
A Priority-Aware Multiqueue NIC Design
for Real-Time IoT Devices

Ilja Behnke, Philipp Wiesner, Robert Danicki, Lauritz Thamsen
Technische Universität Berlin

{i.behnke,wiesner,r.danicki,lauritz.thamsen}@tu-berlin.de

ABSTRACT
Low-level embedded systems are used to control cyber-phyiscal
systems in industrial and autonomous applications. They need to
meet hard real-time requirements as unanticipated controller de-
lays on moving machines can have devastating effects. Modern
developments such as the industrial Internet of Things and au-
tonomous machines require these devices to connect to large IP
networks. Since Network Interface Controllers (NICs) trigger inter-
rupts for incoming packets, real-time embedded systems are subject
to unpredictable preemptions when connected to such networks.

In this work, we propose a priority-aware NIC design to moder-
ate network-generated interrupts by mapping IP flows to processes
and based on that, consolidates their packets into different queues.
These queues apply priority-dependent interrupt moderation.First
experimental evaluations show that 93 % of interrupts can be saved
leading to an 80% decrease of processing delay of critical tasks in
the configurations investigated.

KEYWORDS
Embedded systems, real-time operating systems, network interface
controller, internet of things, cyber-physical systems

ACM Reference Format:
Ilja Behnke, Philipp Wiesner, Robert Danicki, Lauritz Thamsen. 2022. A
Priority-Aware Multiqueue NIC Design, for Real-Time IoT Devices. In The
37th ACM/SIGAPP Symposium on Applied Computing (SAC ’22), April 25–29,
2022, Virtual Event, . ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3477314.3507165

1 INTRODUCTION
In the context of cyber-physical systems, where software processes
lead to physical actions, industrial processing systems andmachines
are controlled by microcontrollers. These devices usually provide
only little processing power and run Real-Time Operating Systems
(RTOSs) that implement guarantees regarding reaction times for
sensory input and control commands [5]. With the advent of the
Internet of Things (IoT) and Industry 4.0, many cyber-physical
systems are being connected to IP networks for remote control,
monitoring, and maintenance [3, 8]. While the overall architecture
of these connected devices is similar to general-purpose microcon-
trollers, they also have to provide Network Interface Controllers
(NICs) and network stack implementations.

SAC ’22, April 25–29, 2022, Virtual Event,
© 2022 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in The 37th
ACM/SIGAPP Symposium on Applied Computing (SAC ’22), April 25–29, 2022, Virtual
Event, , https://doi.org/10.1145/3477314.3507165.

To notify the CPU of newly available data, input devices like
sensors and serial interfaces use interrupt requests that trigger
Interrupt Service Routines (ISRs) on the controller. Due to the dis-
tinct priority spaces of ISRs and scheduled processes in RTOSs,
interrupts preempt any currently running process independent of
its priority [11]. On real-time devices this introduces a high level
of unpredictability as the processing units are interrupted from
outside the RTOS [9]. As a result, interrupts triggered by a NIC
for incoming network packets and the load-dependent overhead
of driver and networking tasks can alter the assumed time-line of
running processes. This can result in breaking real-time guarantees
for critical processes [2, 4].Consequentially, common IoT devices
are easily overwhelmed by network packet floods, even when no
subsequent processing of packets is performed.

Due to this problem, programmers have to resort either to turn-
ing off interrupts during critical executions or using separate re-
sources for networking and processing in the typically resource-
constrained environments of microcontrollers [10, 13]. However, a
different solution has to be found in scenarios where IP networks
are used for the control of cyber-physical systems and are necessary
for critical machine functions.

In this paper, we present the design and preliminary evaluation
of a priority-aware multiqueue NIC design that can reduce network-
induced interrupt overloads of IoT devices without delaying packets
for time-critical tasks. This is achieved by reducing the number
of interrupts generated by packets related to low priority tasks.
The acceptable rate of interrupts can be configured through the
operating system to a per-process window.

2 MULTIQUEUE NIC DESIGN
To address the real-time violating effects of network-generated
interrupts and their processing overhead, we propose a priority-
aware network interface controller that handles network packets
depending on their destination process: A configurable multi-queue
NIC for real-time embedded systems. This section illustrates the
NIC’s design, configuration parameters, and operating system-side
management.

2.1 Heterogeneous Interrupt Moderation
The issue of network generated interrupts impacting system perfor-
mance can be addressed using interrupt moderation. However, tra-
ditional techniques have their disadvantages. While they increase
the overall interrupt processing efficiency, they also increase the
incurred packet delays and make them less predictable as packets
are held back for a variable amount of time. Hence, our NIC design
attempts at reducing the network overhead while guaranteeing low
and constant latency for critical packets, i.e. packets used to control
critical tasks.

ar
X

iv
:2

20
1.

00
59

4v
1

 [
cs

.N
I]

 3
 J

an
 2

02
2

https://doi.org/10.1145/3477314.3507165
https://doi.org/10.1145/3477314.3507165
https://doi.org/10.1145/3477314.3507165

SAC ’22, April 25–29, 2022, Virtual Event, Behnke, Wiesner, Danicki, Thamsen

NIC

distribution
map

0ms

1ms

5ms

interrupt

configure queues

IP
traffic

set mapping

OS

proc 1 prio 1

proc 2 prio 2

proc 3 prio 3

Figure 1: Multiqueue NIC: Traffic is organized into different
queues with exemplary delay values attached.

As embedded systems run a fixed set of specific tasks that is
seldomly altered, we can use their metadata to filter and manage in-
coming packets on the hardware layer before interrupting. Namely,
these are the priorities of the packet-receiving processes and their
associated IP flows. Interrupt moderation can thereby become the
tool to enforce process priorities before entering the operating
system domain.

2.2 NIC Adaptation
Our proposed NIC adaptation begins after the MAC-layer tasks. An
illustration of the design can be seen in Figure 1. To accommodate
incoming packets belonging to different real-time processes, the re-
ceive buffer is divided into multiple queues realized as ring buffers.
This way, packet descriptors are assigned to different queues de-
pending on their destination process and its priority.

When a data frame arrives from the network, it is validated and
the packet metadata compared to a list of registered ports residing in
a distribution map on the NIC. Here, packets are assigned to queues
which hold packets of one process each. According to the process
priority and expected packet load, different interrupt moderation
configurations (e.g. delay timers and counter threshold) are applied
to them via the operating system.

This way, packets for critical processes trigger interrupts imme-
diately upon reception while less important packets (that is, packets
with low priority receiving tasks) are held back before one interrupt
is triggered for all packets in the respective queue, indicated by the
millisecond specifications in Figure 1. Packets with no associated
process can be dropped before an interrupt is triggered, preventing
unnecessary processing. This is especially important with high
unanticipated traffic loads targeting the device and potentially lead-
ing to a denial of service.

Relevant Parameters. The multiqueue NIC introduces four main
parameters affecting packet delays and resource utilization:

• Number of queues. The number of queues the receive buffer
is divided into is the number of processes accepting packets.

• Size of queues. The size of a queue corresponds to its expected
packet load, available memory, and moderation parameters.

• Absolute queue timer values.Queue-specific periodic duration
until an interrupt is triggered by the queue.

• Packet timer values. Queue-specific interrupt timer that is
being reset reset by each incoming packet.

The timer values are used to span a time window of how long
a packet remains in the queue. Depending on the packet rate, a
variable number of packets is then coalesced for one interrupt. As
these parameters have a high impact on the timeliness of incoming
traffic and generated workload on the real-time device, the accuracy
of their configuration is of high importance.

Configuration. As depicted in Figure 1, there are two interfaces
necessary for NIC configurations. One for the tuning of the before
mentioned queue parameters and secondly, the transfer of process-
IP flow mappings. Both are performed when a socket is bound via
the network stack API. To this end, the socket API is extended with
driver calls performing the specific changes. Whenever a new pro-
cess registers or frees a socket, the operating system transparently
adjusts the number of queues and their parameters. Delay timers
and queue size must be set to fit specific scenarios.

The system must be dynamically adjustable during runtime to
facilitate changes in processes or IP flows. With the configuration
process being linked to the socket API, all necessary tuning pa-
rameters can be passed at any point in time by the registering
process.

As there is no explicit information about the receiving process
in a network packet, there needs to be a mapping between packet
meta data and processes. To this end, a map between IP flows
and processes is created and placed on the NIC. In this design, the
destination port is used to map a packet to a process and its priority.

3 EVALUATION
This section outlines a first set of experiments conducted under
increasing network loads and preliminary results. The experiments
have been conducted using a simulation of the presented NIC design
in combination with an ESP32 IoT device running FreeRTOS.

Experiments under High Load. In all experiments the IoT device
runs four worker processes of different priority. The processes are
controlled over the widely used industrial communication protocol
MODBUS/TCP1. As each of the processes binds its own socket, four
queues with different interrupt moderation configurations are set
up in the NIC.

One baseline experiment was performed without any interrupt
moderation. To observe the system under high traffic, it is subjected
to packet floods ranging from 0 to 15000 packets per second. All
experiments were performed four times using different absolute
delay timer values for the added packet floods. The values range
from 800 𝜇𝑠 to 3200 𝜇𝑠 resulting in the designations nomod (for un-
moderated traffic), d800, d1600, d2400, and d3200. Each experiment
runs for a duration of 30 seconds. We observed the progression of
interrupts generated in respect to packets received and the addi-
tional runtime of the processes incurred by the network traffic, and
their consequential deadline misses.

Results. Figure 2 shows a comparison of packet and interrupt num-
bers for the baseline experiment without additional load. Queues 0
- 3 moderate interrupts in different time windows, so they generate
fewer interrupts than the first queue, which is receiving packets for
a critical task. The total rate of interrupts per packet ranged from

1MODBUS/TCP traces provided by [6].

A Priority-Aware Multiqueue NIC Design SAC ’22, April 25–29, 2022, Virtual Event,

0 5 10 15
Time (s)

0

25

50

E
ve

nt
s

pe
r s

ec
on

ds Packets

0 5 10 15
Time (s)

Interrupts
q0
q1
q2
q3

Figure 2: Packets and caused interrupts over time.

0 1000 2000 3000 4000 5000
Load (packets per second)

0

5

10

15

A
dd

iti
on

al
 ru

nt
im

e
(%

)

nomod
d800
d1600

d2400
d3200

Figure 3: Additional run-
time of critical process in-
duced by increased load.

nomod d800 d1600 d2400 d3200
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 jo

bs
m

ee
tin

g
de

ad
lin

e 5%
7.5%
10%

Figure 4: Share of critical
packets meeting deadlines
under load of 5000 pck/s.

70 % in the undisturbed experiment to 2 % with high additional load
of 15000 packets per second and 3200 𝜇𝑠 absolute timer value. The
absolute moderation timer is an effective tool to moderate high
loads as more packets are coalesced into interrupts while the critical
task is unaffected.

Next, we observe the interrupt-induced runtime increase of the
critical process. A significant mitigation of the malicious effects of
packet floods can be obtained in all moderation configurations for
the critical process. Processes of lower priority also benefit from
the approach, as the CPU is freed up from unnecessary ISRs. Figure
3 shows the mitigating effects for the critical task under variable ad-
ditional load. Further, it can be seen that there is a scenario-specific
optimal configuration between d2400 and d3200. By increasing the
delay parameters, more packets are coalesced for each interrupt,
meaning that the networking tasks are confrontedwith larger bursts
of packets per notification. This has negative effects on CPU load
starting at a critical packet count. For the maximum depicted packet
load of 5000 packets per second the additional runtime could be de-
creased by 80 % resulting from the prevention of 93 % of interrupts.

Figure 4 shows the percentage of tasks for the critical process
meeting their deadline with grace periods from 5 - 10 % compared
to their baseline (median runtime without packet flood) under an
additional load of 5000 per second.

4 RELATEDWORK
The introduction of unpredictability in real-time environments
through interrupts has been a long-standing research topic. In the
following, we present past approaches to mitigate interrupt impact.

The Advanced Interrupt Controller [7] monitors the priority of
the currently running process to determine if an interrupt should
be triggered or held back by comparing it to the interrupt’s priority.
A simple extension of the interrupt controller unifies the priority
spaces of attached interrupts and operating system processes.

Network Interface Controllers withmultiple transmit and receive
queues have been introduced by Intel as early as 2007. The goal is
to make use of multicore systems by parallelizing network load on
the different queues. The trend is to increase the number of queues
to facilitate cloud computing as Zhu et. al. showed in 2020 [14].

The priority inverting impact of interrupts in real-time systems
has been identified and tackled byAmiri et. al. by employing priority
inheritance protocols for interrupt service threads [1]. In contrast,
Multi-Sloth [12] presents an OS adaptation that treats all threads as
interrupts, scheduling threads and ISRs in a unified priority space.

The issue of DoS attacks in industrial IoT environments has
been addressed by Niedermaier et al. [13]. A dual microcontroller
architecture is proposed to separate networking tasks from critical
real-time processes.

5 CONCLUSION
Unexpected floods of network traffic can delay the process flow
in real-time systems, which is a potential safety issue for many
Industry 4.0 applications. To mitigate the effect of high traffic on
real-time IoT devices, we propose a priority-aware multiqueue NIC
that maps IP flows to processes when a socket is bound. We evalu-
ated our design using a NIC simulation and an IoT device running a
real-time operating system. The results of these experiments show
that our approach significantly reduces the impact of traffic floods
on critical process runtimes, saving 93% of interrupts and 80% of
processing delay under packet rates of 5000 per second.

REFERENCES
[1] Javad Ebrahimian Amiri and Mehdi Kargahi. 2015. A predictable interrupt

management policy for real-time operating systems. In RTEST 2015.
[2] Ilja Behnke, Lukas Pirl, Lauritz Thamsen, Robert Danicki, Andreas Polze, and

Odej Kao. 2020. Interrupting Real-Time IoT Tasks: How Bad Can It Be to Connect
Your Critical Embedded System to the Internet?. In IPCCC 2020.

[3] Andreas Burg, Anupam Chattopadhyay, and Kwok-Yan Lam. 2017. Wireless
communication and security issues for cyber–physical systems and the Internet-
of-Things. Proc. IEEE 106, 1 (2017).

[4] Robert Danicki, Martin Haug, Ilja Behnke, Laurenz Mädje, and Lauritz Thamsen.
2021. Detecting and Mitigating Network Packet Overloads on Real-Time Devices
in IoT Systems. In EdgeSys 2021.

[5] Norman Finn. 2018. Introduction to time-sensitive networking. IEEE Communi-
cations Standards Magazine 2, 2 (2018).

[6] Ivo Frazão, Pedro Henriques Abreu, Tiago Cruz, Hélder Araújo, and Paulo Simões.
2018. Denial of service attacks: Detecting the frailties of machine learning
algorithms in the classification process. In CRITIS 2018.

[7] Tiago Gomes, Paulo Garcia, Filipe Salgado, João Monteiro, Mongkol Ekpa-
nyapong, and Adriano Tavares. 2015. Task-aware interrupt controller: Priority
space unification in real-time systems. IEEE Embedded Systems Letters 7, 1 (2015).

[8] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael Hoff-
mann. 2014. Industry 4.0. Business & information systems engineering 6, 4 (2014).

[9] Luis E. Leyva-del Foyo, PedroMejia-Alvarez, and Dionisio de Niz. 2012. Integrated
Task and Interrupt Management for Real-Time Systems. ACM Transactions on
Embedded Computing Systems 11, 2 (2012).

[10] Anna Maria Mandalari, Daniel J Dubois, Roman Kolcun, Muhammad Talha
Paracha, Hamed Haddadi, and David Choffnes. 2021. Blocking without Breaking:
Identification and Mitigation of Non-Essential IoT Traffic. In Proceedings on
Privacy Enhancing Technologies.

[11] Pedro Mejia-Alvarez, Luis Eduardo Leyva-del Foyo, and Arnoldo Diaz-Ramirez.
2018. Interrupt Handling Architectures.

[12] Rainer Müller, Daniel Danner, Wolfgang Schröder Preikschat, and Daniel
Lohmann. 2014. Multi Sloth: An EfficientMulti-core RTOSUsingHardware-Based
Scheduling. In 26th Euromicro Conference on Real-Time Systems.

[13] M. Niedermaier, D. Merli, and G. Sigl. 2019. A Secure Dual-MCU Architecture
for Robust Communication of IIoT Devices. In MECO 2019.

[14] Heqing Zhu. 2020. NIC-Based Parallellism. InData Plane Development Kit (DPDK):
A Software Optimization Guide to the User Space-Based Network Applications.

	Abstract
	1 Introduction
	2 Multiqueue NIC Design
	2.1 Heterogeneous Interrupt Moderation
	2.2 NIC Adaptation

	3 Evaluation
	4 Related Work
	5 Conclusion
	References

