
Student Research Abstract: Microservices-based Systems
Visualization
Amr S. Abdelfattah

Baylor University
Waco, Texas

amr_elsayed1@baylor.edu

ABSTRACT
The evolution of decentralized microservice-based systems is chal-
lenging. These challenges are classified into static and dynamic
categories. Regarding the static perspective, documenting and visu-
alizing the fluid application topology is something few have been
able to accomplish. Building an architecture map of services design
is a complicated task in its interpretation rather than construc-
tion. Therefore, the system-centric and up-to-date view became
essential for such distributed systems. The dynamic perspective
considers the process of investigation and service path detection.
Therefore performing root cause analysis is a burdening task; such
that tracing data is needed to be put in the right context to facili-
tate the investigation. Moreover, visualizing these traces over the
traditional visualization techniques couldn’t be feasible with the
large number of microservices involved in the system. This paper
proposes a visualization concept for microservices-based systems
using the Augmented Reality (AR) technique, which merges these
static and dynamic behaviors into a single centric view. In addition,
we challenge the difficulty related to tracing and debugging an
issue in such distributed systems. This concept is designed to work
as a dynamic documentation and traceability platform for these
systems. A proof of concept and a research study are implemented
to show the viability and success of this proposal.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; Integrated and visual development environments;

KEYWORDS
Microservices Traceability, Microservices Visualization, Architec-
ture Reconstruction, Architecture Visualization, Augmented Reality

ACM Reference Format:
Amr S. Abdelfattah. 2022. Student Research Abstract: Microservices-based
Systems Visualization. In The 37th ACM/SIGAPP Symposium on Applied
Computing (SAC ’22), April 25–29, 2022, Virtual Event, . ACM, New York, NY,
USA, Article 4, 4 pages. https://doi.org/10.1145/3477314.3506963

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’22, April 25–29, 2022, Virtual Event,
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8713-2/22/04.
https://doi.org/10.1145/3477314.3506963

PROBLEM AND MOTIVATION
Microservice solutions are widely used but the fundamental tools
and perspectives to better observe and understand these systems are
still missing. The issues investigation process involves a sequence
of actions as follows: getting back to the services documentation
—which may be outdated— that should describe the accused mi-
croservice and its dependencies, figuring out the system logs and
traces data, trying to guess the failed scenario, then simulating
it to ensure the root cause of such issue. That requires engineers
to understand what happened across the entire service graph at
the time of the debugging, which seems to counter to the ethos of
microservices architectures in the first place.
Bogner et al. focused on this challenge in a systematic grey liter-
ature review [3]. They concluded that most painful challenges in
the microservices industry are the Service-cutting and No-System-
Centric views. Furthermore, these challenges are vital, especially
for large systems, for example, Amazon.com calls between 100-150
web services to build a page. As well as Netflix microservices ar-
chitecture supports 5 billion services calls per day, 99.7% of which
are internal [5]. Therefore, what is ideally required at the time of
debugging is a system-centric view that will help reduce the search
space and provide living documentation so that engineers can reach
the root cause with less effort.
One way to address this is to use the system itself as living documen-
tation and, consequently, visualize it in a tailored and detailed way
to show all the required information. The visual space limitation
especially in the 2D modeling is a critical challenge for visualizing
these architectures. Therefore, a novel approach is needed to face
these challenges in a tailored way for microservices nature. The
proposed approach involves Augmented Reality (AR) in this con-
text, which has multiple benefits, either for providing a limitless
rendering space, or for supporting collaborative activities which
are essential for system analysis practices.

BACKGROUND AND RELATEDWORK
Multiple contributions reveal that microservices research is still in
a formative stage [8, 9]. Moreover, a weak research dataset did not
consider crucial attributes for architecture analysis, howerver, over
the past few years, research has been conducted toward proposing
software visualization techniques and various taxonomies have
been published. A lot of investigation is done in the direction of em-
ploying the notation-based UML modeling (class diagram, package
diagram, interaction diagrams, and activity diagrams) for visualiz-
ing microservices-based systems, but they do not provide means
for representing the concern, goal, value chain, problem, and cause
[14], which indicates an unscalable visualization method. Multiple

ar
X

iv
:2

20
7.

12
99

8v
1 

 [
cs

.S
E

] 
 2

3 
Ju

l 2
02

2

https://doi.org/10.1145/3477314.3506963
https://doi.org/10.1145/3477314.3506963


SAC ’22, April 25–29, 2022, Virtual Event, Amr S. Abdelfattah

Figure 1: City Metaphore [12] Figure 2: Island Metaphore [10] Figure 3: VR for EA Models [7] Figure 4: Netflix Demo [11]

contributions are invested in Enterprise Architecture (EA) Model-
ing for solving this scaling challenge. Zhou et al. [14] summarized
that ArchiMate [4] is the most powerful EA modeling notation in
the visual expressiveness level, as is also being the most frequently
used by scholars. ArchiMate distinguishes itself from other mod-
eling languages by its enterprise modeling scope and its ability
to visualize business processes. However the ArchiMate does not
consider run-time operational details of the execution as important.
The missing information in the modeling languages and the limita-
tions of 2D rendering space promoted researchers to use metaphors
for visualizing software architectures. Wettel et al. [12] presented
an effective integration of the design anomaly data with a visual
approach based on a 3D city metaphor as shown in Figure 1. It
provides the big picture of the system’s design problems, however
it lacks two vital features for microservices-based systems, which
are traceability and dependency between services. Metaphors play
a scalable role in visualizing large systems, as shown in the island
metaphor in Figure 2. Such that Schreiber et al. [10] represented
the entire software system as an ocean with many islands, in ad-
dition to three different levels (island, region, and building). This
approach covers critical aspects in microservices architectures such
as the dependency between services. However, it still requires dif-
ferent rendering space to digest all such details without overlapping.
Therefore, the authors blended the Virtual Reality (VR) technique
to overcome such limitations. The VR technique enables users to
interact with 3D worlds and overcome the space limitation exists in
2D modeling. Oberhauser et al. in [7] employed the VR capability
to demonstrate enterprise architecture models as shown in Figure 3.
Although the VR technique helped in addressing the visualization,
navigation, and interaction aspects, authors recommend finding
new modeling capabilities, offering different and tailored layout
options rather than the standard ArchiMate and BPMN and their
many details. Although the metaphors showed a clear view for miss-
ing aspects in UML modeling, none showed a complete solution
considering navigation and traceability through different detailed
levels in the system.
Graph representation is strongly involved as a solution. Nakazawa
et al [6] proposed a graph representation visualization tool that
allows developers to interactively design microservice applications.
Although they targeted to balance performance and flexibility, this
visualization has limitation for large-scale systems in addition to
the need for missing information to be displayed.
Microservices still have limited scientific publication coverage in
a lot of areas and grey literature may hold valuable insights that
academic literature simply cannot currently provide [3]. Addressing
the industrial contributions, Netflix shows an interactive visualiza-
tion for their system [11] (Figure 4). This service graph depicts the
system topology and shows the service dependencies, at the same
time it enables the user to rearrange the services to construct differ-
ent topologies. Amazon provides a solution called X-Ray console

[2]. It is a visual map consisting of service nodes that serve requests,
upstream client nodes that represent the origins of the requests,
and downstream service nodes that represent web services and re-
sources used by an application while processing a request. However,
in the debugging scenario where a specific service is experiencing
an issue, both solutions are not particularly useful.
While most of the existing research has focused on new visualiza-
tion methods and techniques, not much work has been done to
improve the usability through designing new methods. This pa-
per addressed these challenges and recommendations to propose a
novel visualization concept for microservices-based systems.

APPROACH AND UNIQUENESS
Proposed Microservice Visualization Concept

Figure 5: Visualization Elements
Visualizing and debugging complex systems, even with the increas-
ing development of state-of-the-art tooling, is incredibly hard. Tools
are required to assist a developer in the process of forming and
validating a hypothesis. This proposed concept shows user-centric,
context-aware, and interactive visualization formicroservices-based
systems. The context-aware approach avoids a one-size-fits-all visu-
alization. Therefore, this proposed concept is designed as a mobile
application solution that takes the advantage of AR techniques to
fit the context and overcome the rendering space limitation. This
concept is also influenced by both graph representation concepts
and geographical maps interactivity.
This section shows the illustrations of the proposed concept. Start-
ing with the elements, as shown in Figure 5, there are two types
as follows: Node is a rectangular shape and represents the system
component, which could be a service (𝑆) or a controller (𝐶). The
controller is a set of services that have the same base routing. The
color of the node indicates its membership, such that the same color
means the same controller’s members. The node size is relatively
calculated using the equation of𝑚𝑎𝑥 (𝑋𝑌 , 𝑋,𝑌 ), such that 𝑋 is the
number of dependant nodes to this one, and 𝑌 is the number of
nodes that this node depends on. This means the more the node
depends on other nodes, the bigger size will be. In the event that
any of these numbers are zero, the other one will be the reference.
The second element is the Edge, which indicates the dependencies
between nodes. As shown in Figure 5, it is either a line or an arrow,
such that edge 1 indicates unidirectional dependency, but edges 2
and 3 are for the bi-directional one. The number of small cross-lines
indicates the number of participated services in this dependency.
For example, if node 𝐶1 depends on node 𝐶2 on three different ser-
vices, then three cross-lines will appear on their edge. For increased



Student Research Abstract: Microservices-based Systems Visualization SAC ’22, April 25–29, 2022, Virtual Event,

Figure 6: System Level Visualization Figure 7: Service Level Visualization Figure 8: Service Node Filter

usability, no cross-lines will be added if there are more than three
service dependencies.
Three different levels of architecture information are visualized
through this concept, such that each level becomes increasingly
detailed, as follows: System Level shows a high-level overview with
the base of system controllers. As shown in Figure 6, each con-
troller has a unique color and the nodes connect with an indication
about the direction as well as the number of dependencies per node.
Service Level shows the system from the perspective of services
basis. As shown in Figure 7, the nodes represent services, with the
same colored services belonging to the same controller that has the
exact color in Figure 6. Finally, Function Level visualizes a commu-
nication UML diagram [1] through the AR space. It dives deeper to
demonstrate the service internal functions communication flow.
While navigation itself is crucial, AR plays a vital role in providing it
in a well-fitted render space. This concept focuses on the following
navigation features: AR Render Space, which is the core of provid-
ing context-awareness visualization as it discovers the surrounding
context with its objects as Board, Table, Wall, ... etc, and enables the
user to choose which panel to use for rendering. This means that
users can show the system in a different context with employing of
real-life objects. Clickable Elements enable the user to show more
details through tabbing on.Draggable Elements enable the user to
rearrange the elements using drag-and-drop on-screen gestures.
Zoomable Layout is influenced by geographical maps. This allows
the user to show different information corresponding to the zoom
level involved. For example, nodes name will not fully appear until
the user gets to certain zoom level, as will be shown below in the
proof of concept, Figure 12.
Moreover, this concept provides user-centric views, such that it
supports multiple filtration techniques to be applied over different
levels as follows: Node Filter shows only one node with its depen-
dencies, as 𝑆1 service is shown in Figure 8. Path Filter highlights
specific path in the view, as shown in Figure 9 that filters the view
for the path 𝑆2 → 𝑆1 → 𝑆4 → 𝑆6. This helps the practitioner to
reduce the search space.
All the aforementioned visualization capabilities pave the way for
traceability and debugging features. This concept is designed to be
a platform for microservices-based systems visualization, analysis,
and traceability. Embedding dynamic analysis information into this
visualization concept proposes multiple metrics on both service
and path levels. Path Hits weighs paths according to the number of
requests get through them. The user can browse them in order one
by one as shown in Figure 9. Path Length ranks the paths using their
length. The length is calculated by the number of connected nodes
per path. Service Dependency ranks the nodes using the dependants
number. This metric shows the bottlenecks from a dependency

perspective, and displayed as shown in Figure 8.
Path Simulation is one of the most beneficial features of this con-
cept. It enables users to simulate specific paths in the system for
debugging and tracing purposes. Visualizing a live simulation for
these paths executions to highlight failures either in the path as
shown in Figure 11, or in the service as shown in Figure 10. This
feature supports two different starting points, the first is through
providing mocking data for the initial service in that path, and the
second is through a tracing log file that enables automated path
detection and simulation.
From the microservices analysis perspective, this concept provides
enough slots for users to collaboratively construct different topolo-
gies. Blending AR with mobile-based technique enables different
displaying contexts per user device. This gives much power to
the analysis process, so that users are able to share components
with each other to display these components in different context.
Therefore, they could get multiple analysis scenarios and different
topologies each in a separate context and a private space.
Multiple evaluation criteria are applied to this concept, Scalability
is supported through the three-dimensional visualization with AR
space that offers better scaling with the number of services than
a two-dimensional rendering space. Comprehensibility is achieved
in supporting multiple levels of detail to provide an overview of
all the corresponding components. Collaboration has been demon-
strated by being a mobile-based solution that provides portability
and enables sharing and interaction between users in different con-
text. Interaction of services shows the services behaviors in different
paths. In addition to the visualized dependency details, Navigation
Adherence is supported through the deployment of device standard
navigation methods, in addition to those mentioned above used to
facilitate the user journey. Debugging and Traceability are achieved
through the multiple metrics and paths simulation technique for
such investigation tasks. Finally, Context-aware View is demon-
strated such that the view is rendered corresponding to the current
user context.
Proof of Concept
Our proof-of-concept is implemented as an Augmented Reality
based mobile application. It addresses the aforementioned system-
level view. It also supports the ability to identify details about indi-
vidual services and their dependency graph in addition to primary
navigation for exploring the services around the display context.
As it is out of the scope of this paper, we were able to automate
the Service Architecture Reconstruction (SAR) process. We used
static-code analysis to determine microservice dependencies and
to analyze the microservices to construct bounded contexts of the
different views. We performed this on TrainTicket testbench [13],
a train ticket reservation system, which contains 41 microservices.



SAC ’22, April 25–29, 2022, Virtual Event, Amr S. Abdelfattah

Figure 9: Path Filter Figure 10: Simulation for Service Failure Figure 11: Simulation for Path Failure

After that, the results were demonstrated through the proposed
design concept as shown in Figure 12. To evaluate the effectiveness
of this concept in assisting developers in analyzing the architecture
of a microservice system, we conducted a primary user study with
six graduate student volunteers. We prepared a set of nine evalua-
tion tasks relating to this system for the participants to complete.
Three of the tasks were related to individual services and their con-
nections in the system, and the remaining six were relating to user
requests and how the system handled them. The participants used
this application on an iPad Pro 11-inch device. We also prepared
a five questions satisfaction survey using a 5-point Likert scale to
administer to the participants regarding their experience with the
application.

Figure 12: Proof of Concept

RESULTS AND CONTRIBUTIONS
Regarding the results of the Proof of Concept study, all the partici-
pants completed the evaluation tasks with 100% accuracy within the
allotted time frame. Furthermore, all participants said the 3D graph
visualization was useful, and five out of the six participants said
the representation and the rendering space were useful and clear.
All the participants either agreed or strongly agreed to three out
of the five qualitative feedback questions. Regarding the features,
the results suggest that this method is a viable platform for visual-
izing and analyzing microservice systems. There were two features
requests commonly reported in the final feedback question, both
relating to finer-grained controls of the graph. First, participants
suggested the ability to resize the graph once it had spawned. Sec-
ond, they suggested the ability to move individual services within
the graph. The participants indicated that these features would
be helpful when trying to locate specific services. However, these
features and more are already listed in the proposed concept, which
emphasizes the idea that it shows viable and demanding features
in an obvious way.
This paper contributes to the development of a novel visualization
concept for microservices-based systems using AR techniques. This
concept provides three different levels of views (System Level, Ser-
vice Level, Function Level), two view filtration techniques (Node
Filter, Path Filter), three traceability and debugging techniques
(Path Hits, Path Length, Service Dependency) as well as the Path
Simulation technique, and a set of navigation features in the AR

rendering space. In addition to the collaboration feature between
users in different contexts that has a clear vision for the analysis
process.
This approach is still open for facing more challenges and sup-
porting more features. The upcoming work focuses on enabling
gestures interactions rather than the standard navigation function-
ality to increase the usability and collaboration. From the system
perspective, analyzing the system for discovering and predicting
architectural degradation takes advantage of this visualization to
annotate and highlight these different architectural vulnerabilities.
Moreover this concept has the potential to be the preferred way
for producing a complete 3D modeling for microservices-based
systems.

REFERENCES
[1] 2009. UML Communication Diagrams Overview. Retrieved October 23, 2021

from https://www.uml-diagrams.org/communication-diagrams.html
[2] Amazon AWS. 2016. AWS X-Ray Console. Retrieved October 23, 2021 from

https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html
[3] Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann. 2021.

Industry practices and challenges for the evolvability assurance of microservices.
Empirical Software Engineering 26, 5 (2021), 1–39.

[4] The Open Group. 2012. ArchiMate® 3.1 Specification. Retrieved October 23,
2021 from https://pubs.opengroup.org/architecture/archimate3-doc/

[5] Jonah Kowall. 2015. Visualizing and Tracking Your Microservices. Re-
trieved October 23, 2021 from https://www.appdynamics.com/blog/news/
visualizing-and-tracking-your-microservices

[6] RinaNakazawa, Takanori Ueda,Miki Enoki, andHiroshi Horii. 2018. Visualization
Tool for Designing Microservices with the Monolith-First Approach. In 2018
IEEE Working Conference on Software Visualization (VISSOFT). 32–42. https:
//doi.org/10.1109/VISSOFT.2018.00012

[7] Roy Oberhauser and Camil Pogolski. 2019. VR-EA: Virtual reality visualization
of enterprise architecture models with ArchiMate and BPMN. In International
Symposium on Business Modeling and Software Design. Springer, 170–187.

[8] Claus Pahl and Pooyan Jamshidi. 2016. Microservices: A Systematic Mapping
Study.. In CLOSER (1). 137–146.

[9] Adam Pease, Ian Niles, and John Li. 2002. The suggested upper merged ontology:
A large ontology for the semantic web and its applications. InWorking notes of
the AAAI-2002 workshop on ontologies and the semantic web, Vol. 28. 7–10.

[10] Andreas Schreiber, Lisa Nafeie, Artur Baranowski, Peter Seipel, andMartinMisiak.
2019. Visualization of software architectures in virtual reality and augmented
reality. In 2019 IEEE Aerospace Conference. IEEE, 1–12.

[11] SIMIANVIZ. 2020. Netflix Demo. Retrieved October 23, 2021 from http://
simianviz.surge.sh/netflix

[12] Richard Wettel and Michele Lanza. 2008. Visually localizing design problems
with disharmony maps. In Proceedings of the 4th ACM symposium on Software
visualization. 155–164.

[13] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun Zhao.
2018. Benchmarking microservice systems for software engineering research. In
Proceedings of the 40th International Conference on Software Engineering: Compan-
ion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel
Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM,
323–324. https://doi.org/10.1145/3183440.3194991

[14] Zhengshu Zhou, Qiang Zhi, Shuji Morisaki, and Shuichiro Yamamoto. 2020. A sys-
tematic literature review on Enterprise Architecture Visualization Methodologies.
IEEE Access 8 (2020), 96404–96427.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1854049, a grant fromRedHat Research
(https://research.redhat.com)

https://www.uml-diagrams.org/communication-diagrams.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html
https://pubs.opengroup.org/architecture/archimate3-doc/
https://www.appdynamics.com/blog/news/visualizing-and-tracking-your-microservices
https://www.appdynamics.com/blog/news/visualizing-and-tracking-your-microservices
https://doi.org/10.1109/VISSOFT.2018.00012
https://doi.org/10.1109/VISSOFT.2018.00012
http://simianviz.surge.sh/netflix
http://simianviz.surge.sh/netflix
https://doi.org/10.1145/3183440.3194991

	Abstract
	References

