Previous SNN
normalization techniques skip the input normalization and start
the normalization from the first hidden layer [3, 18, 19]. The cor-
rectness of these normalization methods relies on the assumption
that the inputs to the ANN are in the range (0, 1) or (-1, 1), and
the normalized SNN inputs are in the range of (0, 1/7), which is
(0, 1000Hz) if the time constant 7 is 1ms. These two assumptions
are not always fulfilled, e.g. the inputs of CIFAR-10 after input nor-
malization in ANNS are in the range about (-2.2, 2.2), and the input
firing rate range of SNNs can be (0, 400Hz) in some configurations
[3].

To correct this fault in parameter normalization after ANN-to-
SNN conversion, and to enable the flexible configuration of input
firing rates, MCR-Norm is extended to include normalization in the
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Table 1: Network structures for MNIST and CIFAR-10

MNIST

28*28-64c3BN-128 c3BN-128 ¢3BN-p2-D0.1

-128 ¢3BN-256¢3BN-256¢3BN-p2-D0.1-256 c3BN
-512 ¢3BN-D0.1 -2048FC-D0.4-10FC
CIFAR-10

32*32"3-64c3BN-128c3BN-128c3BN-p2-D0.1

-128 c3BN-256¢3BN-p2-D0.1-256 c3BN- 256¢3BN
-p2-D0.1-512 ¢3BN-p2-D0.1-2048FC-D0.4-10FC

Table 2: Training parameters and hyperparameters of neu-
ral networks for MNIST and CIFAR-10.

Dataset MNIST CIFAR-10
Criterion Cross entropy | Cross entropy
Optimizer Adadelta Adadelta

Epochs 150 150
Batch size 100 100

Other techniques | Early stopping | Early stopping,
data
augmentation,
L2 regulator

input layer. This is achieved by considering that the input range
(0, Ap) in the ANN is linearly mapped to the input spike firing rate
range (0,go/7) in the SNN. Thus, the MCR-Norm equation starts in
the input layer rather than the first hidden layer. gy controls the
target firing rate range, e.g. go is set to 0.4 if the target input firing
rate range is (0, 400Hz). h¢ is simply set as 1. The normalization of
negative inputs is achieved in the same way by using signed spikes
[18].

11 EXPERIMENTAL SETUP

The datasets used here are MNIST and CIFAR-10 [8, 10]. The net-
work architectures are inspired by earlier work [8] and are given in
Table 1. There are several convolutional layers with BN layers to
extract features, and some fully-connected (FC) layers at the end.
With the deepening of the network, the number of convolution
channels increases but the size of channel decreases through av-
erage pooling layers. The size of the convolutions kernels is 3*3
and the size of the pooling kernels is 2*2. Spatial dropout is applied
after some pooling layers and the standard dropout is applied be-
fore the FC layers. The activation function used in these networks
is ReLU. The network parameters and hypermeters are shown in
Table 2. The MNIST inputs are in (0,1) and the CIFAR inputs are
pre-processed in three channels.

The spiking neuron model used here is the standard IF model
and the synapse model is the delta model [3]. We use a statistical
rate coding as the input of these networks to linearly map input
values to averaged firing rates. The spike generation of the rate
coding follows a Bernoulli distribution every time step. The time
resolution is 1 ms.
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Figure 5: The convergence time of the SNN on CIFAR-10.

All experiments are run on a computer with a Core i7 2.8 GHz
multi-core CPU, 8 GB RAM and a GTX1050Ti GPU. The operating
system on this computer is Windows10. The ANNs and SNNs are
built using Pytorch.

12 BENCHMARK RESULTS

MCR-Norm was tested on the MNIST and CIFAR-10 pattern recog-
nition data sets. The inference accuracy is compared with vari-
ous ANN-to-SNN conversion techniques in Table 3. We achieved
a state-of-the-art accuracy of 99.71% on MNIST, benefiting from
the powerful architecture and the use of the batch normalization
technique. More importantly, we achieved zero accuracy loss after
ANN-to-SNN conversion, without any modifications of the standard
IF model.

For CIFAR-10, we achieved an accuracy of 93.60%, which is the
best reported accuracy with the standard IF model up to now. It
shows approximately 2% accuracy improvement over SNNs built
using the standard IF model without biases and BN layers [19]. The
ANN-to-SNN conversion accuracy loss is 0.29%, which is better
than many methods using less biologically plausible neural models
[18, 20, 21]; however, our conversion accuracy loss is higher than
[7, 18] which uses the IF model with an extra membrane potential
reset mechanism.

13 INFERENCE TIME

The SNN takes 100 ms to converge to the final accuracy on MNIST
during inference. The inference latency of the SNN on CIFAR-10
is much longer than on MNIST. It takes 1,700 ms to reach the final
accuracy as shown in Figure 5. We compare our results on CIFAR-10
with a deep SNN that is converted from the same ANN model but
normalized using data-based normalization and uses the IF model
with subtraction mechanism [18]. The results are shown in Figure
5 and we can see that our method does not incur additional latency
during inference. What is more, the firing rate range is (0, 400Hz)
rather than (0, 1000Hz) appeared in data-based normalization and
percentile data-based normalization.
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Table 3: Accuracy loss on MNIST and CIFAR-10 with ANN-to-SNN conversion techniques.

Neuron type Bias | BN | Dataset | ANN Loss (%) | SNN Loss(%)
Original IF model (3] No | No | MNIST 0.86 0.90
IF model with subtraction mechanism [18] | Yes | Yes | MNIST 0.56 0.56
Standard IF model (this work) Yes | Yes | MNIST 0.29 0.29
IF model with subtraction mechanism [18] | Yes | Yes | CIFAR-10 8.09 9.15
Original IF model [19] No | No | CIFAR-10 8.3 8.45
IF model with soft reset [7] No | No | CIFAR-10 6.37 6.37
AMOS unit [20] Yes | Yes | CIFAR-10 7.07 7.58
FS neuron [21] Yes | Yes | CIFAR-10 7.01 7.58
Standard IF model (this work) Yes | Yes | CIFAR-10 6.11 6.40

14 CONCLUSIONS AND FUTURE WORK

We propose the “MCR-Norm” normalization method to tune param-
eters systematically after ANN-to-SNN conversion and, using that,
we achieved competitive accuracy on the MNIST and CIFAR-10
pattern recognition data sets using the standard IF model. As well as
the absolute accuracy of the deep SNN, the accuracy loss compared
with the original ANN after MCR-Norm is crucial to represent the
efficiency of ANN-to-SNN conversion. Thanks to the layer-wise
optimization, our accuracy loss is only 0.29% on CIFAR-10 and 0%
on MNIST.

The core of MCR-Norm is to control the firing rate range at a
low level, rather than allowing varying and/or high firing rates. We
show that a biologically plausible neuron model - specifically, the
standard IF model - naturally prefers a firing rate range close to the
one used by biological neurons. Our normalization approach also
paves the way to efficiently adopt SNNs on neuromorphic hardware
[6].

Future work will further extend the proposed MCR-Norm method
to more network architectures and tasks. On a similar network ar-
chitecture, CIFAR-10 has an obviously longer latency than MNIST.
We will explore the reasons behind this phenomenon to speed up
the SNN inference.

15 FUNDING

The research leading to these results has received funding from the
EU Flagship Human Brain Project (H2020 945539).

REFERENCES

[1] Yonggiang Cao, Yang Chen, and Deepak Khosla. 2015. Spiking deep convolutional
neural networks for energy-efficient object recognition. International Journal of
Computer Vision 113, 1 (2015), 54-66.

[2] Sergio Davies, Javier Navaridas, Francesco Galluppi, and Steve Furber. 2012.
Population-based routing in the SpiNNaker neuromorphic architecture. In The
2012 International Joint Conference on Neural Networks (IJCNN). IEEE, 1-8.

[3] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and
Michael Pfeiffer. 2015. Fast-classifying, high-accuracy spiking deep networks
through weight and threshold balancing. In 2015 International Joint Conference
on Neural Networks (IJCNN). ieee, 1-8.

[4] Chris Eliasmith, Terrence C Stewart, Xuan Choo, Trevor Bekolay, Travis De-
Wolf, Yichuan Tang, and Daniel Rasmussen. 2012. A large-scale model of the
functioning brain. science 338, 6111 (2012), 1202-1205.

[5] Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V Arthur, and
Dharmendra S Modha. 2015. Backpropagation for energy-efficient neuromorphic
computing. In Advances in neural information processing systems. 1117-1125.

[6] Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. 2014. The
spinnaker project. Proc. IEEE 102, 5 (2014), 652-665.

=

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. 2020. RMP-SNN: Resid-

ual Membrane Potential Neuron for Enabling Deeper High-Accuracy and Low-

Latency Spiking Neural Network. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 13558—13567.

[8] Seyyed Hossein Hasanpour, Mohammad Rouhani, Mohsen Fayyaz, and Moham-
mad Sabokrou. 2016. Lets keep it simple, using simple architectures to outperform
deeper and more complex architectures. arXiv preprint arXiv:1608.06037 (2016).

[9] Eric Hunsberger and Chris Eliasmith. 2015. Spiking deep networks with LIF

neurons. arXiv preprint arXiv:1510.08829 (2015).

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278—

2324.

[11] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. 2016. Training deep spiking
neural networks using backpropagation. Frontiers in neuroscience 10 (2016), 508.

[12] Peter Lennie. 2003. The cost of cortical computation. Current biology 13, 6 (2003),
493-497.

[13] Qian Liu, Yunhua Chen, and Steve Furber. 2017. Noisy softplus: an activation
function that enables snns to be trained as anns. arXiv preprint arXiv:1706.03609
(2017).

[14] Wolfgang Maass. 1997. Networks of spiking neurons: the third generation of
neural network models. Neural networks 10, 9 (1997), 1659-1671.

[15] Wolfgang Maass, Prashant Joshi, and Eduardo D Sontag. 2007. Computational
aspects of feedback in neural circuits. PLoS Comput Biol 3, 1 (2007), e165.

[16] Emre O Neftci, Charles Augustine, Somnath Paul, and Georgios Detorakis. 2017.
Event-driven random back-propagation: Enabling neuromorphic deep learning
machines. Frontiers in neuroscience 11 (2017), 324.

[17] Peter O’Connor and Max Welling. 2016. Deep spiking networks. arXiv preprint
arXiv:1602.08323 (2016).

[18] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and

Shih-Chii Liu. 2017. Conversion of continuous-valued deep networks to efficient

event-driven networks for image classification. Frontiers in neuroscience 11 (2017),

682.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. 2019.

Going deeper in spiking neural networks: Vgg and residual architectures. Frontiers

in neuroscience 13 (2019), 95.

Christoph Stockl and Wolfgang Maass. 2019. Recognizing Images with at most

one Spike per Neuron. arXiv preprint arXiv:2001.01682 (2019).

Christoph Stockl and Wolfgang Maass. 2020. Optimized spiking neurons can

classify images with high accuracy through temporal coding with two spikes.

arXiv preprint arXiv:2002.00860 (2020).

Evangelos Stromatias, Daniel Neil, Michael Pfeiffer, Francesco Galluppi, Steve B

Furber, and Shih-Chii Liu. 2015. Robustness of spiking deep belief networks to

noise and reduced bit precision of neuro-inspired hardware platforms. Frontiers

in neuroscience 9 (2015), 222.

=
2

=
o)

N
=

[
-

&
I,

A EXPERIMENTAL SETUP FOR IDENTICAL
FIRING RATES

A toy model is built to explore the optimal identical firing rate range.
The data set is CIFAR-10. The network architecture is shown in
Table 3. This ANN model only has weights and does not use biases
and the batch normalization technique, to avoid the problem of
weight-bias mismatch after conversion to SNN. After ANN-to-SNN
conversion, the SNNs are built using the standard IF model with
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a time constant of 1ms and are normalized to different firing rate
ranges as shown in Figure 4. The baseline accuracy is 89.43%.

B DETAILED INFORMATION ABOUT
MCR-NORM

In addition to calculating the maximum activation, in each layer,
MCR-Norm needs to scan g, until obtaining the desired firing rate
range. The scanning operation is computationally expensive and it
is not feasible to scan all possible values. To deal with this problem,
we apply two techniques:

(1). Since the scale factor g, is positively related to the upper
bound of the firing rate range in layer n, some techniques such as
dichotomy can be used to reduce the computational complexity to
get the target firing rate range. After using dichotomy, the deep SNN
needs an average of a few thousand of time steps to get the correct
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scale factor g, in each layer. It is around the same computational
complexity as Spike-Norm.

(2) We can also choose to conduct the scanning operation on the
calibration set rather than on the whole training set. This technique
can make MCR-Norm a few orders of magnitude faster, and our
results show that using the scale factors gotten on the calibration
set works well on the test set.

During our experiments, we found that fine-tuning h, can achieve
better accuracy. This may be because the response curve of real
spiking neurons is not exactly linear even when the firing rate
range is low. Due to this reason, the predefined h, may not be the
optimal value but need a small amount of fine-tuning around.

The idea behind the MCR-Norm to manage the firing rate range
layer-wise can be applied to other neuron models as well. When
the neuron model is the IF model with an extra reset mechanism
and the input is analog input, g, will be predefined as h, without
the need to be scanned and fine-tuning.
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