
Efficient Biologically-Plausible Training of Spiking Neural
Networks with Precise Timing

Richard Boone
richardboone@ucsb.edu

University of California, Santa
Barbara

Santa Barbara, California, USA

Wenrui Zhang
wenruizhang@ucsb.edu

University of California, Santa
Barbara

Santa Barbara, California, USA

Peng Li
lip@ucsb.edu

University of California, Santa
Barbara

Santa Barbara, California, USA

ABSTRACT
Spiking Neural networks (SNNs) are well suited to implementation
on energy-efficient neuromorphic processors and to imitation of
biological systems. However, promising backpropagation methods
have been developed for SNNs, they tend to be either not biologi-
cally plausible or to be computationally complex. In this paper we
present two biologically plausible alternatives to backpropagation
while retaining high temporal precision for SNN training. We show
distinct tradeoffs between complexity, accuracy, and amenability
to deployment on a neuromorphic processor of several training
methods. Finally, We suggest exploration of biologically plausible
methods to enable low complexity training on resource-constrained
neuromorphic hardware.

KEYWORDS
Neural networks, spiking neural networks, training, biological plau-
sibility

ACM Reference Format:
Richard Boone, Wenrui Zhang, and Peng Li. 2021. Efficient Biologically-
Plausible Training of Spiking Neural Networks with Precise Timing. In
International Conference on Neuromorphic Systems 2021 (ICONS 2021), July
27–29, 2021, Knoxville, TN, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3477145.3477147

1 INTRODUCTION
In recent years, Spiking Neural Networks (SNNs) have gathered
interest as a brain-inspired computing model. Spike-based opera-
tions allow for three significant advantages over traditional neural
networks. First, SNNs allow for simple encoding of temporal in-
formation, which in conventional non-spiking artificial neural net-
works (ANNs) would require complex internal structures such as
LSTM [11]. Second, SNNs are well adapted to work on low-power
neuromorphic hardware as has recently been demonstrated by
IBM’s TrueNorth [1] and Intel’s Loihi [6]. Finally, SNNs provide a
much more accurate model for modeling biological neurons, giving
them more accurate applications in neuroscience.

Primarily due to the prevalence of backpropagation in tradi-
tional neural networks, backpropagation-based method have been

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICONS 2021, July 27–29, 2021, Knoxville, TN, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8691-3/21/07.
https://doi.org/10.1145/3477145.3477147

the main focus of many aspects of learning research in spiking
neural nets. In recent years many methods have been developed for
backpropagation in spiking neural networks [4, 13, 17–19, 22, 24–
27].

While backpropagation algorithms have been shown to be very
effective in some situations, learning using backpropagation is
not biologically plausible in that it is very dissimilar to any known
methods present in the brain. Additionally, learning using backprop-
agation is usually much more complex than alternative learning
methods. Alternative learning methods such as Direct Feedback-
Alignment (DFA) [20], Kollen-Pollack (KP) [14], and Direct Kollen-
Pollack (DKP) [5] have been developed to simplify the learning
process or to improve biological plausiblility. While these methods
are simpler than any known biological processes, their learning
methods can be plausibly mapped to known brain structures. How-
ever, most of these methods have been used primarily in traditional
neural networks, and not in spiking neural networks.

Backpropagation-based methods in SNNs have historically been
limited by the computation of local gradients due to the discontinu-
ity of spike activations and spike timing. Recent work has greatly
simplified the effective training of deep SNNs by improving local-
ized gradient calculation by accounting for the discontinuity of
spike timings [27]. The resulting TSSL-BP method has allowed for
efficient learning in short time windows for some networks and
improved learning even when long time windows are included [27].

While this method shows great promise in the training of com-
plex neural networks, it is not biologically plausible and it gets
increasingly complex in networks of long time periods. While other
methods such as pruning have been proposed to limit the complex-
ity of networks, such as pruning, these methods do not consider
temporal optimizations[3]. We propose two optimizations to the
gradient computation presented in [27] and propose two meth-
ods by which we can utilize this method for biologically plausible
learning with high temporal precision, especially in neuromorphic
environments.

In this work we propose two new methods, TSSL-DFA, an exten-
sion of [20] and TSSL-KP, an extension of [14], for training spiking
neural nets. Using the local gradients demonstrated by [27] we show
that both methods can near the accuracy of TSSL-BP under certain
situations while maintaining biological plausibility, and in the case
of TSSL-DFA greatly reducing the complexity of the required feed-
back algorithms. We assess the complexity of these algorithms to
show their usefulness under neuromorphic hardware. Additionally,
we propose a method by which we reduce the timing complexity of
[27] for more efficient training of complex neuromorphic systems.

https://doi.org/10.1145/3477145.3477147
https://doi.org/10.1145/3477145.3477147
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3477145.3477147
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3477145.3477147&domain=pdf&date_stamp=2021-10-13


ICONS 2021, July 27–29, 2021, Knoxville, TN, USA Boone et al.

2 BACKGROUND
2.1 History of backpropagation and learning

methods in SNNs
Onemethod for training SNNs has historically been to train anANN,
then adapt the weights and activation functions as necessary to
work on SNNs[7, 8, 12, 21]. While this method can exploit the more
effective training of an ANN, it has shown significant limitations
due to the conversion process creating significant errors due to
forward propagating approximation errors and due to an inability
to effectively train SNNs for temporal data, a task for which they
are specialized.

One of the earliest methods for applying backpropagation-based
learning to SNNs was spikeprop [4]. Spikeprop showed some im-
provements over alternative methods at the time, but was limited
in that each neuron was only allowed to fire once per task, severely
limiting the applications available, especially for time-variant data.
Alternative methods similar to spikeprop have been explored. How-
ever, none of these methods have demonstrated significant perfor-
mance on learning tasks.

Following spikeprop, a number of alternative methods for learn-
ing have been developed that historically reached competitive levels
of performance including [13], [24], [17], and [22]. However, all
of these used some sort of surrogate method for evaluating the
gradient of a given neuron at a given time. While these methods
have been shown to be effective in some situations, they are all out-
performed by [27] in either pure performance, training efficiency,
or both.

2.2 Direct Feedback-Alignment
Direct Feedback-Alignment (DFA) is a learning method originally
implemented in [20] for directly pathing feedback from the er-
ror function of a network to each layer of the network. DFA gets
feedback to hidden layers by multiplying the output of the error
function on the final layer with number of neurons o with a ran-
domized matrix of size o ×m where m is the number of output
neurons of a given layer. This returns a vector of sizem which is
then used as the error at the output of the hidden layer. DFA then
computes the weight updates identically to standard backpropaga-
tion methods. Because the feedback path present in DFA is entirely
separated from the feedforward pathway, it is more biologically
plausible. Additionally, DFA provides two distinct improvements
over traditional backpropagation. First, the feedback pathway can
be entirely parallelized allowing for increased training speed as
the network does not have to delay for a full backward pass, as
in BP. Second, the overall complexity of the feedback algorithm
is significantly reduced. As DFA is both biologically plausible and
greatly reduced in complexity as compared to BP, it presents signif-
icant advantages for implementation in spiking neural networks.
Because SNNs offer significant advantages when implemented on
neuromorphic hardware and because they offer one of the best
methods for simulation of biological neurons they benefit much
more from these advantages than traditional ANNs.

2.3 Kollen-Pollack
Kollen-Pollack (KP) is a feedback method originally developed in
[14] as a biologically plausible alternative to backpropagation. KP
works by passing error terms backward through a feedback path
parallel and identical to the existing network, but propagating
backward instead of forward. Because the backward network uses
different weights than the forward network and the feedback path-
way is entirely separated, KP is considered a biologically plausible
method of feedback. Additionally, [23] showed that KP can match
the capabilities of BP in many situations on ANNs, allowing for bi-
ological plausibility without any significant loss of accuracy. While
KP does not show the significant complexity reductions of DFA, its
biological plausibility and significant accuracy make it similarly
ideal for implementation on spiking neural networks.

2.4 Model for spiking neurons
Weuse a leaky integrate and fire neuronal model as shown in [9]. An
input spike train from presynaptic neuron j is expressed by: sj (t) =∑
t (f )j

δ (t−t
(f )
j ), where t (f )j represents a particular presynaptic firing

time. The presynaptic spikes are converted into a postsynaptic
current (PSC) using equation (1) whereui (t) represents the neuronal
membrane voltage at a given time point t for a postsynaptic neuron
i that is connected with neuron j.

τm
dui (t)

dt
= −ui (t) + R

∑
j
wi jaj (t) + ηi (t) (1)

Here R and τm represent the leaky resistance and the time constant
of the neuron respectively, andwi j represents the synaptic weight
of presynaptic neuron j when applied to postsynaptic neuron i .aj (t)
similarly represents the PSC of presynaptic neuron j as defined in
equations (2) and (3). Finally, ηi (t) represents the reset function of
the network as defined in equation (2).

aj (t) = (ϵ ∗ sj )(t), ηi (t) = (ν ∗ si )(t) (2)
Here ϵ(·) is the synaptic response kernel. We use a first order

synaptic response kernel defined in (3). ν (·) is the reset kernel by
which the neuron resets after a spike. The reset kernel reduces the
membrane potential ui [t] to 0.

τs
aj (t)

dt
= −aj (t) + sj (t) (3)

Because all simulations here are performed in discrete time, we
discretize (1) into (4). Two significant simplifications are performed
here. First, R and τm are consistent across all neurons, and so can be
treated as part of the synaptic weightwi j . This allows the removal
of such terms from the synaptic potential increase computation.
Second, we use a fixed step size 1ms which removed any ∆T term.

ui [t] = (1 −
1
τm

)ui [t − 1] +
∑
j
wi jaj [t] + ηi [t] (4)

2.5 TSSL-BP
As illustrated in Fig. 1, Temporal Spike Sequence Learning via Back-
propagation (TSSL-BP) [27] is a backpropagation method specific
to spiking neural networks. TSSL splits the gradient at the neuron
into two disparate sections.



Efficient Biologically-Plausible Training of Spiking Neural Networks with Precise Timing ICONS 2021, July 27–29, 2021, Knoxville, TN, USA

Figure 1: Visualization of TSSL-BP.

First is the inter-neuron dependency. Inter-neuron dependency
is the dependency of a postsynaptic neuron on the spikes of a
presynaptic neuron. Prior to backward propagation, this means that
inter-neuron dependency can be calculated as the dependency of a
postsynaptic neuron on the set of input currents to the neuron. The
core of the computation involved is to capture the dependency of
the postsynaptic current (PSC) a(l )i generated by each presynaptic
neuron i in layer l at time tk on the membrane potential of the
neuron at one of its firing times tm . Note that each PSC is part of
the input currents to the postsynaptic neurons in layer l + 1, and
hence a contributor to inter-neuron dependency. This dependency
is represented in equation (5) where a

(l )
i [tk ] is the PSC at time

tk , tm is the time of a presynaptic spike, and u(l )i is the membrane
potential of the presynaptic neuron i . For the purpose of simplifying
computation, this can be split into the two equations shown in (6).

ϕ
(l )<1>
i (tk , tm ) =

∂a
(l )
i [tk ]

∂tm

∂tm

∂u
(l )
i [tm ]

(5)

∂a
(l )
i [tk ]

∂tm
=
∂(ϵ ∗ s

(l )
i [tm ])[tk ]

∂tm
,

∂tm

∂u
(l )
i [tm ]

=
−1

∂u (l )
i [tm ]

∂tm

(6)

The second portion of TSSL is intra-neuron dependency. Intra-
neuron dependency is the dependency of a neuron on its own post-
synaptic spikes. Because a postsynaptic spike resets the synaptic
potential of a neuron, the chances of any potential future spikes are
reduced by the existence of a postsynaptic spike. The intra-neuron
dependency at a time tk is represented by (7) where ν represents
the reset kernel, and tm and tp are the times of previous spikes with
no spikes between them.

ϕ
(l )<2>
i (tk , tm ) = ϕ

(l )
i (tk , tp )

∂(ν ∗ s
(l )
i [tm ])[tp ]

∂tm

∂tm

∂u
(l )
i [tm ]

(7)

3 PROPOSED BIOLOGICALLY PLAUSIBLE
TSSL-DFA AND RT-TSSL-DFA METHODS

The first of our new algorithms consists of adaptingDFA to a spiking
neural network context. While DFA has been demonstrated as a
biologically plausible method for training conventional ANNs [20]

and employed for spike-train level on-chip training of SNNs [16],
it has not yet been successfully adapted to training of SNNs with
high temporal precision. We propose two significant changes to
the original DFA algorithm. First, we adapt DFA to an SNN context,
feeding error from the output layer back to each spiking hidden
layer as illustrated in Fig. 2. For the local gradient, we use the
Temporal Spike Sequence Learning via Backpropagation (TSSL-BP)
method demonstrated in [27]. As with traditional DFA, this allows
the learning function to use both the output error of the network
and the local gradient of a given layer to effectively generate weight
updates.

Under TSSL-BP, the loss δ (l )[tm ] at a given layer is given as
(8) where l is the current layer. Under TSSL-DFA, we edit this to
directly apply feedback from the output error function to the hidden
layer l using a random matrixM . This results in equation (9) where
E[tk ] is the error at the output layer at time k .

δ (l )[tm ] = (W (l+1))T
Nt∑
k=m

∂a(l )[tk ]

∂u(l )[tm ]
δ (l+1)[tk ]. (8)

δ (l )[tm ] =

Nt∑
k=m

∂a(l )[tk ]

∂u(l )[tm ]
(M(l )E[tk ]). (9)

Figure 2: Proposed TSSL-DFA for SNN training.

The second significant change is a reduction in complexity of the
original TSSL algorithm. Like many other BP methods, TSSL-BP
scales with the square of time. It is not very efficient for datasets
with a large time component. To combat this, we limit the amount
of time backward TSSL considers when it is applied. We call this
additional time reduction Reduced Time Temporal Spike Sequence
Learning (RT-TSSL), and refer to its variants here as RT-TSSL-BP
and RT-TSSL-DFA. This reduction in time reduces the complexity
to scaling linearly with time as shown in the bottom-right subfigure
of Fig. 2. When applying this change, the RT value is represented
by Nr , and changes equation (9) to (10). Additionally, the intra-
neuron effects present in TSSL-BP do not significantly contribute
to the accuracy of the learning process and so have been removed
in RT-TSSL-DFA. These reductions together leave us with a learn-
ing algorithm significantly less complex than TSSL-BP while also
gaining the benefit of biological plausibility.



ICONS 2021, July 27–29, 2021, Knoxville, TN, USA Boone et al.

Table 1: Number of multiplies in one training iteration of one sample for two example layers

Example convolution layer Example FC layer
Number of layer inputs (n) 784 1440
Number of layer outputs (m) 1440 100

Network outputs (o) 10 10
Convolution dimension (p and q) 5 N/A

Outputs channels (r) 10 1
Stride (s) 2 N/A
Time (t) 5 5

Time reduction (l) 3 3
Forward pass 180000 720000

TSSL gradient calculations 93600 6500
RT-TSSL gradient calculations 43200 3000

Backward propagation 180000 720000
DFA propagation 72000 5000
Weight updates 180000 720000

TSSL-BP and TSSL-KP 633600 2166500
RT-TSSL-BP and RT-TSSL-KP 583200 2163000

RT-TSSL-DFA 475200 1448000
RT-TSSL-BP and RT-TSSL-KP percentage reduction 7.95% 0.16%

RT-TSSL-DFA percentage reduction 25.00% 33.16%

δ (l )[tm ] =

min(m+Nr ,Nt )∑
k=m

∂a(l )[tk ]

∂u(l )[tm ]
(M(l )E[tk ]). (10)

4 PROPOSED BIOLOGICALLY PLAUSIBLE
TSSL-KP AND RT-TSSL-KP METHODS

The second of our new algorithms involves adapting KP to a spiking
neural network context as shown in Fig. 3. Just as with the origi-
nal KP algorithm, we apply localized gradients on a parallel path
backward. These localized gradients come in the form of the TSSL
algorithm just as with TSSL-DFA and are simultaneously used both
for localized weight updates and updates to the backward propa-
gation of gradients. When applying this algorithm with the TSSL
gradients, we edit equation (8) to (11) where Bl+1 is a matrix of
shape (W (l+1))T . Just as with the original KP algorithm, the weight
updates generated by δ (l )[tm ] are applied to both the B andW
matrices.

Figure 3: The proposed TSSL-KP for training SNNs.

δ (l )[tm ] = (B(l+1))
Nt∑
k=m

∂a(l )[tk ]

∂u(l )[tm ]
δ (l+1)[tk ]. (11)

Just as with TSSL-DFA we apply a time limit on TSSL-KP and
call the related algorithm RT-TSSL-KP. In a similar manner this sim-
plifies (11) to (12). This again reduces the complexity from scaling
with the square of time to scaling linearly with time. Similarly to
DFA, KP allows biological plausibility as a learning algorithm due
to its inherently separated feedback pathway.

δ (l )[tm ] = (B(l+1))
min(m+Nr ,Nt )∑

k=m

∂a(l )[tk ]

∂u(l )[tm ]
δ (l+1)[tk ]. (12)

5 COMPLEXITY ANALYSIS
Here we use number of multiplies as a surrogate for hardware com-
plexity. While this is not a perfect metric, multiplication operations
would be both the most prevalent and most complex operation
required in most neuromorphic processors, and so provide a good
analogue for hardware complexity in addition to providing a simi-
larly good estimate for the time complexity of training in simulated
environments. For the purposes of this paper, complexity calcula-
tions will be limited to fully-connected and convolutional layers as
no more complex layers were used in the results and layers of sim-
pler complexity, such as dropout, do not significantly contribute to
training complexity. Lastly, all calculations are for a single iteration
of a single sample during training.

5.1 Forward Propagation
Because our changes only involve the feedback methods present,
forward propagation is identical for all methods demonstrated in
this paper. Forward propagation can be split into two significant



Efficient Biologically-Plausible Training of Spiking Neural Networks with Precise Timing ICONS 2021, July 27–29, 2021, Knoxville, TN, USA

Table 2: Full network complexity (number of multiplies)

MNIST Network DVSG (time limit 5) DVSG (time limit 20) DVSG (time limit 40)
TSSL-BP and TSSL-KP 2862250 1044339300 1044339300 1044339300

RT-TSSL-BP and RT-TSSL-KP 2784750 950826900 955533900 961809900
RT-TSSL-DFA 1957250 636290400 640997400 647273400

RT-TSSL-BP and RT-TSSL-KP percentage reduction 2.71% 8.95% 8.50% 7.90%
DFA percentage reduction 29.72% 33.08% 32.92% 32.70%

parts in a spiking neural network. First, weights are used to apply
forward propagation in a method roughly identical to that in an
ANN. For any 2D convolution layer with a known input shape,
convolution size p by q, stride s , padding p, and number of output
channels r we have a deterministic number of total outputsm. Com-
plexity can be defined either by the input shape and convolution
parameters p,q,s ,p, and r , or by the output sizem and by the convo-
lution size p and q. For the sake of simplicity in equations, we use
the number of outputs neuronsm as a surrogate for the input size
and shape, stride, padding, and number of output channels. Then,
in a 2D convolution layer with convolution height p, convolution
width q,m outputs, and t time points, we get a single convolution
for each output in each time step, giving a total number of mul-
tiplies equal to pqmt . Similarly, in a fully-connected layer with n
inputs, we get a total number of multiplies equal to nmt .

Second, each layer requires computation of the spike-level out-
puts of the layer. However, because of the nature of the synaptic
kernel, spike-level outputs can be generated using only add and
shift operations, making the complexity of the required hardware
negligible when compared to the forward propagation.

This gives a forward propagation complexity equal to O(pqmt)
and O(nmt) for convolution layers and fully-connected layers, re-
spectively.

5.2 TSSL local gradient calculation
TSSL local gradient calculations account for the gradient between
the output of the convolutional or linear portion of a network and
the spiking output of a network. This means that the gradients are
used regardless of the type of layer present. The TSSL calculations
can be separated into three different parts. First, the intra-neuron
calculation requires a multiplication across the output of a layer and
across a doubled time dimension due to the relation of each spike to
all previous spikes. This gives a multiplication complexity ofO(mt2)
following the previous variable conventions. Under the Reduce
Time (RT) algorithms, the inter-neuron calculation is removed.

Second, the inter-neuron and intra-neuron are combined with
the learning gradients from the rest of the network. This again
involves a multiplication across both time dimensions resulting
again in a regular complexity of O(mt2). When applying the TR
algorithms, each timestep is only multiplied across a limited time l
which results in a complexity of O(mlt).

Finally, the application of the above calculations to the latter half
of (6) requires three multiplications of complexitymt . This gives a
total complexity of local gradient calculation for the complex and
TR cases of O(2mt2 + 3mt) and O(mtl + 3mt), respectively.

5.3 Backward propagation in BP and KP
When using a backpropagation-based algorithm, backpropagation
takes a significant portion of the complexity. Because passing back-
ward is simply the inverse of the forward pass, the complexity
remains the same as the forward pass equations. This gives the
backward complexity to be O(pqmt) and O(nmt) for convolution
and fully-connected layers, respectively.

5.4 DFA backpropagation
DFA backpropagation is much simpler as it only requires a matrix
multiplication of the error on the output with the layer-specific
backward matrix. Similar to a fully-connected layer, DFA backward
propagation gives a complexity of O(omt) where o represents the
total number of classification categories for the network.

5.5 Weight updates from the gradient at each
layer

In all learning methods, a weight update must be generated from
the error gradient at the output of each individual layer. For fully
connected and convolutional layers these are O(nmt) and O(pqmt)
respectively. Because these updates are local to each layer, this
calculation is required for all feedback methods.

5.6 Overall Complexity of a Convolution Layer
Here we use the equations from the previous sections to produce
three different complexity options for a convolutional layer. The
most complex involves a backpropagation algorithm without TR.
Combining equations of the previous sections we get a complexity
equal to O(pqmt + 2mt2 + 3mt + pqmt + pqmt), which simplifies
to O(3pqmt + 2mt2 + 3mt). For RT-TSSL-BP and RT-TSSL-KP we
can reduce the complexity of the local TSSL gradients, giving a
complexity of O(3pqmt +mtl + 3mt). Finally, for RT-TSSL-DFA we
remove the backpropagation element of complexity O(pqmt) and
replace it with the direct feedback of complexityO(omt). This gives
a total RT-TSSL-DFA complexity ofO(2pqmt+omt+mtl+3mt). The
complexity of one example convolution layer is shown in table 1.

5.7 Overall Complexity of a Fully Connected
Layer

For FC layers we again separate complexity into three categories.
For BP-based learning algorithms without RT, we get a layer level
complexity ofO(nmt+2mt+2mt2+3mt+nmt+nmt). This simplifies
toO(3nmt+5mt+2mt2).Whenwe apply RT to a BP-based algorithm,
we remove the 2mt2 term and insert anmtl term to get O(3nmt +
5mt +mtl) complexity for an FC layer with a BP-based algorithm
and RT. Finally, for RT-TSSL-DFA, we remove the backpropagation
feedback term of complexity O(nmt) and replace it with the DFA



ICONS 2021, July 27–29, 2021, Knoxville, TN, USA Boone et al.

Table 3: MNIST Results over 10 trials

Standard Reduced Time (l=3)
TSSL-BP TSSL-KP TSSL-DFA RT-TSSL-BP RT-TSSL-KP RT-TSSL-DFA

Average 98.79 98.85 97.27 98.78 98.85 97.59
Max 98.95 98.96 97.67 98.87 98.92 97.99
Min 98.63 98.77 96.61 98.67 98.8 96.97

All networks: 10C5S2->FC100->FC10
10C5S2: Convolutional layer with 10 5x5 filters, stride 2, FC100: Fully Connected layer with 100 outputs

feedback term of complexity O(omt). This gives a total complexity
for RT-TSSL-DFA in a fully connected layer of O(2nmt + omt +
5mt +mtl). The complexity of one example convolution layer is
shown in table 1.

6 RESULTS
We simulated our algorithms on two separate networks among two
datasets that are commonly used in the neuromorphic computing
community.

6.1 Results on MNIST dataset
On MNIST [15] we use a single, three-layer network. The layers
are: a convolution layer with stride 2, convolution size 5x5, and 10
output channels, a fully connected layer with 100 output neurons,
and a fully connected layer with 10 output neurons.We compare the
results using TSSL-BP, TSSL-KP, TSSL-DFA, as well as our Reduced
Time versions, RT-TSSL-BP, RT-TSSL-KP, and RT-TSSL-DFA. We
run experiments of each algorithm 10 times and display the average,
minimum, and maximum accuracies achieved. We compare these
algorithms on an identical network size and show the tradeoffs
of each individual algorithm. In Table 3 we show two significant
findings. First, TSSL-DFA, while reducing complexity by roughly
30% as shown in table 2, still nears the performance of TSSL-BP and
TSSL-KP. Second, RT does not cause significant drops in accuracy
in TSSL-BP and TSSL-KP, while actually increasing accuracy in the
case of TSSL-DFA.

6.2 Results on DVS Gesture dataset
The Dynamic Vision Sensor Gesture dataset [2] is a set of record-
ings of 29 different individuals performing a set of specific gestures.
Because the dataset uses a dynamic vision sensor, which only trans-
mits data when pixels change value and because the data comes
over a period of time the dataset is well suited for testing spik-
ing neural nets. Each trial involves a subject performing one of
11 different gestures under one of three lighting conditions over
a period of 6 seconds. The task for this dataset is to classify the
action demonstrated by the subject. For the purpose of this paper
we apply two significant reductions to this dataset. First, we reduce
the temporal frequency of the data from every 1 us in the original
dataset to every 5ms , and second we reduce the total time over
which the action occurs by only using the first 1.5 seconds of each
video. These two steps reduce the number of timesteps required to
train the network, but lose some information and some temporal
resolution. Additionally, the preprocessing steps we adopt in this
work follow the ones in [22].

We use a single network size for all results, the same used in
[10]. The network includes in order: One pooling layer of size 2,
one fully connected layer with 512 output neurons, and one fully
connected layer with 11 output neurons.

We show two significant changes from [10]. First, our localized
gradient is based on the TSSL-BP method presented in [27] and
includes the RT additions presented in this paper whereas the other
authors used a BPTT-based method from [24]. Second, we add
two additional feedback methods, TSSL-KP and TSSL-DFA as alter-
natives to regular backpropagation. We run each of the learning
methods 5 times and display the average, minimum, and maximum
accuracy achieved by each method in Table 4.

We note three significant results from this comparison. First, both
TSSL-KP and TSSL-DFA, in addition to TSSL-BP, outperform STBP
[10] on the same network size even without any time limitations.
We believe that the improvements are due to the more effective use
of local TSSL gradients.

Second, once again as shown in the MNIST dataset, RT-TSSL-
DFA shows significant benefits under all shown levels of limited
time while greatly reducing complexity. Using a time limit of 20
time steps provided a performance improvement of approximately
2% over the standard implementation of DFAwhile providing a very
significant decrease in complexity. We also show that an increased
time limit of 40 time steps provides 1.6% jump in accuracy over
a time limit of 20 time steps, and a 3.6% increase over no time
limit. While TSSL-DFA does show a noticeable performance drop
over TSSL-BP, it does provide a tradeoff in reduced complexity by
approximately 33% as shown in table 2.

Finally, we show in table 4 that both RT-TSSL-BP, and RT-TSSL-
KP show minor increases in accuracy of less than 0.5% while also
showing in table 2 that both algorithms show an 8.5% decrease
in number of multiplies as compared to TSSL-BP and TSSL-KP
respectively.

7 CONCLUSION
In this paper we present two new main ideas. First, we present two
new biologically plauisible learning algorithms for SNNs, TSSL-
DFA, and TSSL-KP. TSSL-DFA is an advancement to Direct Feed-
back Alignment (DFA), originally presented in [20]. Using the local
gradients presented in [27] we apply DFA to spiking neural net-
works. This presents a biologically plausible alternative to TSSL-BP
using direct feedback. TSSL-KP is an advancement to the Kollen-
Pollack method (KP) originally presented in [14]. This presents a
biologically plausible alternative to TSSL-BP using a separate but
parallel feedback path.



Efficient Biologically-Plausible Training of Spiking Neural Networks with Precise Timing ICONS 2021, July 27–29, 2021, Knoxville, TN, USA

Table 4: DVSG Results

STBP [10] TSSL-DFA RT-TSSL-DFA TSSL-BP RT-TSSL-BP TSSL-KP RT-TSSL-KP
Reduced Time (l) N/A N/A 20 40 N/A 20 N/A 20

Average 76.53 78.40 80.14 87.29 87.36 85.97 86.46
Max 76.04 79.17 80.21 84.03 88.19 88.19 87.50 87.85
Min 73.96 76.74 77.43 85.76 86.46 83.68 84.38

All networks: P2->FC512->FC11
P2: Pooling layer 2, FC512: Fully Connected layer 512 outputs

Second, we present an optimization to the original TSSL-BP
algorithm to limit the complexity of the algorithm, both for the
original TSSL-BP and for the new TSSL-KP and TSSL-DFA meth-
ods. By limiting the time-based feedback of the original method
in our Reduced Time (RT) algorithm, we greatly reduce the com-
plexity of such algorithms while maintaining accuracy. We then
demonstrate a method by which we estimate the complexity of each
version of the feedback algorithm for integration onto neuromor-
phic hardware and show that our new algorithms, as well as the
time-based optimizations result in a possible decrease of roughly
30% in complexity on multiple different networks.

Using the new methods we show that TSSL-KP matches or ex-
ceeds TSSL-BP on some networks while TSSL-DFA is outperformed
by both but shows large reductions in complexity, allowing for trade-
off cases when placed on constrained or neuromorphic hardware.
Additionally, we demonstrate that the Reduced Time algorithm
either improves, or has very little impact on the accuracy of a given
network while simultaneously providing a reduction in complexity
in all shown cases.

ACKNOWLEDGMENTS
This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific
Computing Research under Award Number DE-SC0021319.

This paper was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liabil-
ity or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does
not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government
or any agency thereof.

REFERENCES
[1] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John

Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam,
et al. 2015. Truenorth: Design and tool flow of a 65 mw 1 million neuron pro-
grammable neurosynaptic chip. IEEE transactions on computer-aided design of
integrated circuits and systems 34, 10 (2015), 1537–1557.

[2] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry,
Carmelo Di Nolfo, Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau,

Marcela Mendoza, Jeff Kusnitz, Michael Debole, Steve Esser, Tobi Delbruck, My-
ron Flickner, and Dharmendra Modha. 2017. A Low Power, Fully Event-Based
Gesture Recognition System. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 7388–7397. https://doi.org/10.1109/CVPR.2017.781

[3] DavisW. Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John V. Guttag.
2020. What is the State of Neural Network Pruning? CoRR abs/2003.03033 (2020).
arXiv:2003.03033 https://arxiv.org/abs/2003.03033

[4] Sander M Bohte, Joost N Kok, and Han La Poutre. 2002. Error-backpropagation
in temporally encoded networks of spiking neurons. Neurocomputing 48, 1-4
(2002), 17–37.

[5] Brian Crafton, Abhinav Parihar, Evan Gebhardt, and Arijit Raychowdhury. 2019.
Direct Feedback Alignment with Sparse Connections for Local Learning. CoRR
abs/1903.02083 (2019). arXiv:1903.02083 http://arxiv.org/abs/1903.02083

[6] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
et al. 2018. Loihi: A neuromorphic manycore processor with on-chip learning.
IEEE Micro 38, 1 (2018), 82–99.

[7] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and
Michael Pfeiffer. 2015. Fast-classifying, high-accuracy spiking deep networks
through weight and threshold balancing. In Neural Networks (IJCNN), 2015 Inter-
national Joint Conference on. IEEE, 1–8.

[8] Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V Arthur, and
Dharmendra S Modha. 2015. Backpropagation for energy-efficient neuromorphic
computing. In Advances in Neural Information Processing Systems. 1117–1125.

[9] Wulfram Gerstner and Werner M Kistler. 2002. Spiking neuron models: Single
neurons, populations, plasticity. Cambridge university press.

[10] Weihua He, YuJie Wu, Lei Deng, Guoqi Li, Haoyu Wang, Yang Tian, Wei Ding,
WenhuiWang, and Yuan Xie. 2020. Comparing SNNs and RNNs on neuromorphic
vision datasets: Similarities and differences. Neural Networks 132 (2020), 108–120.
https://doi.org/10.1016/j.neunet.2020.08.001

[11] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[12] Eric Hunsberger and Chris Eliasmith. 2016. Training spiking deep networks for
neuromorphic hardware. arXiv preprint arXiv:1611.05141 (2016).

[13] Yingyezhe Jin, Wenrui Zhang, and Peng Li. 2018. Hybrid macro/micro level
backpropagation for training deep spiking neural networks. InAdvances in Neural
Information Processing Systems. 7005–7015.

[14] J.F. Kolen and J.B. Pollack. 1994. Backpropagation without weight transport. In
Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94),
Vol. 3. 1375–1380 vol.3. https://doi.org/10.1109/ICNN.1994.374486

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[16] Jeongjun Lee, Renqian Zhang, Wenrui Zhang, Yu Liu, and Peng Li. 2020. Spike-
Train Level Direct Feedback Alignment: Sidestepping Backpropagation for On-
Chip Training of Spiking Neural Nets. Frontiers in Neuroscience 14 (2020), 143.
https://doi.org/10.3389/fnins.2020.00143

[17] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. 2016. Training deep spiking
neural networks using backpropagation. Frontiers in neuroscience 10 (2016), 508.

[18] Hesham Mostafa. 2017. Supervised learning based on temporal coding in spiking
neural networks. IEEE transactions on neural networks and learning systems 29, 7
(2017), 3227–3235.

[19] Emre ONeftci, HeshamMostafa, and Friedemann Zenke. 2019. Surrogate gradient
learning in spiking neural networks. IEEE Signal Processing Magazine 36 (2019),
61–63.

[20] Arild Nøkland. 2016. Direct feedback alignment provides learning in deep neural
networks. Advances in Neural Information Processing Systems Nips (2016), 1045–
1053. arXiv:1609.01596

[21] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. 2019.
Going deeper in spiking neural networks: Vgg and residual architectures. Frontiers
in neuroscience 13 (2019).

[22] Sumit Bam Shrestha and Garrick Orchard. 2018. Slayer: Spike layer error reassign-
ment in time. In Advances in Neural Information Processing Systems. 1412–1421.

https://doi.org/10.1109/CVPR.2017.781
https://arxiv.org/abs/2003.03033
https://arxiv.org/abs/2003.03033
https://arxiv.org/abs/1903.02083
http://arxiv.org/abs/1903.02083
https://doi.org/10.1016/j.neunet.2020.08.001
https://doi.org/10.1109/ICNN.1994.374486
https://doi.org/10.3389/fnins.2020.00143
https://arxiv.org/abs/1609.01596


ICONS 2021, July 27–29, 2021, Knoxville, TN, USA Boone et al.

[23] Matthew Bailey Webster, Jonghyun Choi, and changwook Ahn. 2021. Learning
the Connections in Direct Feedback Alignment. https://openreview.net/forum?
id=zgGmAx9ZcY

[24] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. 2018. Spatio-temporal
backpropagation for training high-performance spiking neural networks. Fron-
tiers in neuroscience (2018).

[25] Friedemann Zenke and Surya Ganguli. 2018. Superspike: Supervised learning in
multilayer spiking neural networks. Neural computation 30, 6 (2018), 1514–1541.

[26] Wenrui Zhang and Peng Li. 2019. Spike-train level backpropagation for training
deep recurrent spiking neural networks. Advances in neural information processing
systems (2019).

[27] Wenrui Zhang and Peng Li. 2020. Temporal Spike Sequence Learning via Back-
propagation for Deep Spiking Neural Networks. Advances in Neural Information
Processing Systems 33 (2020).

https://openreview.net/forum?id=zgGmAx9ZcY
https://openreview.net/forum?id=zgGmAx9ZcY

	Abstract
	1 Introduction
	2 Background
	2.1 History of backpropagation and learning methods in SNNs
	2.2 Direct Feedback-Alignment
	2.3 Kollen-Pollack
	2.4 Model for spiking neurons
	2.5 TSSL-BP

	3 Proposed Biologically Plausible TSSL-DFA and RT-TSSL-DFA Methods
	4 Proposed Biologically Plausible TSSL-KP and RT-TSSL-KP Methods
	5 Complexity Analysis
	5.1 Forward Propagation
	5.2 TSSL local gradient calculation
	5.3 Backward propagation in BP and KP
	5.4 DFA backpropagation
	5.5 Weight updates from the gradient at each layer
	5.6 Overall Complexity of a Convolution Layer
	5.7 Overall Complexity of a Fully Connected Layer

	6 Results
	6.1 Results on MNIST dataset
	6.2 Results on DVS Gesture dataset

	7 Conclusion
	Acknowledgments
	References

