
cuPSO: GPU Parallelization for Particle Swarm Optimization
Algorithms

Chuan-Chi Wang
National Taiwan University

Taipei, Taiwan
d10922012@ntu.edu.tw

Chun-Yen Ho
National Taiwan University

Taipei, Taiwan
chunyenher@gmail.com

Chia-Heng Tu
National Cheng Kung

University
Tainan, Taiwan

chiaheng@ncku.edu.tw

Shih-Hao Hung
National Taiwan University

Taipei, Taiwan
hungsh@csie.ntu.edu.tw

ABSTRACT
Particle Swarm Optimization (PSO) is a stochastic technique for
solving the optimization problem. Attempts have been made to
shorten the computation times of PSO based algorithms with mas-
sive threads on GPUs (graphic processing units), where thread
groups are formed to calculate the information of particles and
the computed outputs for the particles are aggregated and ana-
lyzed to find the best solution. In particular, the reduction-based
method is considered as a common approach to handle the data
aggregation and analysis for the calculated particle information.
Nevertheless, based on our analysis, the reduction-based method
would suffer from excessive memory accesses and thread synchro-
nization overheads. In this paper, we propose a novel algorithm
to alleviate the above overheads with the atomic functions. The
threads within a thread group update the calculated results atomi-
cally to the intra-group data queue conditionally, which prevents
the frequent accesses to the memory as done by the parallel reduc-
tion operations. Furthermore, we develop an enhanced version of
the algorithm to alleviate the synchronization barrier among the
thread groups, which is achieved by allowing the thread groups to
run asynchronously and updating to the global, lock-protected vari-
ables occasionally if necessary. Our experimental results show that
our proposed algorithm running on the Nvidia GPU is about 200
times faster than the serial version executed by the Intel Xeon CPU.
Moreover, the novel algorithm outperforms the state-of-the-art
method (the parallel reduction approach) by a factor of 2.2.

1 INTRODUCTION
Particle Swarm Optimization (PSO), introduced in 1995 by Kennedy
and Eberhart [5], is a powerful optimization algorithm based on a
stochastic optimization technique. A PSO algorithm searches the
optimum of the target function, called fitness function, by simulating
social behaviors with the particles, e.g., the movement for a bird
flock or fish school to look for food. Thanks to the versatility of
solving various practical problems [1, 8], PSO has been evolved into
sophisticated variants to improve the optimization performance [6,
7, 13] and to accelerate the execution efficiency with different types
of hardware platforms, including CPUs [11], Field Programmable
Gate Arrays (FPGAs) [9, 12], and GPUs [10].

As a population-based metaheuristic algorithm, it is usually im-
plemented by performing the stochastic search process iteratively,
which would demand a large number of particle status updates
and the target function evaluations when handling a sophisticated
problem. This computation hungry nature poses a challenge for
real-time applications to dynamic environments. For example, PSO
could be used to track moving objects and to determine the human

postures in the computer vision applications. Hence, the capability
of fast convergence of PSO is critical to fit the real-time require-
ments.

To boost the execution performance of PSO algorithms, GPUs
have been adopted to solve the PSO problemswith a large number of
parallel threads. In particular, particles are partitioned into groups
to be handled by the underlying thread groups for the status updates
and fitness evaluations, and the data calculated by different thread
groups are aggregated and analyzed to obtain the best solution,
which is the optimization goal for the next iteration. The iterative
process stops when achieving the target precision or the specified
iteration number. To improve the execution efficiency, the parallel
reductions are usually adopted [4], to expedite the data aggregation
and analysis process. Nevertheless, the reduction-based methods
require a considerable amount of memory accesses to keep the
intermediate results and a synchronization operation for waiting
the thread groups to write their intermediate results to the memory
before the best data is obtained for this iteration. The above two
overheads hinder the potential of performance acceleration for
solving the PSO problems.

In this paper, we propose a novel algorithm to alleviate the ex-
cessive memory access overhead. It is referred to as the queue algo-
rithm since the atomic operation is used to protect the conditional
accesses to the memory locations when parallel threads within a
group update their results, where the behavior of the sequential
accesses is similar to that of the queue data structure. In addition, an
enhanced algorithm is developed to further improve the execution
efficiency by removing the synchronization barrier when the thread
groups update their results, which is done by introducing an atomic
lock to control the accesses when updating the best data for the
current iteration. The enhanced algorithm, referred to as the queue
lock algorithm, performs especially well for the PSO problem with
lower complexity, i.e., the problem domain is formulated as one di-
mensional space. The proposed algorithms have been implemented
and they are tested with the two problem configurations with low
and high complexities (i.e., 1 dimension and 120 dimensions) on the
machine with the Intel Xeon processor and the Nvidia GTX 1080
Ti GPU. Our results show that it achieves over 200x speedups by
using the GPU, compared with the serial version running on the
CPU. Besides, the proposed algorithm is faster than the state-of-
the-art method (the reduction-based approach [2]) by a factor of
2.2, in terms of the computation time of the PSO algorithm. The
source code of this work is online available1, and we believe that
our efforts further move a step forward for the real-time processing

1https://github.com/wang2346581/cuPSO

ar
X

iv
:2

20
5.

01
31

3v
2

 [
cs

.D
C

]
 3

 D
ec

 2
02

3

https://orcid.org/0000-0001-8967-1385
https://orcid.org/0000-0003-2043-2663

of PSO problems. The contributions of this work are summarized
as follows.

(1) Propose the queue algorithm to reduce the concurrent mem-
ory access delays.

(2) Propose the queue lock algorithm to further remove the
synchronization overhead.

(3) Implement the above algorithms and compare their results
against those achieved by the state-of-the-art methods, i.e.,
the parallel reduction and the loop-unrolling methods. The
experimental results demonstrate the effectiveness and effi-
ciency of our proposed algorithms.

The rest of this paper is organized as follows. Section 2 describes
the related work. Section 3 provides the background of the PSO
algorithms for serial and parallel executions. Section 4 presents the
design of our proposed algorithms. Section 5 details the implemen-
tation remarks. Section 6 shows the experimental results. Section 7
concludes this paper and gives the future work.

2 PARTICLE SWARM OPTIMIZATION (PSO)
ALGORITHMS

2.1 Standard PSO Algorithm (SPSO)
The parameters of the Standard Particle SwarmOptimization (SPSO)
algorithm are defined in Table 1. In general, the parameters𝑤 , 𝑐1,
and 𝑐2 are changed in different practical situations, controlling the
behavior and efficiency of the SPSO algorithm.𝑚𝑎𝑥_𝑝𝑜𝑠 ,𝑚𝑖𝑛_𝑝𝑜𝑠 ,
𝑚𝑎𝑥_𝑣 , and𝑚𝑖𝑛_𝑣 restrict the lower and upper boundaries of each
dimension in the search space for the position and velocity respec-
tively.𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 performs the termination criterion of the number
of iterations. 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑐𝑛𝑡 is the total number of the particles. More-
over, 𝑝𝑜𝑠𝑖 , 𝑣𝑖 , 𝑓 𝑖𝑡𝑖 , 𝑝𝑏𝑒𝑠𝑡_𝑝𝑜𝑠𝑖 , and 𝑝𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡𝑖 are the necessary in-
formation of each particle𝑖 , which represent as the position, speed,
fitness, best-known position, and best-known fitness respectively.
The subscript 𝑖 is the index of each particle. Finally, 𝑔𝑏𝑒𝑠𝑡_𝑝𝑜𝑠 is the
best-fitness point ever found by the whole swarm, and 𝑔𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡 is
the best-fitness value obtained by corresponding best-fitness point
𝑔𝑏𝑒𝑠𝑡_𝑝𝑜𝑠 .

Algorithm 1 shows the full workflow of the SPSO algorithm,
and it could be simply decomposed into 5 steps. The algorithm
would continue operating from step 2 to step 5 until satisfying the
termination condition as follows: (1) initialize the information of
each particle, including position, velocity, fitness, the best-known
position of each particle, the best-known fitness of each particle,
global best-known position, and global best-known fitness. The
position and velocity are initialized with a uniformly distributed
random vector, constricted in the fixed range to ensure the conver-
gence. (2) update the velocity of each particle as Equation 1 and the
position of each particle as Equation 2 within the domain of the
fitness function at time 𝑡 to explore the whole search-space. r1 and
r2 are uniformly distributed on random value in [0, 1]. (3) calculate
each particle fitness by its position and fitness function. (4) update
the best-known position and the fitness, local best for short, while
the new fitness is better than the previous one. (5) update the global
best-known position and fitness, global best for short, while the
fitness of the particle is better than the global best-known fitness.

Table 1: Description of PSO required parameters.

Name Description

𝑤 the inertia weight
𝑐1 the cognitive coefficient
𝑐2 the social coefficient
𝑚𝑎𝑥_𝑝𝑜𝑠 the maximum position of the particles
𝑚𝑖𝑛_𝑝𝑜𝑠 the minimum position of the particles
𝑚𝑎𝑥_𝑣 the maximum velocity of the particles
𝑚𝑖𝑛_𝑣 the maximum velocity of the particles
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 the number of the iterations
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑐𝑛𝑡 the total number of the particles
𝑝𝑜𝑠𝑖 the position of each particle𝑖
𝑣𝑖 the velocity of each particle𝑖
𝑓 𝑖𝑡𝑖 the fitness of each particle𝑖
𝑝𝑏𝑒𝑠𝑡_𝑝𝑜𝑠𝑖 the best-known position of each particle𝑖
𝑝𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡𝑖 the best-known fitness of each particle𝑖
𝑔𝑏𝑒𝑠𝑡_𝑝𝑜𝑠 the best-known position of the whole swarm
𝑔𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡 the best-known fitness of the whole swarm

𝑣𝑖 (𝑡 + 1) =𝑤 ∗ 𝑣 (𝑡) + 𝑐1 ∗ 𝑟1(𝑝𝑏𝑒𝑠𝑡_𝑝𝑜𝑠𝑖 (𝑡) − 𝑝𝑜𝑠𝑖 (𝑡))
+ 𝑐2 ∗ 𝑟2(𝑔𝑏𝑒𝑠𝑡_𝑝𝑜𝑠𝑖 (𝑡) − 𝑝𝑜𝑠𝑖 (𝑡))

(1)

𝑝𝑜𝑠𝑖 (𝑡 + 1) = 𝑝𝑜𝑠𝑖 (𝑡) + 𝑣𝑖 (𝑡 + 1) (2)

Algorithm 1 Sequential SPSO algorithm

1: for 𝑖 in 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑐𝑛𝑡 do ⊲ Step1: Initialization
2: Initialize 𝑝𝑜𝑠𝑖 and 𝑣𝑖 randomly.
3: Evaluate 𝑓 𝑖𝑡𝑖 by 𝑝𝑜𝑠𝑖 and fitnessfunction.
4: Initialize 𝑝𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡𝑖 and 𝑝𝑏𝑒𝑠𝑡_𝑝𝑜𝑠𝑖 .
5: Update 𝑔𝑏𝑒𝑠𝑡_𝑝𝑜𝑠 and 𝑔𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡 .
6: end for
7: for 𝑗 in𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do ⊲ Step2-5: Computation
8: for 𝑖 in 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑐𝑛𝑡 do
9: Update 𝑣𝑖 by 𝑝𝑜𝑠𝑖 , 𝑝𝑏𝑒𝑠𝑡_𝑝𝑜𝑠𝑖 , and 𝑔𝑏𝑒𝑠𝑡_𝑝𝑜𝑠 . ⊲ Step2
10: Keep 𝑣𝑖 in the range (𝑚𝑖𝑛_𝑣𝑖 ,𝑚𝑎𝑥_𝑣𝑖)
11: Update 𝑝𝑜𝑠𝑖 by 𝑝𝑜𝑠𝑖 and 𝑣𝑖 .
12: Keep 𝑝𝑜𝑠𝑖 in the range (𝑚𝑖𝑛_𝑝𝑜𝑠𝑖 ,𝑚𝑎𝑥_𝑝𝑜𝑠𝑖).
13: Evaluate 𝑓 𝑖𝑡𝑖 by 𝑝𝑜𝑠𝑖 . ⊲ Step3
14: if 𝑓 𝑖𝑡𝑖 > 𝑝𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡𝑖 then ⊲ Update local best
15: Update 𝑝𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡𝑖 and 𝑝𝑏𝑒𝑠𝑡_𝑝𝑜𝑠𝑖 by 𝑓 𝑖𝑡𝑖 and 𝑝𝑜𝑠𝑖 .
16: end if ⊲ Step4
17: if 𝑝𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡𝑖 > 𝑔𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡 then ⊲ Update global best
18: Update 𝑔𝑏𝑒𝑠𝑡_𝑝𝑜𝑠 and 𝑔𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡 by 𝑝𝑏𝑒𝑠𝑡_𝑝𝑜𝑠𝑖 and

𝑝𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡𝑖
19: end if ⊲ Step5
20: end for
21: end for

2.2 Parallel PSO Algorithm (PPSO)
In order to take advantage of the computing power of GPUs (graph-
ics processing units), a parallel PSO (PPSO) has been developed

2

based on the SPSO introduced in Section 2.1 to improve the exe-
cution speed of Steps 2-5 in Algorithm 1. The PPSO program is
executed by CPU and GPU. Specifically, the particle information
initialization (Step 1) and finalization (to obtain the final results)
are done by the CPU, whereas the compute-intensive part (Steps
2-5) is performed on the GPU.

In PPSO [2], a thread is used to handle the computations for
calculating the information of a particle, e.g., velocity, position, and
fitness, as defined in Steps 2 and 3, where the workflow is illustrated
in the "1st kernel" (the first parallel code section) in Figure 1. The
threads are grouped into blocks to update the best-known position
and fitness for a group of particles, where the best data within
each block is computed at the end of the "1st kernel" in Figure 1.
It is important to note that in order to speed up the process of
obtaining the best data within each block, the parallel reduction
operations are performed within each block (i.e., each thread group).
Subsequently, the second parallel code (the "2nd kernel") is used
to further derive the best position and fitness for the particle data
across the thread groups (blocks), which is also performed by the
parallel reductions. It is worthy to note that the first kernel code
is performed by multiple thread blocks and each block performs
the reductions internally to find the local best data points. On the
contrary, the second kernel code is handed by a thread block to
search for the global best data point from the output data derived
by the thread blocks for the first kernel.

During the parallel reduction, it incurs extensive arithmetic
operations for calculating the proper addresses of the reduction
operands and the branching instructions in the reduction loops.
A common approach is to unroll the reduction loops to reduce
the above overheads since the addresses are computed offline and
the sequential unrolled code avoids the branches. Nevertheless,
unrolling the loops cannot remove the implicit synchronization be-
tween the first and second kernels, and during the iterative search
process, the two kernels are invoked repeatedly, which introduces
a significant amount of overheads. In this work, we develop the
novel algorithm to tackle the problem.

3 PROPOSED PARALLEL ALGORITHMS
3.1 PPSO with the Shared Memory Queue
In the practical test, we find that it is seldom the case that the con-
ditions of Steps 4 and 5 in Algorithm 1 are satisfied; the possibility
of the satisfied condition may be less than 0.1%. Specifically taking
Step 4 as an example, the 𝑓 𝑖𝑡𝑖 calculated by the 𝑖-th thread is usually
less than the 𝑝𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡𝑖 listed in line 14 of the algorithm. Based
on the observation, we develop the shared memory based solution,
which is referred to as the queue algorithm, to let each thread to
update the queue (the in-order accessed arrays and the index to
the arrays guarded by the atomic addition operation) if its calcu-
lated 𝑓 𝑖𝑡 value is larger than that of the global value 𝑔𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡 . The
major concept is the sequential accesses (enforced by the atomic
add operation) to the shared memory arrays and is listed in line
1-4 in Algorithm 2. To further identify the best configuration of
each block, the thread with its thread identifier equal to zero (i.e.,
𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 .𝑥 == 0) is selected to scan the entire queue, finds the lo-
cal best configuration, and updates the local best information to the
auxiliary arrays, as listed in line 7-20 in Algorithm 2. In particular,

Figure 1: The workflow of parallel PSO algorithm.

the local best information for a block (stored in 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑄𝑢𝑒𝑢𝑒 [0])
is updated to the auxiliary arrays indexed by the block identifier
(𝑎𝑢𝑥𝐹𝑖𝑡 [𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑥] and 𝑎𝑢𝑥𝑃𝑜𝑠 [𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑥]), as specified in line
17-18 Algorithm 2. Regarding the complexity of the step for updat-
ing the intra-block best, we reduce the complexity from O(log𝑛) of
using the reduction operation to theoreticalO(1) of using the queue
method2. Note that the similar approach is also adopted when using
the second kernel to update the global best information.

3.2 PPSO with the Shared Memory Queue and
the Global Lock

As described in Section 3.1, the local best information of each block
is stored in the corresponding position of the auxiliary arrays (line
17-18 of Algorithm 2). This design allows the first threads of each
block to store their best data to the auxiliary arrays concurrently.

2Thanks to the queue method that maintains the best-known fitness of each particle
and performs the reduction operation if necessary, the resultant complexity is close to
O(1) at most of the time.

3

Algorithm 2 The queue algorithm.

1: if 𝑓 𝑖𝑡 > 𝑔𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡 then
2: 𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑 𝑐𝑜𝑛𝑠𝑡 𝑞𝐼𝑑𝑥 ← 𝑎𝑡𝑜𝑚𝑖𝑐𝐴𝑑𝑑 (&𝑛𝑢𝑚, 1);
3: 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑄𝑢𝑒𝑢𝑒 [𝑞𝐼𝑑𝑥] ← 𝑓 𝑖𝑡 ;
4: 𝑏𝑒𝑠𝑡𝑃𝑜𝑠𝑄𝑢𝑒𝑢𝑒 [𝑞𝐼𝑑𝑥] ← 𝑝𝑜𝑠;
5: end if
6: __syncthreads();
7: if 𝑖𝑑𝑥 < 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑐𝑛𝑡 && 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 .𝑥 == 0 then
8: 𝑎𝑢𝑥𝐹𝑖𝑡 [𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑥] ← 𝐼𝑁𝑇_𝑀𝐼𝑁 ;
9: 𝑎𝑢𝑥𝑃𝑜𝑠 [𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑥] ← 𝐼𝑁𝑇_𝑀𝐼𝑁 ;
10: if 𝑛𝑢𝑚 then
11: for 𝑗 in 𝑛𝑢𝑚 do
12: if 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑄𝑢𝑒𝑢𝑒 [𝑗] > 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑄𝑢𝑒𝑢𝑒 [0] then
13: 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑄𝑢𝑒𝑢𝑒 [0] ← 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑄𝑢𝑒𝑢𝑒 [𝑗]
14: 𝑏𝑒𝑠𝑡𝑃𝑜𝑠𝑄𝑢𝑒𝑢𝑒 [0] ← 𝑏𝑒𝑠𝑡𝑃𝑜𝑠𝑄𝑢𝑒𝑢𝑒 [𝑗]
15: end if
16: end for
17: 𝑎𝑢𝑥𝐹𝑖𝑡 [𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑥] ← 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑄𝑢𝑒𝑢𝑒 [0];
18: 𝑎𝑢𝑥𝑃𝑜𝑠 [𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑥] ← 𝑏𝑒𝑠𝑡𝑃𝑜𝑠𝑄𝑢𝑒𝑢𝑒 [0];
19: end if
20: end if

Later, the second kernel is used to further search for the global best
information from within the auxiliary arrays. In such a design, it re-
quires the two kernels to compute the global best configuration, as
illustrated in Figure 1. In order to alleviate the synchronization over-
head (between the two kernels) and shorten the time of launching
the second kernel, we fuse the two kernels together via computing
the best configuration (originally done in the second kernel) at the
end of the first kernel. That is, Algorithm 3 is proposed to replace
the line 17-18 of Algorithm 2.

Algorithm 3 reduces the execution time because each thread
block compares its local best configuration against the global best
one as soon as its local best configuration is available. In the fused
kernel, each of the thread blocks finds its local best configuration
and updates to the global configuration if necessary. Such a design
eliminates the need to write to the auxiliary arrays and relaxes the
synchronization of the thread blocks (i.e., the second kernel should
be started after the threads in the first kernel are terminated), where
a lock is introduced to ensure the global best information (𝑔𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡
and 𝑔𝑏𝑒𝑠𝑡_𝑝𝑜𝑠) is accessed sequentially by utilizing the atomic lock.
Therefore, it would deliver better performance, especially for the
one dimensional data for 𝑔𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡 , which has no bad side effort.

Algorithm 3 The queue algorithm with atomic lock.
1: while(atomicCAS(lock, 0, 1) != 0);
2: if 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑄𝑢𝑒𝑢𝑒 [0] > 𝑔𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡 then
3: 𝑔𝑏𝑒𝑠𝑡_𝑓 𝑖𝑡 ← 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑄𝑢𝑒𝑢𝑒 [0];
4: 𝑔𝑏𝑒𝑠𝑡_𝑝𝑜𝑠 ← 𝑏𝑒𝑠𝑡𝑃𝑜𝑠𝑄𝑢𝑒𝑢𝑒 [0];
5: __threadfence();
6: end if
7: atomicExch(lock, 0);

Figure 2: The SoA layout of particle position in high dimen-
sion with coalesce memory access

4 IMPLEMENTATION REMARKS
4.1 Coalesce Memory Access
In general, the developers often use an array of structures (AoS) lay-
out to design a program, since the AoS layout is easily understood
and supported directly by most programming languages. However,
AoS layout is almost the worst case scenarios to develop a parallel
program as CUDA. On the other hand, structure of arrays (SoA) lay-
out can reduce memory access time because each thread can do the
coalesced access for continuous memory address. Accordingly, we
change the data structure as the SoA layout in our implementation.

The data structure how we implement the SoA layout of the PSO
algorithm. With the SoA adjustment, every element is seen as to be
saved in an array with a fixed value, and it guarantees all threads
of the same warp that could access consecutive values in global
memory and obtain a better performance than AoS layout. In the
high dimension case of the PSO algorithm, we follow the SoA rule
in our implementation. As Figure 2, all threads accessing at the
same dimension, which are still satisfied with the condition of the
coalesced memory access, making the memory access each element
efficiently.

Data Structure AoS: Array of structures.
1: struct Particle{
2: double position;
3: double velocity;
4: double fitness;
5: double pbest_pos; ⊲ The local best-known position
6: double pbest_fit; ⊲ The local best-known fitness
7: } particles[N];

Data Structure SoA: Structure of arrays.
1: struct ParticleCoalescedMem{
2: double position[N];
3: double velocity[N];
4: double fitness[N];
5: double pbest_pos[N]; ⊲ The local best-known position
6: double pbest_fit[N]; ⊲ The local best-known fitness
7: };

4.2 Constant Memory
NVIDIA GPUs provide 64KB of constant memory that is treated
differently from standard global memory. The constant memory has

4

its own cache. When all threads access the same memory address
simultaneously and threads in the same block re-access that address
continuously, the constant memory can reach the most effective
performance. Thus, using constant memory instead of global mem-
ory, which can conserve the memory bandwidth. Although the
constant memory can complete the memory accessing task with
the less latency, it constrains the data usage to be read-only. In
our study case, we can place the parameters 𝑤 , 𝑐1, 𝑐2, 𝑚𝑎𝑥_𝑝𝑜𝑠 ,
𝑚𝑖𝑛_𝑝𝑜𝑠 ,𝑚𝑎𝑥_𝑣 ,𝑚𝑖𝑛_𝑣 , 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑐𝑛𝑡 in constant memory, making
all threads accessed to the constant memory in the same time, with
an eye to reducing the memory latency time.

4.3 Shared Memory
The sharedmemory buffers reside physically on theGPU as opposed
to residing in off-chip DRAM, which is much faster than the global
memory. In fact, if there are no bank conflicts, the shared memory
latency is about 100 times lower than the uncached global memory
latency. Because the shared memory is shared by threads in a thread
block, it has amechanism for threads to cooperate. As subsection 2.2,
using reduction would access the global memory frequently so that
we can utilize shared memory to reduce the memory bandwidth
latency. Similarly, shared memory can also be used on the GPU
Queuemethod proposed at subsection 3.1. Owing to sharedmemory
providing 48KB for each stream multiprocessors (SMs) only, we
should store the index of the particle number rather than all axes
positions on high dimension cases. After getting the best fitness
of the particle, we can use the index to fill all axes position back,
which not only saves the latency time but also reduces the shared
memory usage to ensure maximum parallelization for SMs.

4.4 Random Number Generation
The PSO algorithm relies on the sequence of random numbers to
find the best solution within the designated space. To generate the
high-quality pseudorandom and quasirandom numbers on the GPU
side, it is important to use the cuRAND [3] library offered by the
CUDA toolkit. While the users can provide the random number gen-
erator function on the GPU side by porting that function seen in the
CPU side, it is time-consuming and inefficient for GPU execution
since the custom-made library should be a thread-safe implementa-
tion and it may not take advantage from the low-level primitives of-
fered by the CUDA toolkit. Based on our experiments, the cuRAND
library outperforms the custom-made implementation on the PPSO
program by a factor of 1.1. Therefore,in our experimental results,
we adopt the cuRAND library (i.e., the 𝑐𝑢𝑟𝑎𝑛𝑑_𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚_𝑑𝑜𝑢𝑏𝑙𝑒 ()
function) to run the experiments by default.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
The hardware and software platforms used for the experiments are
listed in Table 2. The five PSO algorithms have been implemented
and tested in the experiments, 1) CPU for the serial version defined
in Section 2.1, 2) Reduction for the parallel reduction method in-
troduced in Section 2.2, 3) Loop Unrolling for the loop unrolling
method introduced in Section 2.2, 4) Queue for the proposed queue
algorithm defined in Section 3.1, and 5) Queue Lock for the pro-
posed queue lock algorithm defined in Section 3.2, where all the

algorithms are running on the GPU, except for the first serial ver-
sion. The double precision floating point numbers are adopted in
the PSO implementations. Each of the reported data is the average
numbers of the execution time for 10 runs, removing the maximum
and minimum numbers. In order to observe the impacts of the im-
proved algorithms, the running time at the GPU side is measured
and reported. The above implementations are used to solve the
problems with both the low and high dimension space, denoted as
1D problem and 120D problem, respectively.

Table 2: The hardware and software platforms for the exper-
iments.

Name Description

CPU Intel Xeon CPU E3-1275 v5, 3.60GHz
GPU Nvidia GTX-1080ti, 1481 MHz, 3584 CUDA cores,

Compute Capability 6.1
OS Ubuntu 18.04.4 LTS (kernel version 5.4.0-42-generic)
CUDA CUDA Toolkit 11.2

Fitness Function. An important design parameter of the PSO al-
gorithm is the fitness function. While there are several different
functions to be used, such as Sphere, Rosenbroc, Griewang, we
choose the Cubic function as the fitness function for all the exper-
iments, as shown in Equation 3, since it requires slightly higher
computation complexity (e.g., higher than Sphere). The parameter
𝑤 used by the fitness function is set as 1 and learning factor 𝑐1 and
𝑐2 as 2, which are commonly seen settings.

𝑓 =

𝑑∑︁
𝑖=1

𝑥3𝑖 − 0.8𝑥
2
𝑖 − 1000𝑥𝑖 + 8000, −100 ≤ 𝑥𝑖 ≤ 100 (3)

5.2 1D Problem
As listed in Table 3, the parallel algorithms running on the GPU
outperform the serial version on the CPU. The execution time of
the CPU version increases almost linearly with the growth of the
computation load (related to the number of particles and itera-
tion). On the contrary, the parallel versions have relatively stable
execution times across the different workloads since the problem
size is relatively small which can be covered by GPU. Specifically,
each particle is assigned with a GPU thread to handle the required
computation. The maximum number of particles is 2,048 in this
experiment, and the Nvidia GPU has 3,584 CUDA threads. The
ranking, in terms of the execution time, of the five algorithms are
plotted in Figure 3. Obviously, the Queue Lock algorithm achieves
the best performance than all other parallel versions, and the Queue
algorithm is the second best choice. Particularly, the Queue Lock
algorithm is 2.2 times faster than the Reduction algorithm, which
is the state-of-the-art work. Table 4 shows the speedup ratio of the
serial version running on the CPU to the Queue Lock algorithm
on the GPU. It shows a maximum of 195x speedup when handling
65,536 particles, and the speedup drops for handling 131,072 parti-
cles. Based on our analysis, the GPU is overloaded in such a case,
where the GPU capacity is full and it cannot handle the workload
efficiently (context switching among thread groups do not help the
performance).

5

Table 3: The execution times of the five implementations on the 1D problem.

Particles Iteration CPU (s) GPU Reduction (s) GPU Loop Unrolling (s) GPU Queue (s) GPU Queue Lock (s)

32 100,000 0.100 0.413 0.394 0.368 0.216
64 100,000 0.187 0.419 0.402 0.368 0.219
128 100,000 0.385 0.447 0.408 0.371 0.220
256 100,000 0.825 0.455 0.419 0.371 0.222
512 100,000 1.503 0.467 0.422 0.391 0.223
1,024 100,000 3.042 0.491 0.439 0.394 0.227
2,048 100,000 6.277 0.508 0.451 0.409 0.230

Figure 3: Plotting of the execution times of the five imple-
mentations with different number of particles involved.

Table 4: The speedups achieved by the Queue Lock algorithm
on the 1D problem.

Particles Iteration CPU (s) GPU QueueLock(s) Speedup Ratio

128 100,000 0.385 0.220 1.75
256 100,000 0.825 0.222 3.71
512 100,000 1.503 0.223 6.73
1,024 100,000 3.042 0.227 13.40
2,048 100,000 6.277 0.230 27.29
4,096 100,000 12.410 0.265 46.83
8,192 100,000 23.850 0.316 75.47
16,384 100,000 47.355 0.417 113.56
32,768 100,000 94.629 0.643 147.16
65,536 100,000 200.536 1.026 195.45
131,072 100,000 378.671 2.759 137.24

5.3 120D Problem
We configure the PSO algorithms to handle the problem defined by
the 120 dimensional space. In the experiment setup, we select the
Queue algorithm to compare against the serial version since the
time saved by the Queue Lock algorithm is negligent in the high
dimension space since the execution of the first kernel dominate
the total execution time and the synchronization overhead saved
by the Queue Lock is relatively small. Hence, we think the Queue
algorithm is a better solution for the high dimension problem. The

Table 5: The speedups achieved by the Queue algorithm on
the 120D problem.

Particles Iteration CPU (s) GPU Queue(s) Speedup Ratio

128 5,000 2.392 0.487 4.91
256 4,000 3.543 0.384 9.22
512 3,000 5.305 0.288 18.42
1,024 2,000 7.078 0.225 31.45
2,048 2,000 14.214 0.255 55.74
4,096 1,500 21.593 0.220 98.15
8,192 1,000 29.494 0.191 154.41
16,384 1,000 59.125 0.294 201.10
32,768 1,000 128.349 0.570 225.17
65,536 1,000 237.933 1.169 203.53
131,072 800 379.820 1.744 217.78

speedups achieved by the Queue algorithm are listed in Table 5.
Because of a higher dimension space, the peak speedup is achieved
(225x) when the number of the particles is 32,768, which is only the
half of the number (65,535) reported in Table 4.

6 CONCLUSION AND FUTUREWORK
In this work, we propose the queue-based algorithms to shorten
the execution time for solving the PSO problem. We have shown
the key ideas of the parallelizing algorithms for GPUs. Our experi-
mental results show that our proposed algorithms can effectively
improve the execution efficiency for solving the PSO problems,
achieving 200x speedup compared with the serial version and 2.2x
speedup compared with the parallel reduction based method. With
the encouraging results, in the future, we would like to further
improve the performance of the queue-based approach with the
asynchronous execution scheme and to extend the algorithm for the
multiple GPU version so as to handle a larger size of PSO problems.

REFERENCES
[1] 2001. Appendix A - Statistics for Swarmers. In Swarm Intelligence, James Kennedy,

Russell C. Eberhart, and Yuhui Shi (Eds.). Morgan Kaufmann, San Francisco, 429–
449. https://doi.org/10.1016/B978-155860595-4/50012-7

[2] YANG M in CHEN Feng, TIAN Yu-bo. 2014. Research and Design of Parallel
Particle Swarm Optimization Algorithm Based on CUDA. (2014). http://www.
jsjkx.com/CN/article/openArticlePDF.jsp?id=1649

[3] NVIDIA Corporation. 2010. NVIDIA. CUDA CURAND Library. (2010).
https://www.cs.cmu.edu/afs/cs/academic/class/15668-s11/www/cuda-
doc/CURAND_Library.pdf

6

https://doi.org/10.1016/B978-155860595-4/50012-7
http://www.jsjkx.com/CN/article/openArticlePDF.jsp?id=1649
http://www.jsjkx.com/CN/article/openArticlePDF.jsp?id=1649
https://www.cs.cmu.edu/afs/cs/academic/class/15668-s11/www/cuda-doc/CURAND_Library.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15668-s11/www/cuda-doc/CURAND_Library.pdf

[4] Mark Harris. [n. d.]. Optimizing Parallel Reduction in CUDA. ([n. d.]). https:
//developer.download.nvidia.com/assets/cuda/files/reduction.pdf

[5] J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In Proceedings of
ICNN’95 - International Conference on Neural Networks, Vol. 4. 1942–1948 vol.4.
https://doi.org/10.1109/ICNN.1995.488968

[6] Thiemo Krink and Morten Løvbjerg. 2002. The LifeCycle Model: Combining
Particle Swarm Optimisation, Genetic Algorithms and HillClimbers. In Parallel
Problem Solving from Nature — PPSN VII, Juan Julián Merelo Guervós, Panagiotis
Adamidis, Hans-Georg Beyer, Hans-Paul Schwefel, and José-Luis Fernández-
Villacañas (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 621–630.

[7] Taher Niknam and Babak Amiri. 2010. An efficient hybrid approach based on
PSO, ACO and k-means for cluster analysis. Applied Soft Computing 10, 1 (2010),
183–197. https://doi.org/10.1016/j.asoc.2009.07.001

[8] Riccardo Poli. 2008. Analysis of the Publications on the Applications of Particle
Swarm Optimisation. Journal of Artificial Evolution and Applications 2008 (02
2008), 10. https://doi.org/10.1155/2008/685175

[9] Ganesh Venayagamoorthy and V.G. Gudise. 2004. Swarm intelligence for digital
circuits implementation on field programmable gate arrays platforms. 83– 86.

https://doi.org/10.1109/EH.2004.1310813
[10] Lucas de P. Veronese and Renato A. Krohling. 2009. Swarm’s flight: Accelerating

the particles using C-CUDA. In 2009 IEEE Congress on Evolutionary Computation.
3264–3270. https://doi.org/10.1109/CEC.2009.4983358

[11] Dazhi Wang, Chun-Ho Wu, Andrew Ip, Dingwei Wang, and Yang Yan. 2008.
Parallel multi-population Particle Swarm Optimization Algorithm for the Un-
capacitated Facility Location problem using OpenMP. In 2008 IEEE Congress on
Evolutionary Computation (IEEE World Congress on Computational Intelligence).
1214–1218. https://doi.org/10.1109/CEC.2008.4630951

[12] Takahiro Yamada, Yutaka Maeda, Seiji Miyoshi, and Hiroomi Hikawa. 2010.
Simultaneous perturbation particle swarm optimization and FPGA realization.
In Proceedings of SICE Annual Conference 2010. 1462–1465.

[13] Wen-Jun Zhang and Xiao-Feng Xie. 2003. DEPSO: hybrid particle swarm with
differential evolution operator. In SMC’03 Conference Proceedings. 2003 IEEE
International Conference on Systems, Man and Cybernetics. Conference Theme
- System Security and Assurance (Cat. No.03CH37483), Vol. 4. 3816–3821 vol.4.
https://doi.org/10.1109/ICSMC.2003.1244483

7

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.asoc.2009.07.001
https://doi.org/10.1155/2008/685175
https://doi.org/10.1109/EH.2004.1310813
https://doi.org/10.1109/CEC.2009.4983358
https://doi.org/10.1109/CEC.2008.4630951
https://doi.org/10.1109/ICSMC.2003.1244483

	Abstract
	1 Introduction
	2 Particle Swarm Optimization (PSO) Algorithms
	2.1 Standard PSO Algorithm (SPSO)
	2.2 Parallel PSO Algorithm (PPSO)

	3 Proposed Parallel Algorithms
	3.1 PPSO with the Shared Memory Queue
	3.2 PPSO with the Shared Memory Queue and the Global Lock

	4 Implementation Remarks
	4.1 Coalesce Memory Access
	4.2 Constant Memory
	4.3 Shared Memory
	4.4 Random Number Generation

	5 Experimental Results
	5.1 Experimental Setup
	5.2 1D Problem
	5.3 120D Problem

	6 Conclusion and Future Work
	References

