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ABSTRACT
Proposed in 2014, Generative Adversarial Networks (GAN) initiated
a fresh interest in generative modelling. They immediately achieved
state-of-the-art in image synthesis, image-to-image translation,
text-to-image generation, image inpainting and have been used in
sciences ranging from medicine to high-energy particle physics.
Despite their popularity and ability to learn arbitrary distributions,
GAN have not been widely applied in recommender systems (RS).
Moreover, only few of the techniques that have introduced GAN
in RS have employed them directly as a collaborative filtering (CF)
model.

In this work we propose a new GAN-based approach that learns
user and item latent factors in a matrix factorization setting for
the generic top-N recommendation problem. Following the vector-
wise GAN training approach for RS introduced by CFGAN, we
identify 2 unique issues when utilizing GAN for CF. We propose
solutions for both of them by using an autoencoder as discriminator
and incorporating an additional loss function for the generator.
We evaluate our model, GANMF, through well-known datasets in
the RS community and show improvements over traditional CF
approaches and GAN-based models. Through an ablation study on
the components of GANMF we aim to understand the effects of our
architectural choices. Finally, we provide a qualitative evaluation
of the matrix factorization performance of GANMF.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Neural networks; Factorization meth-
ods;

KEYWORDS
collaborative filtering, matrix factorization, generative adversarial
networks, autoencoder, feature matching

1 INTRODUCTION
With the ever-increasing amount of available digital information,
recommender systems (RS) are essential tools in filtering out the
content presented to users, providing a personalized experience
in various domains. The data generated through the interaction of
users with RS gave rise to collaborative filtering [34] (CF) which uti-
lizes such user-item interactions to create models that can provide
high quality recommendations. Within CF, latent factor models are
a family of mathematical models that project both users and items
into a latent space. Matrix factorization (MF) is the most successful
latent factor model for CF [16, 25], made famous during the Netflix
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Prize challenge. MF expresses the preference of a user on an item
as the dot product between their latent factors.

Generative Adversarial Networks (GAN) [18], proposed by Good-
fellow et al. in 2014, are generative models that use neural networks
to learn arbitrary probability distributions. GAN have shown im-
pressive results in estimating high-dimensional distributions in
computer vision [3, 22, 46], natural language processing [26, 45]
and various other fields like physics [14, 30] and medicine [36].
They are an active area of research and multiple architectural vari-
ants have been proposed like conditional GAN [28], EBGAN [47],
InfoGAN [9], etc. Despite their popularity, GAN have not seen
wide adoption in RS. The first work to incorporate GAN in the
context of RS was IRGAN [41], proposed in 2017, albeit focusing
more generally in merging discriminative and generative paradigms
in information retrieval (IR). GraphGAN [40] exploits the graph
structure of user-item interactions and utilizes GAN to learn em-
beddings for nodes in this graph. CFGAN [7] identifies a problem
with IRGAN’s training and proposes vector-wise training for GAN
in RS. Other works utilize GAN with additional information beside
the user-item interactions [4, 32], to alleviate the sparsity of RS
ratings [6, 42] and to model contextual recommendations [2, 27].

Since the adoption of GAN in RS is still in its early phases, we
believe there is still room for improvement, especially in using GAN
explicitly as a CF model. Current GAN approaches like CFGAN
attempt to generate the preferences of a specific user on all items
by learning from the real preferences of the user. However, RS are
characterized by a high number of items and a single set of prefer-
ences per user, which makes generating user-specific preferences
non-trivial. Based on this, our main contributions in this work are:

• We identify the two issues mentioned above when employ-
ing GAN for CF. Motivated by them, we derive GANMF, a
new conditional GAN-based latent factor model aimed at
the generic top-N recommendation problem under implicit
feedback.
• We show that GANMF outperforms both traditional and
other GAN baselines in two rankingmetrics on 3well-known
datasets in RS community.
• We perform an ablation study on the components of GANMF
to better understand how they affect the model performance.
• We investigate the MF model learned by GANMF in terms
of the number of latent factors and users with fewer interac-
tions.

The rest of this paper is structured as follows. Section 2 provides
a short overview of GAN followed by a presentation of other GAN-
based RS. In section 3, we motivate our work through the two
key issues of GAN in CF. Section 4 details our proposed model
and its components. In section 5, we provide the settings of our
experiments (section 5.1) and discuss the obtained results (section
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5.2). We present an ablation study in section 5.3 and further examine
our model in the context of MF in section 5.4. Finally, we conclude
with section 6.

2 PRELIMINARIES
We formally present the generic problem of top-N recommendation.
Given a set of users𝑈 , a set of items 𝐼 and users’ past feedback on
these items, top-N recommendation is the problem of recommend-
ing to every user 𝑢 ∈ 𝑈 a subset of items from 𝐼 that 𝑢 (has not
previously interacted with) is more likely to enjoy. We can arrange
the past feedback into a user rating matrix (URM) of shape |𝑈 | × |𝐼 |.
Every cell (𝑢, 𝑖) of the URM represents the feedback of user 𝑢 on
item 𝑖 . In this work we focus only on implicit feedback, given that
it is more abundant and easier to secure [25]. In this case, cell (𝑢, 𝑖)
of URM has a value of 1 if user 𝑢 has shown interest in item 𝑖 or 0
otherwise. Each row of the URM represents the historical profile of
a user whereas each column the historical profile of an item.

2.1 Generative Adversarial Networks
GAN are part of a class of generative models called implicit density
estimating generative models [17]. They do not assume a fixed form
of the data distribution but build a model for the distribution from
which we can sample. In a GAN, 2 players are pitted against one
another in a minimax zero-sum game. One of the players is the
generator (G) and the other the discriminator (D). G, takes as
input a noise vector z sampled from a predefined distribution 𝑝z and
outputs a synthetic data point in the real data space.D on the other
hand, takes as input data coming from the real training data and
from the generator and is tasked to differentiate the source of its
input. The generator is trained so that it can fool the discriminator
into classifying the data it generates as real data. In this setup,
both the discriminator and generator optimize the same objective
function:

min
G

max
D
Ex∼𝑝𝑑𝑎𝑡𝑎 [𝑙𝑜𝑔 𝐷 (x)] + Ez∼𝑝z

[
𝑙𝑜𝑔

(
1 − 𝐷

(
𝐺 (z)

) ) ]
(1)

Goodfellow et al. theoretically prove that for the generator to learn
the distribution of the real data, the discriminator must be maxi-
mally confused about the source of its input.

2.1.1 Conditional GAN (cGAN). This is a GAN variant in which
the generator is guided to produce data that belongs to a given
class [28]. This is achieved by concatenating the class on which
we want to condition the generation process to the input of both
discriminator and generator. The objective function in a cGAN is
thus changed to:

min
G

max
D
Ex∼𝑝𝑑𝑎𝑡𝑎 [𝑙𝑜𝑔 𝐷 (x|𝑐)] + Ez∼𝑝z

[
𝑙𝑜𝑔

(
1 − 𝐷

(
𝐺 (z|𝑐)

) ) ]
(2)

2.2 Related Work
IRGAN pioneered GAN in IR and RS. It focuses in providing a
unification of generative and discriminative paradigms of mod-
elling in IR. Given a set of queries {𝑞1, . . . , 𝑞𝑁 }, a set of documents
{𝑑1, . . . , 𝑑𝑀 } and the true relevancy distribution 𝑝true (𝑑 |𝑞, 𝑟 ) of doc-
uments to queries, IRGAN learns 𝑝𝜃 (𝑑 |𝑞, 𝑟 ) through a generator
𝐺 . 𝑝𝜃 (𝑑 |𝑞, 𝑟 ) is such that, when sampled from, a binary classifier
𝐷 cannot distinguish whether the document is coming from 𝑝𝜃 or

from 𝑝true. IRGAN optimizes the following minimax function:

min
𝜃

max
𝜙

𝑁∑︁
𝑛=1

(
E𝑑∼𝑝true (𝑑 |𝑞𝑛,𝑟 ) [𝑙𝑜𝑔 𝐷 (𝑑 |𝑞𝑛) ]+E𝑑∼𝑝𝜃 (𝑑 |𝑞𝑛,𝑟 )

[
𝑙𝑜𝑔

(
1−𝐷 (𝑑 |𝑞𝑛)

) ] )
(3)

where the parameters 𝜃 of 𝐺 are updated through the REINFORCE
algorithm [43] due to the non-differentiable discrete sampling from
𝑝𝜃 . CFGAN [7], a cGAN approach for RS, takes the training process
of IRGAN and experimentally shows that the discrete sampling
operation in the generator deteriorates the performance of the dis-
criminator. It proposes vector-wise training as a solution where the
generator produces full user historical profiles. The discriminator
differentiates between generated profiles and real user profiles com-
ing from the URM. CAAE [8] uses 2 autoencoder-based generators
as a replacement for MF-based generator in IRGAN and pairs those
with BPR [33] loss in the discriminator. To feed the discrimina-
tor, one of the generators samples positive items for a given user
whereas the other samples negative ones. RAGAN [6] and AugCF
[42] focus on alleviating the sparsity of the URM and then apply tra-
ditional CF models to provide recommendations. RAGAN utilizes
the recommendation capabilities of CFGAN to generate explicit
ratings for items and uses them to impute the missing ratings in the
URM. RAGANBT [6] fixes RAGAN’s bias towards generating high-
value ratings by incorporating the application of CDAE [44] on the
user historical profile before using CFGAN to fill the URM. AugCF
is a cGANwhere the generator takes as input a user, unvisited items
for this user, associated side information and a class (like or dislike)
and outputs a plausible item for the user under the selected class.
The discriminator in AugCF takes two roles; in a first phase it acts
as a classifier whereas in a second phase it functions as a pure CF
model. Other works use GAN with additional information beside
the user-item interactions. AugCF can also be considered such a
model. [4] tackles the task of learning node representations in a
bibliographic network by combining the content of papers with the
adjacency matrix between papers and authors.

3 MOTIVATION
We highlight two issues that arise when utilizing a cGAN to gen-
erate plausible user profiles (as in the case of CFGAN). The
discriminator of a cGAN is usually a binary classifier; it outputs a
scalar value indicating the probability that the input is coming from
the real data. However, the output of the generator in the case of
CFGAN is very high dimensional; specifically its dimension is the
length of a user historical profile |𝐼 |, which for some datasets can
be in hundreds of thousands or even millions of elements. Updating
the weights of the generator through the gradient of a single scalar
value in the discriminator output poses difficulties for learning the
generator function. As an example, given user 𝑢’s real profile 𝐼∗𝑢 ,
we consider the case of 2 generated profiles for user 𝑢, 𝐼1𝑢 and 𝐼2𝑢 .
𝐼1𝑢 differs from 𝐼∗𝑢 on only some items whereas 𝐼2𝑢 is the inverse
of 𝐼∗𝑢 . For an optimal binary classifier, both 𝐼1𝑢 and 𝐼2𝑢 are fake and
the gradient of the loss propagated back to the generator would
be more or less the same for both. However, under some distance
metric, we have: 

𝐼∗𝑢 − 𝐼1𝑢

 ≤ 

𝐼∗𝑢 − 𝐼2𝑢

 (4)
yet the gradient coming from the discriminator to the generator
would not make this distinction clear.
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A cGAN takes a class label as part of the input in both generator
and discriminator so that the generated data are conditioned on the
class. Applications of cGAN usually involve datasets with multiple
classes where for each class there are hundreds or thousands of
samples from the training set. However, in the case of CFGAN
where a user identifier is considered the conditioning class, there
is only a single profile per user. Any model’s ability to learn the
input-target function from a single data point per target label is
very limited.

Figure 1: GANMF architecture. The generator is fed a user
identifier and produces a plausible user profile. The discrim-
inator is trained with real profiles retrieved from the URM
and with fake profiles coming from the generator.

4 GANMF
We propose a new model, GANMF, that circumvents both issues
raised in section 3. GANMF takes the form of a cGAN; the generator
is conditioned through a user identifier y to produce a plausible
user profile belonging to y, whereas the discriminator is trained
to differentiate between profiles produced by the generator and
real profiles retrieved from the URM. The optimization of these 2
networks is alternated until the discriminator cannot distinguish
the profiles produced by the generator from the real ones. Figure 1
gives a visual depiction of the complete architecture of GANMF.

4.1 GANMF Discriminator
In order to provide richer gradients to the generator, in GANMF
we replace the binary classifier discriminator of cGAN with an
autoencoder. The autoencoder takes as input a user profile, either
from the URM or one generated by the generator, and outputs its
reconstruction. EBGAN [47] was first to introduce an autoencoder-
based discriminator as an energy function that assigns low energy
to data from the training set and high energy to data produced by
the generator, thus differentiating the source of the input of the dis-
criminator. In GANMF, the reconstruction error of the autoencoder
acts as the energy function:

𝐷 (x) =


𝐷𝑒𝑐 (𝐸𝑛𝑐 (x)) − x

22 (5)

where 𝐷𝑒𝑐 (·) and 𝐸𝑛𝑐 (·) are the respective decoder and encoder
functions of the autoencoder and ∥ · ∥2 is the Euclidean norm.
Given a conditioning user identifier y and its real profile x, the
discriminator D minimizes a hinge loss function:

LD (x, y) = 𝐷 (x) +
[
𝑚𝐷 (x) − 𝐷

(
𝐺 (y)

) ]+ + 𝜆D

ΩD

22 (6)

where [·]+ = max(0, ·),𝐷 (·) is the discriminator function as defined
in (5), 𝐺 (·) is the generator function, 𝜆D is a regularization coeffi-
cient and ΩD is the set of parameters ofD. Different from EBGAN,
instead of a positive margin we use a positive margin coefficient
𝑚 in order to limit the range of its values. Optimizing (6) forces
the reconstruction error of real profiles towards zero whereas the
reconstruction error of generated profiles𝑚-times that of the real
ones. Note that different from [37] where the reconstruction loss
of the autoencoder is computed only on past true interactions, in
GANMF the discriminator loss is computed over all items. This is
because the autoencoder is only used to differentiate the source
of the profile and not directly deriving recommendations from it.
Finally, we point out that GANMF discriminator does not take a
user conditioning vector like CFGAN, CAAE and RAGAN do.

4.2 GANMF Generator
Generator G of GANMF is a conditional generator that takes as
input a conditioning attribute y that is unique for each user. Con-
trary to the original formulation of cGAN, we drop the noise vector
z in the input in order to have deterministic mapping from the
conditioning attribute to the generated profile.

We cast G into a MF model by using 2 embedding layers, Σ ∈
R |𝑈 |×𝐾 and𝑉 ∈ R |𝐼 |×𝐾 , with Σ and𝑉 being the user and item latent
factors and 𝐾 the number of latent features. Our training data is
composed of user-item interactions only, so we use as conditioning
attribute for the generator the row number of each user in the URM.
In the forward pass of the generator, y is utilized to retrieve the
y-th row from Σ. A synthetic user profile is produced by (see figure
2):

𝐺 (𝑦) = 𝑉 Σ[y, :]⊤ (7)
In order to fool the discriminator, the generator minimizes the
reconstruction error of the discriminator on generated profiles:

LG (y) = 𝐷
(
𝐺 (y)

)
+ 𝜆G



ΩG

22 (8)

where 𝐷 (·) and 𝐺 (·) are the discriminator and generator functions
respectively, y is the user row in the URM, 𝜆G is the 𝐿2 regular-
ization coefficient and ΩG is the set of parameters of the gener-
ator. We note that a clear advantage of using embedding layers
is that the number of parameters to be learned by the generator
is Θ

(
𝐾 ( |𝐼 | + |𝑈 |)

)
, similar to baselines like WRMF [21]. Moreover,

the generator of GANMF is simpler than other GAN-based RS ap-
proaches in that it models only the linear interactions between user
and item latent factors and does not incorporate non-linearities.

As mentioned in section 3, training GANMF with a single real
profile per user (the analogy of a single sample per class) causes
the generator G to disregard the conditioning attribute during the
generation process and to produce a single profile for every user
which reduces substantially the recommendations’ quality.

To alleviate this problemwe incorporate inLG an additional loss
term called feature matching [35]. Feature matching is presented

3
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Figure 2: Generator network casted as MF-based approach
with embedding layers.

as a solution to stabilize the training procedure of GAN by making
the generator produce data that match the statistics of the real
data. However, in this work we are interested in G producing user
specific profiles. Feature matching is closely related to Maximum
Mean Discrepancy [19, 38] which is a distance in probability space
between two distributions. Therefore, we modify LG by adding
this additional loss:

LG (x, y) = (1 −𝛼)𝐷
(
𝐺 (y)

)
+𝛼




𝐸𝑛𝑐 (x) − 𝐸𝑛𝑐 (𝐺 (y) )


2
2
+ 𝜆G



ΩG

22 (9)

where 𝐸𝑛𝑐 (·) is the output of the encoder in GANMF’s discriminator,
y is the user conditioning attribute, x is y’s real user profile and 𝛼 is
a constant that balances the adversarial and feature matching losses.
For GANMF we use a bottlenecked autoencoder which makes the
autoencoder learn meaningful features in its coding layer [39]. Min-
imizing LG forces generated profiles to match the distribution of
real profiles in the latent space induced by the coding layer. This
drives G to generate profiles that cover the same distribution as
the real user profiles in this latent space.

5 EXPERIMENTS
5.1 Settings and Evaluation
In our experiments we consider as standard GANMF the model with
single-hidden-layer autoencoder with linear activations as
discriminator and the generator with 2 embedding layers and
feature matching loss as described in section 4.2. The final rec-
ommendations are given by computing each user’s profile with
the generator and then ranking the items the user has not inter-
acted with. Just like CFGAN, our model also has 2 training modes;
user-based (GANMF-u) and item-based (GANMF-i).

We utilize bayesian optimization1 [1] to find the best hyperpa-
rameters for GANMF and the baselines (all baselines are trained
from scratch in our dataset splits). For each algorithm we opti-
mize MAP@5 on a holdout set and perform 50 runs with the first
10 being random evaluations that seed the Gaussian Process. For

1We use the Python library scikit-optimize (https://scikit-optimize.github.io/stable/)
for the bayesian optimization.

Algorithm 1: GANMF Training
Input : set of users U, URM, set of parameters ΩD , set of parameters ΩG ,

margin coefficient m, feature matching coefficient 𝛼 , learning rates
𝜇𝐷 and 𝜇𝐺 , batch size B

Output : trained G model that can generate historical user profiles

initialize(D, G)
numIterations← |𝑈 |

|B|
while stopping condition not met do

for iter in numIterations do
// Discriminator learning

y← sampleBatch (U, B)
fakeProfiles←𝐺(y)
realProfiles← URM [y,:]
L𝐷 ← compute (realProfiles, fakeProfiles)
ΩD ← ΩD − 𝜇𝐷 𝜕L𝐷

𝜕ΩD

// Generator learning

y← sampleBatch (U, B)
fakeProfiles←𝐺(y)
L𝐺 ← 𝐷 (fakeProfiles)
ΩG ← ΩG − 𝜇𝐺 𝜕L𝐺

𝜕ΩG

end
end

GANMF2 we use Adam optimizer and tune the following intervals
for the hyperparameters3:
• Number of epochs: a maximum value of 300.
• Number of latent factors: integer value in [1 − 250].
• Units in the coding layer of AE: integer value in [4 − 1024].
• Batch size: categorical value in [64, 128, 256, 512, 1024].
• Margin coefficient𝑚: integer value in [1 − 10].
• Feature matching coefficient 𝛼 : real value in [0.01−0.5] with
a uniform prior distribution.
• D and G learning rates: real value in [0.0001 − 0.01] with a
log-uniform prior distribution.
• Regularization coefficient 𝜆D : real value in [10−6 − 10−4]
with a log-uniform prior distribution.
• Regularization coefficient 𝜆G : we set this hyperparameter to
0 since G does not learn directly from the real training data.

The training procedure for GANMF is given by algorithm 1.

5.1.1 Datasets. We evaluate GANMF on three well-known datasets
in the RS community; MovieLens 1M [20], MovieLens HetRec [5]
and LastFM [5]. MovieLens datasets contain explicit user ratings
on movies with every user having rated at least 20 movies. LastFM
contains music artist listening information in the form of triples
(user, artist, listeningCount) where listeningCount represents how
many times the user listened to the artist. The statistics of the
datasets are given on table 1.

In this work we focus on implicit feedback so we drop the movie
ratings in MovieLens datasets and listeningCount in LastFM and
keep only the interactions between users and items from which we
build the URM (we denote this as the full URM). We randomly split
each dataset into train and test sets in 4:1 ratio. In order to have at
least one item per user in both sets we consider only users that have
2We implemented GANMF with Tensorflow. Both the generator and the discrimi-
nator architectures are highly parallelizable through a GPU which helps limit train-
ing/inference times.
3Epochs and number of latent factors hyperparameters are shared by all baselines.
The same interval is used in all models.

4
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Table 1: Dataset statistics.

Dataset Interactions Users Items Sparsity

ML 1M 1000209 6040 3706 95.53%
ML HetRec 855598 2113 10109 96.00%
LastFM 92834 1884 17626 99.72%

interacted with at least 2 items. We use the test set only for the final
evaluation of all algorithms. In order to tune hyperparameters we
further split the training set to obtain validation and early stopping
sets. Once we have the dataset-specific hyperparameters, we fully
train each algorithm on the initial train set. In figure 3 we give a
summary of the steps from the full URM to each of the sets and
how they are used by the algorithms.

Figure 3: Splitting of the full URM into subsequent sets for
each of the operations performed by the algorithms.

5.1.2 Evaluation. We compare all algorithms on the test set through
2 different metrics, normalized discounted cumulative gain (NDCG)
[23] and mean average precision (MAP) on recommendation lists of
5 and 20 items. Both of these metrics take into consideration the
ranking of recommended items beside their relevancy. The differ-
ent cutoffs give us an indication how the algorithms behave with
increasing recommendation list length.

The code for all algorithms4, along with the datasets’ splits, ex-
periments and results can be found inhttps://github.com/edervishaj/
GANMF.

5.2 Results
We compare our proposed model with 8 other baseline models
aimed at the top-N recommendation problem, including robust
baselines [12, 13]:
• Top-popular: non-personalized approach where the most
popular items are recommended to every user.

4For the baselines and model evaluation we use implementations from https://github.
com/MaurizioFD/RecSys_Course_AT_PoliMi

• PureSVD [11]: MF approach that utilizes SVD to reconstruct
the URM. We tune only the number of latent factors for this
model.
• WRMF [21]: MF technique that converts implicit feedback
into confidence values and employs alternating least squares
for the computation of user and item latent factors. We tune
all the parameters as given in the paper.
• ItemKNN [15]: one of the main model-based CF techniques
that builds an item-item similarity matrix from the URM.
For ItemKNN we tune the similarity5, the neighborhood size
and the shrink term.
• 𝑷3𝜶 [10]: a graph-based recommendation approach where
the similarity between items is expressed as a 2-step random
walk starting from users in the bipartite graph of users and
items. For this model we tune the neighborhood size and
similarity scaling coefficient 𝛼 .
• SLIM [29]: a machine learning technique that models the
item-item similarity matrix and is trained with BPR [33] loss.
For SLIM we tune the hyperparameters as given in the paper.
• CFGAN [7]: GAN-based RS that proposes vector-wise train-
ing for GAN in RS. We tune all the hyperparameters in the
ranges provided by the authors.
• CAAE [8]: GAN-based RS that incorporates BPR loss in the
discriminator and uses 2 autoencoder-based generators. For
CAAE we tune the hyperparameters in the ranges provided
by the authors.

For CFGAN and GANMF we give both user and item-based vari-
ants. For each of the baselines we perform hyperparameter tuning
as explained in section 5.1. Table 2 summarizes the comparison
between GANMF and all baselines.

We note that we have omitted some GAN-based works. We have
omitted IRGAN since CFGAN shows a clear improvement over
it. RAGANBT is intended to work with explicit ratings instead of
implicit feeback. Morever, both RAGANBT and AugCF use GAN
to alleviate sparsity of URM and still rely entirely on traditional
CF models to provide the recommendations. [4] and AugCF also
rely on side information for their recommendations while we focus
only on the user-item interactions.

5.2.1 Discussion. We provide here a brief breakdown of the ob-
tained results in table 2. GANMF variants show superior perfor-
mance against all baselines in the 3 datasets. In particular, GANMF
performs on average 24% better than CFGAN models despite using
the same vector-wise training procedure. We attribute this disparity
to the autoencoder discriminator which is especially helpful when
the generator is tasked to generate high dimensional vectors as
in the case of RS. Additionally, between the two GANMF variants
there is little difference which we were not expecting, especially
for LastFM and MovieLens HetRec datasets where the ratio number
of users to number of items is higher. On the other hand, CFGAN
variants show the opposite behavior, with the user variant consis-
tently surpassing the item one. For the other GAN-based algorithm,
CAAE, we were not able to find an official implementation so we
tried to implement it following only the paper. However, we found
CAAE’s recommendation quality to not match the one reported in
5Considered similarities: dice, jaccard, tversky, asymmetric-cosine, cosine. We report
only ItemKNN-𝑐𝑜𝑠𝑖𝑛𝑒 since it performed best.
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Table 2: Experimental results of GANMF and chosen baselines over MovieLens 1M, MovieLens HetRec and LastFM. The best
results per dataset and per metric are given in bold, second best results are underlined.

Algorithm
ML 1M ML HetRec LastFM

NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP
@5 @5 @20 @20 @5 @5 @20 @20 @5 @5 @20 @20

Top Popular 0.2248 0.1544 0.1952 0.0919 0.4770 0.3899 0.3905 0.2475 0.0888 0.0524 0.0947 0.0392
PureSVD 0.4197 0.3243 0.3644 0.2139 0.5933 0.5126 0.5020 0.3604 0.2263 0.1505 0.2145 0.1064
WRMF 0.4229 0.3200 0.3783 0.2178 0.5762 0.4859 0.4923 0.3393 0.2745 0.1848 0.2623 0.1336
𝑃3𝛼 0.4066 0.3086 0.3553 0.2016 0.5432 0.4539 0.4532 0.3028 0.2469 0.1635 0.2370 0.1154

ItemKNN-𝑐𝑜𝑠 0.4088 0.3121 0.3577 0.2063 0.5599 0.4783 0.4664 0.3215 0.2683 0.1804 0.2566 0.1277
SLIM 0.4298 0.3249 0.3775 0.2147 0.5643 0.4710 0.4862 0.3284 0.2172 0.1343 0.2223 0.1008
CAAE 0.2217 0.1531 0.1941 0.0913 0.4767 0.3894 0.3902 0.2467 0.0834 0.0504 0.0940 0.0378

CFGAN-u 0.4044 0.3066 0.3487 0.1977 0.5123 0.4151 0.4224 0.2695 0.2358 0.1482 0.2338 0.1079
CFGAN-i 0.2211 0.1546 0.1909 0.0928 0.4462 0.3533 0.3707 0.2267 0.2219 0.1433 0.2145 0.1021
GANMF-u 0.4564 0.3551 0.4032 0.2423 0.6076 0.5255 0.5151 0.3715 0.2857 0.1936 0.2742 0.1402
GANMF-i 0.4500 0.3503 0.3985 0.2399 0.6230 0.5445 0.5276 0.3866 0.2865 0.1943 0.2725 0.1397

the original paper. In our dataset splits it performed on par with
the non-personalized technique.

The two latent factor models, PureSVD and WRMF have compa-
rable performance between them in all datasets. The best perform-
ing GANMF variant is on average 15% and 8% better than PureSVD
and WRMF, respectively, in the MovieLens datasets. In LastFM
dataset, GANMF performs on average 29% better than PureSVD. It
is clear that the matrix factorization model learned by GANMF is
able to find latent factors that explain better the interactions of users
and items (we explore this in more details in section 5.4). ItemKNN,
SLIM and 𝑃3𝛼 all model the item-item similarity matrix and as
such, their performances do not differ much. They also tend to
score slightly lower than MF techniques. Compared to GANMF, the
best neighborhood model is 10% worse across metrics and datasets.
We conclude that GANMF is able to outperform baselines in GAN-
based models and traditional approaches.

5.3 Ablation Study
In order to study the components of GANMF, we perform 2 different
experiments where we replace one component at a time.

5.3.1 GANMF with binary classifier discriminator. In this experi-
ment we drop the autoencoder discriminator in GANMF and replace
it with a binary classifier discriminator just like in vanilla cGAN
and CFGAN. We denote this model binGANMF. This new discrim-
inator outputs the probability of its input coming from the URM.
In order to evaluate only the impact of the discriminator, we keep
everything else exactly as explained in section 4; generator with
embedding layers and feature matching. As user features to match,
we use the learned features in the last layer of the discriminator
before the final output. We retune again binGANMF with bayesian
optimization. On table 3 we report its performance on the test set
along with the standard GANMF. We see that when equipped with
an autoencoder discriminator, GANMF variants performs much
better than binGANMF on all metrics, as much as 4 times better on
LastFM dataset on MAP@20 metric.

5.3.2 Effect of Feature Matching. In order to understand how fea-
ture matching affects GANMF, wemodify only the feature matching
coefficient 𝛼 in equation 9 in the range [0 − 1] with a step of 0.2
and rerun bayesian optimization again for the resulting GANMF
variants. In figure 4 we show how different values of 𝛼 change the
performance of GANMF for MovieLens 1M, MovieLens HetRec and
LastFM, respectively (for space reasons we give only GANMF-i,
similar behavior is observed for GANMF-u). On all datasets and the
2 different cutoffs, a combination of both the adversarial GAN loss
and feature matching provides the best results for GANMF.

The other important aspect of using feature matching is to en-
force conditional generation for the generator. To investigate its
usefulness, we train GANMF with and without feature matching
and after each training phase, we produce profiles for all users. Then,
we compute the cosine similarity between each pair of users and
show them as heatmaps in figure 5. We observe significant decrease
in user-user similarity after the application of feature matching.
This means that the generator outputs less similar vectors and each
user conditioning attribute is mapped to a more unique profile.

5.4 On the MF model learned by GANMF
Given the quantitative advantage of GANMF over the considered
baselines, it is important to investigate the latent factors model
learned by GANMF.

We compare the behavior of GANMF with varying number of
latent factors 𝐾 along with two other MF baselines, PureSVD and
WRMF. For each model we fixed 𝐾 and tuned the other hyper-
parameters following the procedure detailed in section 5.1 with
35 runs instead of 50. Their performance on MAP@5 is given in
figure 6. GANMF dominates the other baselines in most of the con-
sidered latent factors, with the exception of 𝐾 < 100 on LastFM
where WRMF performs better. The best models for PureSVD and
WRMF tend to provide more accurate recommendations when us-
ing a relatively low number of latent factors since such traditional
MF techniques are known to overfit with large 𝐾 [24]. GANMF on
the other hand still improves its recommendation accuracy with
increasing 𝐾 . This is mainly due to GANMF using the discriminator
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Table 3: Ablation study. The best results per dataset and per metric are given in bold, the second best results are underlined.

Algorithm
ML 1M ML HetRec LastFM

NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP
@5 @5 @20 @20 @5 @5 @20 @20 @5 @5 @20 @20

GANMF-u 0.4564 0.3551 0.4032 0.2423 0.6076 0.5255 0.5151 0.3715 0.2857 0.1936 0.2742 0.1402
GANMF-i 0.4500 0.3503 0.3985 0.2399 0.6230 0.5445 0.5276 0.3866 0.2865 0.1943 0.2725 0.1397

binGANMF-u 0.2185 0.1480 0.1920 0.0895 0.4660 0.3776 0.3861 0.2426 0.0790 0.0454 0.0842 0.0337
binGANMF-i 0.2889 0.2075 0.2446 0.1240 0.4707 0.3827 0.3871 0.2440 0.0855 0.0477 0.0966 0.0374

(a) ML 1M (b) ML HetRec (c) LastFM

Figure 4: Effect of feature matching loss on GANMF-i performance on MovieLens 1M, MovieLens HetRec and LastFM.

(a) ML 1M w/o feature matching. Mean: 0.9999, Std:
0.000004

(b) LastFM w/o feature matching. Mean: 0.9989, Std:
0.0018.

(c) ML HetRec w/o feature matching. Mean: 0.9999, Std:
0.000006.

(d) ML 1M w/ feature matching. Mean: 0.3644, Std: 0.1952 (e) LastFM w/ feature matching. Mean: 0.1535, Std: 0.2161. (f) ML HetRec w/ feature matching. Mean: 0.5597, Std:
0.2523.

Figure 5: Feature matching conditioning on the user generated profiles by GANMF-u. The heatmaps represent the user-user
similarity with and without feature matching. Mean and standard deviation of the similarities are given for each dataset.

to learn the latent factors instead of learning them directly from
the training data. This is further reinforced by the fact that we do
not place a regularization term on the parameters of G.

Another important aspect is the behavior of GANMF on the
different types of users based on the number of items they have in-
teracted with. Figure 7 shows the performance of PureSVD, WRMF
and GANMF for 4 types of users. MF models are known to be sus-
ceptible to the cold start problem with performance suffering for

users that have interacted with few items [31]. This is evident es-
pecially on MovieLens 1M and MovieLens HetRec where ranking
accuracy is much lower for users that have interacted with less
than 25 items and less than 100 items. Even for these users GANMF
is able to provide better recommendations than the MF baselines.
This can be attributed to the autoencoder discriminator and fea-
ture matching loss. In its coding layer, the discriminator D learns
a meaningful representations of users’ preference over the items.

7
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(a) ML 1M (b) ML HetRec (c) LastFM

Figure 6: MAP@5 of PureSVD,WRMF andGANMF onMovieLens 1M,MovieLensHetRec and LastFM for varying latent factors
number.

(a) ML 1M (b) ML HetRec (c) LastFM

Figure 7: MAP@20 of PureSVD, WRMF and GANMF on MovieLens 1M, MovieLens HetRec and LastFM for varying latent
factors number.

Thus, even users that do not share exactly the same items in data
space, might share similar latent representation in the coding layer.
When trained with feature matching, the generator can transfer
some knowledge from the shared latent space back to the latent
factors of users with few interactions.

6 CONCLUSION
In this work we presented GANMF, a novel approach to building
GAN-based latent factors models for top-N recommendation with
implicit feedback. We identified 2 main issues when using cGAN in
CF; using a single-output binary-classifier discriminator does not
provide rich enough gradients to the generator given the dimen-
sionality of the user/item profiles in RS and the lacking of multiple
data samples per user which causes the generator of a cGAN to
disregard the conditioning attribute in the case of CF. We give so-
lutions for both of these issues by replacing the binary-classifier
discriminator in the original formulation of cGAN with an autoen-
coder and by incorporating a feature matching loss in the generator.
Through an ablation study we show that our model can achieve its
best performance with a combination of both GAN loss and feature
matching loss. More importantly, we show that feature matching
enforces conditional generation of user/item profiles. We tested our
proposed model in 3 publicly available datasets of different spar-
sity and shapes and provided a comparison with 8 other baselines,
representatives for latent factor, neighborhood and GAN-based
models. We showed that GANMF outperformed all of them in 2
ranking metrics across 3 datasets. Finally, the qualitative results we
provided on the latent factors model learned by GANMF indicate
its efficiency for users with few interactions. These results show

that GAN are a promising technique that can be used as a main
component in RS.
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