
Toward Replicated and Asynchronous Data Streams for
Edge-Cloud Applications

Owais Qayyum

o.qayyum@uit.no

UiT The Arctic University of Norway

Tromsø, Norway

Weihai Yu

weihai.yu@uit.no

UiT The Arctic University of Norway

Tromsø, Norway

ABSTRACT
Vast number of computing devices, both in the cloud and at the

edge, are continuously generating and consuming large amount of

data. Some applications require the data to be always accessible,

even when the devices are occasionally offline. We can make the

data available by replicating and storing the generated data and

query results locally at the devices. The data and results are kept

updated when the devices are connected. The challenge, though,

is to ensure that the generated data and query results are consis-

tent. We present an approach to replicated and asynchronous data

streams that is built on two well-established techniques: data prove-

nance semirings and Conflict-Free Replicated Data Types (CRDTs).

Our approach guarantees that the replicated and asynchronously

updated data and query results are eventually consistent.

CCS CONCEPTS
• Computer systems organization→ Availability; • Informa-
tion systems→ Relational parallel and distributed DBMSs;
Database views; Stream management.

KEYWORDS
Incremental view maintenance, Stream processing, Data prove-
nance, Conflict-Free Replicated Data Type, CRDT
ACM Reference Format:
Owais Qayyum and Weihai Yu. 2022. Toward Replicated and Asynchronous
Data Streams for Edge-Cloud Applications. In Proceedings of ACM SAC
Conference (SAC’22). ACM, New York, NY, USA, Article 4, 8 pages.
https: //doi.org/10.1145/3477314.3507687

1 INTRODUCTION
Today, vast number of computing devices are generating and con-
suming large amount of data. The computing devices range from
powerful servers in the cloud to laptops, mobile phones and smart-

watches at the edge. Some applications require the data to be always
accessible, even when the devices are occasionally offline.

For example, an S&R (Search and Rescue) mission may involve

multiple devices such as mobile phones, UAVs (Unnamed Aerial
Vehicles) etc. Prior to the mission, the S&R team members may

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC’22, April 25 –April 29, 2022, Brno, Czech Republic
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-xxx. . . $15.00
https://doi.org/10.1145/3477314.3507687

prepare the devices with mission-relevant data from their central

database in the cloud. During the mission, the devices are kept

updated to the latest situation through exchange of data between

the devices and with the cloud. However, the devices might be

offline due to poor network connectivity. Still, the devices should

present up-to-date data whenever necessary.

In this paper, we focus on relational data. The generated data

are stored in base relations. Data are consumed with queries. To

make the data available at devices, we materialize the queries in

terms of materialized views and replicate (base or view) relations.

We keep the data up to date in a data-stream fashion.

According to the CAP theorem [4], it is impossible to simultane-

ously ensure all three desirable properties, namely (C) consistency

equivalent to a single up-to-date copy of data, (A) availability of

the data for update and (P) tolerance to network partition. Because

our applications of interest require data availability during network

partition, eventual consistency [5] is the strongest consistency we

can achieve.

Stream data processing is a popular research field [10, 15, 17],

where the focus has been on high throughput, low latency and

scalability on large amount of data. Data are typically processed on

a cluster of servers that are assumed to be constantly connected.

Our work has a

We present an approach to sharing and querying data through

replicated and asynchronous data streams. Generated data and

query results (as materialized view) are replicated and stored in

local devices. Data and query results are kept incrementally up-

dated like data streams, but asynchronously only when the devices

are connected. To make the replicated data and views eventually

consistent, we adopt two well-established techniques, namely data

provenance semirings [7] and CRDTs (Conflict-Free Replicated

Data Types [14]). Our approach ensures eventual consistency of

the replicated data and views.

The paper is organized as the following. Section 2 uses an exam-

ple to illustrate the research problem. Section 3 gives an overview

of our approach. Section 4 presents preliminaries on semiring and

lattice. Sections 5–7 present the two main elements of our approach,

p-semiring and causal-length lattice, along with their properties.

Section 8 describes the algorithms and shows that they guarantee

eventual consistency. Section 9 presents some experimental results.

Section 10 connects our approach to related work. Section 11 con-

cludes.

2 PROBLEM STATEMENT
We illustrate the research issues with the example shown in Figure 1.

339

https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3477314.3507687&domain=pdf&date_stamp=2022-05-06

SAC’22, April 25 –April 29, 2022, Brno, Czech Republic O.Qayyum, W.Yu

𝑅0@𝑠0

𝑅0@𝑠1

𝑅2@𝑠2

𝑅3@𝑠3

𝑅4@𝑠4

𝑅5@𝑠5

𝑅0 (𝐴𝐵𝐶)@𝑠0
𝑅0 (𝐴𝐵𝐶)@𝑠1 ← 𝑅0@𝑠0

𝑅2 (𝐴𝐵)@𝑠2 ← 𝜋𝐴𝐵 (𝜎𝜃𝑅0@𝑠0)
𝑅3 (𝐴𝐵)@𝑠3 ← 𝜋𝐴𝐵 (𝜎𝜃 ′𝑅0@𝑠1)
𝑅4 (𝐵𝐶)@𝑠4 ← 𝜋𝐵𝐶𝑅0@{𝑠0, 𝑠1}

𝑅5 (𝐴𝐵𝐶)@𝑠5 ← {𝑅2@𝑠2, 𝑅3@𝑠3} ⊲⊳ 𝑅4@𝑠4

Figure 1: Base relations and views at different sites

In what follows, 𝑠 , 𝑠1 etc. are sites (we use the terms sites and

devices interchangeably). 𝑅(𝐴, 𝐵,𝐶), 𝑅(𝐴𝐵𝐶), or simply 𝑅, is a rela-

tion schema, where 𝐴, 𝐵 and𝐶 are attributes. 𝑅@𝑠 is an instance of

𝑅 at site 𝑠 . 𝑅@{𝑠1, 𝑠2} is an instance of 𝑅 at site 𝑠1 or site 𝑠2, when,

for example, relation 𝑅 is replicated at sites 𝑠1 and 𝑠2. Abusing the

terms a little, we write 𝑅 also as an instance of 𝑅 when the site of

the instance is obvious or unimportant from context.

In Figure 1, site 𝑠0 continuously generates and updates data

stored in base relation 𝑅0. The data in 𝑅0 are replicated at site 𝑠1,

which may make concurrently updates. Site 𝑠2 makes a query on

𝑅0@𝑠0 and site 𝑠3 makes a query on 𝑅0@𝑠1. Both 𝑅2 at 𝑠2 and 𝑅3
at 𝑠3 have the same attributes 𝐴 and 𝐵. Sites 𝑠4 makes a query

on 𝑅0, from either 𝑠0 or 𝑠1, depending on network connectivity.

Site 𝑠5 makes a query that joins 𝑅2 or 𝑅3, depending on the network

connectivity with 𝑠2 and 𝑠3, with 𝑅4. The query results are stored

locally as materialized views at sites 𝑠2, 𝑠3, 𝑠4 and 𝑠5.

The continuously generated and updated data at sites 𝑠0 and 𝑠1
are propagated to sites 𝑠2, 𝑠3, 𝑠4 and 𝑠5, which incrementally update

their views locally. The data are propagated asynchronously, since

the sites might occasionally get disconnected from one another.

In this example scenario, we are subject to two consistency re-

quirements. The first requirement is that, the replicated instances

of the base relation must be kept consistent. We can achieve even-

tual consistence of the replicated base relations with the help of

CRRs (Conflict-free Replicated Relations [16]), which applies CRDTs

(Conflict-free Replicated Data Types [14]) to relational data. With

CRDT, a site updates its local replica and merges with incoming

remote updates, without coordination with other sites. The states

of the replicas converge when they have applied the same set of

updates (referred to as strong eventual consistency in [14]).

The second requirement is that, the materialized views must be

eventually consistent with respect to the states of the base relations.

In other words, when the updates in the base relations have been

propagated to the views, the states of the views should be the same

as in a non-distributed setting given the same states of the base

relations.

Table 1 shows an example of how the instances of the base

relations and the views in Figure 1 get updated, assuming that 𝜃 =

𝜃 ′ = True (i.e. no tuple in the base relation is filtered away). Initially

𝑅0 𝑅2, 𝑅3 𝑅4 𝑅5

initial states

⟨𝑎1, 𝑏1, 𝑐1⟩ ⟨𝑎1, 𝑏1⟩ ⟨𝑏1, 𝑐1⟩ ⟨𝑎1, 𝑏1, 𝑐1⟩
after inserting ⟨𝑎2, 𝑏1, 𝑐1⟩ in 𝑅0

⟨𝑎1, 𝑏1, 𝑐1⟩ ⟨𝑎1, 𝑏1⟩ ⟨𝑏1, 𝑐1⟩ ⟨𝑎1, 𝑏1, 𝑐1⟩
⟨𝑎2, 𝑏1, 𝑐1⟩ ⟨𝑎2, 𝑏1⟩ ⟨𝑎2, 𝑏1, 𝑐1⟩

after deleting ⟨𝑎2, 𝑏1, 𝑐1⟩ from 𝑅0

⟨𝑎1, 𝑏1, 𝑐1⟩ ⟨𝑎1, 𝑏1⟩ ⟨𝑏1, 𝑐1⟩ ⟨𝑎1, 𝑏1, 𝑐1⟩
Table 1: Updates in base relation and views

the base relation has one tuple ⟨𝑎1, 𝑏1, 𝑐1⟩ and correspondingly each
of the views has also one tuple. After the insertion and deletion of

a tuple in the base relation, the views get updated accordingly.

Notice that after the insertion of tuple ⟨𝑎2, 𝑏1, 𝑐1⟩ in the base

relation 𝑅0, view 𝑅4 remains unchanged, because tuple ⟨𝑏1, 𝑐1⟩,
which is supposed to be inserted, already exists in 𝑅4. After the

deletion of tuple ⟨𝑎2, 𝑏1, 𝑐1⟩ from 𝑅0, 𝑅4 still remains unchanged,

because the tuple can be derived from ⟨𝑎1, 𝑏1, 𝑐1⟩ that remains in 𝑅0.

In the deletion case, by only using the state of 𝑅4, it is impossible

to decide whether the tuple ⟨𝑏1, 𝑐1⟩ should be deleted or not.

Existing approaches to addressing the last issue is to augment the

view states with additional metadata. For example, in their seminal

work [8], Gupta et al associate each tuple in the view with a counter.

In the above example, the counter value of tuple ⟨𝑏1, 𝑐1⟩ in 𝑅4 is
initially 1. The value becomes 2 after the insertion of ⟨𝑎2, 𝑏1, 𝑐1⟩
and back to 1 after the deletion. Because the value is still a positive

number, the tuple remains in the view.

These approaches work well in a non-distributed setting. The

situation gets more complicated when the base relations and views

are replicated and stored at different sites.

First, when a view receives an update from a base relation, the

counter value of the resulting tuple cannot tell whether the view has

already applied the same update received from a different replica.

For example, if 𝑠4 receives the deletion in the example from 𝑠1,

should it decrement the counter value? The answer depends on

whether it has already received the same deletion from 𝑠0.

Second, when a site receives two concurrent updates from dif-

ferent replicas, how does the site know which update wins? For

example, if sites 𝑠0 and 𝑠1 get disconnected after the initial state.

Site 𝑠0 makes the insertion in the example. Concurrently, site 𝑠1

makes the same insertion and then the deletion. When site 𝑠4 re-

ceives the insertion from 𝑠0 and the deletion from 𝑠1, how can 𝑠4
tell that the deletion wins?

Third, when a site receives an update from a view, how does it

know if some update from another site would influence its local

state? For example, if site 𝑠5 receives the insertion of ⟨𝑎2, 𝑏1⟩ from 𝑠2
and the deletion from 𝑠3, how does 𝑠5 tell the relationship between

these updates? Should 𝑠5 insert or delete tuple ⟨𝑎2, 𝑏1, 𝑐1⟩? Notice
that𝑅2 and𝑅3 are not replicas and there is no collaboration between

site 𝑠2 and site 𝑠3. Notice also that making a union of 𝑅2 and 𝑅3 at

𝑠5 is not desirable, because receiving the deletion from 𝑠2 implies

340

Toward Replicated and Asynchronous Data Streams for Edge-Cloud Applications SAC’22, April 25 –April 29, 2022, Brno, Czech Republic

𝑅0 𝑅0 𝑅2

𝑅̃0 𝑅̃0 𝑅̃2

augment

de-augment

augment

de-augment

de-augment

updates

queries

updates

queries
queries

merge merge

site 𝑠1 site 𝑠0 site 𝑠2

Application

Relations

Augmented

Relations

Figure 2: Application and Augmented Relations

that ⟨𝑎2, 𝑏1, 𝑐1⟩ has been deleted from 𝑅0 even though the deletion

has not been propagated from 𝑠3 (via 𝑠1) yet.

Essentially, we must be able to address the following problems:

(1) How does a tuple in a view relate to the dependent tuples in

the base relations? This is a data provenance problem.

(2) How does the provenance relate to the concurrent updates

in the base relations? This is a concurrency control problem

concerning data provenance.

3 APPROACH OVERVIEW
To address the problems stated in Section 2, we adopt two algebraic

structures:

• a idempotent commutative semiring for data provenance,

• a causal-length lattice for capturing causality of concurrent

updates.

Our system consists of two layers: application-relation (APP)

layer and augmented-relation (AUG) layer. Figure 2 shows three

sites of the system. The sites correspond to sites 𝑠0, 𝑠1 and 𝑠2 of

Figure 1. The APP layer presents relations as a in conventional

relational database system. Applications make updates and queries

to application relations. The AUG layer associates the application-

relation tuples with the meta data based on the two algebraic struc-

tures. It is the AUG layer that performs incremental maintenance

of views and ensures that the consistency requirements (Section 2)

are met.

In Figure 2, applications at sites 𝑠0 and 𝑠1 make concurrent up-

dates to the base application relation𝑅0. The updates are augmented

and stored in the augmented relation 𝑅̃0. When sites 𝑠0 and 𝑠1 are

connected, they send each other their local updates. When receiv-

ing a remote update, a site merges the update into its local 𝑅̃0. It

then updates the local 𝑅0 with the de-augmented update resulted

from the merge. Our system guarantees that when 𝑠0 and 𝑠1 have

applied the same set of updates, regardless of the order in which the

updates are applied, the two sites have the same 𝑅0 and 𝑅̃0 states.

Site 𝑠0 sends its updates to 𝑠2, when the two sites are connected.

When receiving an update, site 𝑠2 incrementally updates the aug-

mented view 𝑅̃2 and updates the application view 𝑅2 with a corre-

sponding de-augmented update. Our system guarantees that the

state of 𝑅2 is the same as in a non-distributed system given the

same state of 𝑅0. The same is guaranteed for all 𝑅3, 𝑅4 and 𝑅5 in

Figure 1, although they are not shown in Figure 2.

System Model
We assume a distributed system consisting of sites that do not share

memory. They maintain durable states. Sites may crash, but will

eventually recover to the durable state at the time of the last crash.

A site can send messages to any other site in the system through

an asynchronous and unreliable network. There is no upper bound

on message delay. The network may discard, reorder or duplicate

messages, but it cannot corrupt messages. Through re-sending,

messages will eventually be delivered. The implication is that there

can be network partitions, but disconnected sites will eventually

get connected.

Limitations
We currently focus on named conjunctive relational algebra, or SPJR
(Select, Project, Join and Rename) algebra, extended with Union [1].

We leave negation and recursion to future work.

4 PRELIMINARIES: SEMIRING AND LATTICE
A commutative semiring is an algebraic structure ⟨𝑃, +, ·, 0, 1⟩ such
that:

• 𝑃 is a set and 0, 1 ∈ 𝑃 .
In what follows, 𝑝, 𝑝1, 𝑝2, 𝑝3 ∈ 𝑃 .
• (𝑃, +, 0) is a commutative monoid:

– 0 is the unit element: 0 + 𝑝 = 𝑝 + 0 = 𝑝;

– + is associative: (𝑝1 + 𝑝2) + 𝑝3 = 𝑝1 + (𝑝2 + 𝑝3);
– + is commutative: 𝑝1 + 𝑝2 = 𝑝2 + 𝑝1.
• (𝑃, ·, 1) is a commutative monoid:

– 1 is the unit element: 1 · 𝑝 = 𝑝 · 1 = 𝑝;

– · is associative: (𝑝1 · 𝑝2) · 𝑝3 = 𝑝1 · (𝑝2 · 𝑝3);
– · is commutative: 𝑝1 · 𝑝2 = 𝑝2 · 𝑝1;
• 0 is an absorbing element of ·: 0 · 𝑝 = 𝑝 · 0 = 0.
• · left- and right-distributes over +:

𝑝1 · (𝑝2 + 𝑝3) = 𝑝1 · 𝑝2 + 𝑝1 · 𝑝3 and
(𝑝1 + 𝑝2) · 𝑝3 = 𝑝1 · 𝑝3 + 𝑝2 · 𝑝3.

As a common convention, we may write 𝑝1 · 𝑝2 as 𝑝1𝑝2.
A lattice is a partially ordered set where every subset of elements

have a LUB (Least Upper Bound) and a GLB (Greatest Lower Bound).

LUB is also known as a join and is written as ⊔. GLB is also known

as a meet and is written as ⊓.
A lattice is distributive if ⊓ distributes over ⊔. That is,

𝑝1 ⊓ (𝑝2 ⊔ 𝑝3) = 𝑝1 ⊓ 𝑝2 ⊔ 𝑝1 ⊓ 𝑝3

A join-semilattice is a partially ordered set where every subset

of elements have a LUB.

5 PROVENANCE SEMIRING
The provenance of a tuple in a view describes how the tuple is

derived. We model data provenance with a special semiring called

p-semiring, where “p” stands for provenance.

A p-semiring is a commutative semiring with additional proper-

ties:

• + is idempotent: 𝑝 + 𝑝 = 𝑝;

• · is idempotent: 𝑝 · 𝑝 = 𝑝;

• + applies to empty and infinitive sets:

∑ ∅ = 0 and
∑
𝑃 = 1.

341

SAC’22, April 25 –April 29, 2022, Brno, Czech Republic O.Qayyum, W.Yu

𝑅(𝐴𝐵𝐶) 𝑅̃(𝐴𝐵𝐶𝑃) 𝑅̃1 ← 𝜋̃𝐴𝐵𝑅̃ 𝑅̃2 ← 𝜋̃𝐵𝐶 𝑅̃ 𝑅̃3 ← 𝜋̃𝐴𝐶 (𝑅̃1 ⊲̃⊳ 𝑅̃2) 𝑅̃3 (𝑃) after reduction
⟨𝑎1, 𝑏, 𝑐1⟩ ⟨𝑎1, 𝑏, 𝑐1, 𝑡1⟩ ⟨𝑎1, 𝑏, 𝑡1 + 𝑡2⟩ ⟨𝑏, 𝑐1, 𝑡1⟩ ⟨𝑎1, 𝑐1, (𝑡1 + 𝑡2)𝑡1⟩ 𝑡1
⟨𝑎1, 𝑏, 𝑐2⟩ ⟨𝑎1, 𝑏, 𝑐2, 𝑡2⟩ ⟨𝑎2, 𝑏, 𝑡3⟩ ⟨𝑏, 𝑐2, 𝑡2 + 𝑡3⟩ ⟨𝑎1, 𝑐2, (𝑡1 + 𝑡2) (𝑡2 + 𝑡3)⟩ 𝑡1𝑡3 + 𝑡2
⟨𝑎2, 𝑏, 𝑐2⟩ ⟨𝑎2, 𝑏, 𝑐2, 𝑡3⟩ ⟨𝑎2, 𝑐1, 𝑡3𝑡1⟩ 𝑡1𝑡3

⟨𝑎2, 𝑐2, 𝑡3 (𝑡2 + 𝑡3)⟩ 𝑡3

Table 2: Example of p-semiring augmented relation instances

A p-semiring in actually a c-semiring in [3] where · is idempo-

tent.

For a relational database instance, a p-semiring augmentation is a
function aug : 𝑋 → 𝑃 , where𝑋 is the set of tuples and 𝑃 is the set of

provenance expressions in a p-semiring. For an application-relation

schema𝑅(𝐴𝐵𝐶), the augmented-relation schema is 𝑅̃(𝐴𝐵𝐶𝑃), where
𝑃 is an attribute for provenance expressions.

We construct provenance expressions as the following:

• For each tuple in a base application relation, we generate a

globally unique id. The id is the provenance of the tuple.

For a base application-relation tuple ⟨𝑎, 𝑏⟩, the augmented-

relation tuple is ⟨𝑎, 𝑏, 𝑡⟩, where 𝑡 is the unique id of ⟨𝑎, 𝑏⟩.
• For two augmented-relation tuples ⟨𝑎, 𝑏, 𝑝1⟩ and ⟨𝑏, 𝑐, 𝑝2⟩,
the augmented-relation, as the result of a join, is ⟨𝑎, 𝑏, 𝑐, 𝑝1𝑝2⟩.

{⟨𝑎, 𝑏, 𝑝1⟩} ⊲̃⊳ {⟨𝑏, 𝑐, 𝑝2⟩} = {⟨𝑎, 𝑏, 𝑐, 𝑝1𝑝2⟩}
• For two augmented-relation tuples ⟨𝑎, 𝑏, 𝑝1⟩ and ⟨𝑎, 𝑏, 𝑝2⟩,
the augmented-relation tuple, as the result of a union, is

⟨𝑎, 𝑏, 𝑝1 + 𝑝2⟩.
{⟨𝑎, 𝑏, 𝑝1⟩} ∪̃ {⟨𝑎, 𝑏, 𝑝2⟩} = {⟨𝑎, 𝑏, 𝑝1 + 𝑝2⟩}

• We handle duplicate elimination for a relation project as a

union.

𝜋̃𝐴{⟨𝑎, 𝑏1, 𝑝1⟩, ⟨𝑎, 𝑏2, 𝑝2⟩} = {⟨𝑎, 𝑝1 + 𝑝2⟩}
Table 2 shows an example of p-semiring augmented relation in-

stances. To understand how p-semiring provenance works, imagine

for now that the tuple ids 𝑡1 and 𝑡2 give truth values of whether

the corresponding tuples are present in some base relations, and

operations + and · correspond to logical ∨ and ∧. Expression 𝑡1 + 𝑡2
means that a tuple is present in the view when either tuple 𝑡1 or

tuple 𝑡2 is present in a base relation instance. 𝑡1𝑡2 means that a tuple

is present in the view when both tuple 𝑡1 and tuple 𝑡2 are present

in some base relation instances.

Below are some useful properties of p-semiring obtained from [3].

The properties of + allow us to define a partial order ≤𝑝 : 𝑝1 ≤𝑝 𝑝2
iff 𝑝1 + 𝑝2 = 𝑝2. This partial order has the following important

properties:

0 ≤𝑝 𝑝1𝑝2 ≤𝑝 𝑝1 ≤𝑝 𝑝1 + 𝑝2 ≤𝑝 1

To understand the partial order, consider a particular p-semiring,

a power set 2
𝑆
, where ≤𝑝 is ⊆, 0 is ∅ and 1 is 𝑆 . It is not difficult to

see that for 𝑆1, 𝑆2 ∈ 2𝑆 , ∅ ⊆ 𝑆1 ∩ 𝑆2 ⊆ 𝑆1 ⊆ 𝑆1 ∪ 𝑆2 ⊆ 𝑆 .
As the maximum element in 𝑃 , 1 is an absorbing element of +.

That is, 1 + 𝑝 = 𝑝 + 1 = 1.
Furthermore, [3] connects p-semiring with distributive lattice:

• + coincides with LUB: 𝑝1 + 𝑝2 = 𝑝1 ⊔ 𝑝2.
• · coincides with GLB: 𝑝1𝑝2 = 𝑝1 ⊓ 𝑝2.

• + distributes over ·: 𝑝1 + 𝑝2𝑝3 = (𝑝1 + 𝑝2) (𝑝1 + 𝑝3)
• ⟨𝑃, ≤𝑝 ⟩ is a distributive lattice.

Finally, there is a useful absorption property: 𝑝1 + 𝑝1𝑝2 = 𝑝1.
We can use this absorption property to reduce provenance ex-

pressions. The rightmost column of Table 2 shows the example

provenance expressions in 𝑅̃3 after reduction.

6 CAUSAL-LENGTH LATTICE
The causal-length lattice [16] is defined on ⟨cl, ≤cl⟩, where

• cl : ID→ N is a function:

The domain of the function dom(cl) = ID ⊂ 𝑃 is the set of

tuple ids. cl(𝑡) = 0 if id 𝑡 is not present in any base relation.

• ≤cl is a partial order:
cl1 ≤cl cl2 iff ∀𝑡 ∈ ID : cl1 (𝑡) ≤ cl2 (𝑡).
• LUB: (cl1 ⊔ cl2) (𝑡) = max(cl1 (𝑡), cl2 (𝑡)).
• GLB: (cl1 ⊓ cl2) (𝑡) = min(cl1 (𝑡), cl2 (𝑡)).

We use the causal-length lattice as the following.

When we insert a tuple in a base application relation for the first

time, we generate an id 𝑡 of the tuple and associate it with causal

length 1, i.e. cl(𝑡) = 1. When we delete an existing tuple from a

base application relation, we increment the causal length with 1,

thus cl(𝑡) = 2. When we insert the tuple back to the application

relation, we also increment the causal length with 1, hence cl(𝑡) = 3.

The intuition behind this is that, for a given tuple, insertions and

deletions occur in turn. When the causal length is an odd number,

the tuple is last inserted and therefore is regarded as present in

the base application relation. When the causal length is an even

number, the tuple is last deleted and therefore is regarded as absent

in the base application relation.

Now, consider two sites 𝑠1 and 𝑠2 concurrently update (insert

or delete) the same tuple with id 𝑡 . The updates are regarded as

equivalent, if the tuple at the two sites has the same causal length

(i.e., cl1 (𝑡) = cl2 (𝑡)). When the concurrent updates merge, the

causal length remains unchanged. If, however, the causal length at

one site 𝑠1 is greater than the causal length at 𝑠2 (i.e., cl1 (𝑡) > cl2 (𝑡)),
we know that 𝑠1 has already seen all the equivalent updates of 𝑠2.

When the concurrent updates merge, the update from 𝑠1 wins. The

new causal length becomes cl1 (𝑡) = max(cl1 (𝑡), cl2 (𝑡)).

7 VALUATION OF PROVENANCE
EXPRESSIONS WITH CAUSAL LENGTHS

Now we can valuate provenance expressions with cause lengths,

i.e., associate the tuple ids in provenance expressions with their

causal lengths. The valuation allows us to answer the question

whether a tuple is currently present in an application relation (base

342

Toward Replicated and Asynchronous Data Streams for Edge-Cloud Applications SAC’22, April 25 –April 29, 2022, Brno, Czech Republic

relation or view) given the provenance of the corresponding tuple

in the augmented relation.

Function in? : 𝑃 × cl→ B, where 𝑃 is the set of provenance ex-

pressions and cl is the causal-length function, answers the question

whether a tuple, given a provenance expression, is currently present

in the application relation. We define function in? recursively.

• in?(𝑡, cl) = odd?(cl(𝑡)), where 𝑡 is a tuple id and function

odd? : N→ B tells whether a natural number is odd.

• in?(𝑝1 · 𝑝2, cl) = in?(𝑝1, cl) ∧ in?(𝑝2, cl).
• in?(𝑝1 + 𝑝2, cl) = in?(𝑝1, cl) ∨ in?(𝑝2, cl).

Suppose the causal-length function for the tuples in Table 2 is

cl = {𝑡1 ↦→ 1, 𝑡2 ↦→ 2, 𝑡3 ↦→ 3}, meaning that tuple 𝑡1 has been

inserted, tuple 𝑡2 has been inserted and then deleted, and tuple 𝑡3
has been inserted, then deleted and finally inserted back. To see

whether tuple ⟨𝑎1, 𝑐2⟩ is currently present in 𝑅3, we evaluate

in?(𝑡1𝑡3 + 𝑡2, cl) = in?(𝑡1, cl) ∧ in?(𝑡3, cl) ∨ in?(𝑡2, cl)
= odd?(cl(𝑡1)) ∧ odd?(cl(𝑡3)) ∨ odd?(cl(𝑡2))
= odd?(1) ∧ odd?(3) ∨ odd?(2)
= True ∧ True ∨ False
= True

Therefore, tuple ⟨𝑎1, 𝑐2⟩ is currently present in 𝑅3.

8 ALGORITHMS
A site maintains, for each application relation 𝑅 (base relation or

view), an instance of 𝑅 and an instance of augmented relation 𝑅̃.

For a view resulted from a join: 𝑅 = 𝑅1 ⊲⊳ 𝑅2, the site also maintains

𝑅̃1 and 𝑅̃2.

The site also maintains a relation CL(ID, 𝐿) for the causal lengths
of the base tuples that it has encountered. In addition, for each in-

coming or outgoing stream with schema 𝑅̃(𝐴𝑃), the site maintains

a relation 𝑅̃Δ (𝐼𝐴𝑃) for incoming or outgoing deltas (new updates),

where 𝐼 is an attribute for sequence numbers. Finally, the site main-

tains an incoming and an outgoing stream of causal-length updates

CLinΔ (𝐼 , ID, 𝐿) and CLoutΔ (𝐼 , ID, 𝐿).
In the algorithms, we use the function (or mapping) r̃ to represent

provenance states of tuples in the augmented relation 𝑅̃ locally at

a site. Thus, r̃(⟨𝑎⟩) = 𝑝 is the provenance part of tuple ⟨𝑎, 𝑝⟩ in
relation 𝑅̃. r̃(⟨𝑎⟩) = 0 when there does not exist a tuple ⟨𝑎, 𝑝⟩ in 𝑅̃.
For an augmented relation 𝑅̃ where r̃(⟨𝑎⟩) = 𝑝 , r̃{⟨𝑎⟩ ↦→ 𝑝 ′} is an
update of 𝑅̃ such that r̃(⟨𝑎⟩) = 𝑝 ′ in the new state of 𝑅̃. Similarly,

we use functions cl and clΔ for causal-length states in relations CL
and CLΔ. cl(𝑡) = 0 when id 𝑡 is not present in relation CL. Also,
cl(0) = 0. To simplify presentation, we ignore sequence numbers

in r̃Δ and clΔ.
To insert tuple ⟨𝑎⟩ in base application relation 𝑅 (algorithm 1), a

site first inserts ⟨𝑎⟩ in 𝑅 (line 1) and then updates the relations in

the AUG layer (lines 2–9).

In the AUG layer, the site obtains from 𝑅̃ the provenance of ⟨𝑎⟩,
which should be a tuple id 𝑡 , and the causal length of the tuple

(line 2). If tuple ⟨𝑎⟩ does not exist in 𝑅̃ (line 3), the site generates

a new id and associates the id with ⟨𝑎⟩ (line 4). The initial causal
length of the tuple is 1 (line 4).

Algorithm 1: insert(𝑅, ⟨𝑎⟩)
1 𝑅 ← 𝑅 ∪ {⟨𝑎⟩};
2 𝑡 ← r̃(⟨𝑎⟩); 𝑙 ← cl(𝑡);
3 if 𝑡 = 0 then
4 𝑡 ← newId(); r̃← r̃{⟨𝑎⟩ ↦→ 𝑡}; cl← cl{𝑡 ↦→ 1};
5 r̃Δ ← r̃Δ{⟨𝑎⟩ ↦→ 𝑡}; cloutΔ ← cloutΔ {𝑡 ↦→ 1};
6 else if even?(𝑙) then
7 cl← cl{𝑡 ↦→ 𝑙 + 1};
8 r̃Δ ← r̃Δ{⟨𝑎⟩ ↦→ 𝑡}; cloutΔ ← cloutΔ {𝑡 ↦→ 𝑙 + 1};
9 end

If tuple ⟨𝑎⟩ already exists in 𝑅̃ and its causal length is an even

number (line 6), ⟨𝑎⟩ has been inserted and finally deleted. The site

re-inserts ⟨𝑎⟩ by simply incrementing its causal length with 1.

In both cases, the site updates the outgoing streams accordingly

(lines 5 and 6).

If tuple ⟨𝑎⟩ exists in 𝑅̃ and its causal length is an odd number,

⟨𝑎⟩ is already present in 𝑅 before the insertion, so the insertion has

no effect.

Algorithm 2: delete(𝑅, ⟨𝑎⟩)
1 𝑅 ← 𝑅 \ {⟨𝑎⟩};
2 𝑡 ← r̃(⟨𝑎⟩); 𝑙 ← cl(𝑡);
3 if odd?(𝑙) then
4 cl← cl{𝑡 ↦→ 𝑙 + 1};
5 r̃Δ ← r̃Δ{⟨𝑎⟩ ↦→ 𝑡}; cloutΔ ← cloutΔ {𝑡 ↦→ 𝑙 + 1};
6 end

To delete tuple ⟨𝑎⟩ from base application relation 𝑅 (algorithm 2),

a site first deletes ⟨𝑎⟩ from 𝑅 (line 1). Then in the AUG layer, it

checks if the causal length of ⟨𝑎⟩, 𝑙 , is an odd number (line 3). If it

is, it simply increments 𝑙 with 1 (line 4) and updates the outgoing

streams (line 5). Otherwise (𝑙 is an even number), ⟨𝑎⟩ does not exist
in 𝑅 before the deletion, so the deletion has no effect.

With algorithms 1 and 2, the state updates in base augmented

relations are inflationary. That is, at a given site, for old states r̃ and
cl, and new states r̃′ and cl′, r̃ ≤𝑝 r̃′ (we extend ≤𝑝 to the entire

relation r̃) and cl ≤cl cl′.

Algorithm 3: merge(op, r̃, r̃′Δ, cl
in
Δ)

1 r̃new ← mergeRelation(op, r̃, r̃′Δ, . . .); r̃Δ ← r̃Δ ⊔ r̃new ;
2 cl← cl ⊔ clinΔ ; cl

out
Δ ← cloutΔ ⊔ cl

in
Δ ;

3 for ⟨𝑎, 𝑝⟩ ∈ r̃new do
4 if in?(𝑝, cl) then 𝑅 ← 𝑅 ∪ {⟨𝑎⟩} ;
5 else 𝑅 ← 𝑅 \ {⟨𝑎⟩} ;
6 end

A site merges incoming updates with algorithm 3. First, it merges

the augmented relation 𝑅̃ with the incoming updates and generates

newly merged tuples in r̃new , which are merged into the outgoing

stream r̃Δ (line 1). The merge with augmented relation 𝑅̃ applies

343

SAC’22, April 25 –April 29, 2022, Brno, Czech Republic O.Qayyum, W.Yu

algorithms 4–5 depending on the operation op that produces the re-

lation. The site also merges the incoming updates in causal lengths

with CL and CLoutΔ (line 2). Finally, for every newly merged tu-

ple in r̃new , the site updates the application relation 𝑅 using the

provenance of the tuple valuated with causal lengths (lines-3–6).

Algorithm 4: mergeRelation(𝜋𝐴𝜎𝜃 , r̃, r̃′Δ)

1 𝑟new ← ∅;
2 for ⟨𝑎, 𝑏, 𝑝⟩ ∈ r̃′Δ do
3 if 𝜃 (𝑎, 𝑏) then
4 𝑝new ← r̃(⟨𝑎⟩) + 𝑝;
5 r̃← r̃{𝑎 ↦→ 𝑝new}; 𝑟new ← 𝑟new ∪ ⟨𝑎, 𝑝new⟩;
6 end
7 end
8 return 𝑟new ;

Algorithm 4 handles the merge of incoming updates of aug-

mented relations for both select and project operations. In the

algorithm, we assume that 𝑅 = 𝜋𝐴 (𝜎𝜃𝑅′(𝐴𝐵)). For each incoming

update represented with ⟨𝑎, 𝑏, 𝑝⟩, if the selection condition 𝜃 (𝑎, 𝑏)
is true (line 3), we merge its provenance 𝑝 with the current prove-

nance of tuple ⟨𝑎⟩ (i.e. after the project 𝜋𝐴) in 𝑅̃ (lines 4–5). The

provenance of ⟨𝑎⟩ before the merge is 0 if it does not exist in 𝑅̃. We

return the set of all newly merged tuples (line 8).

We can use algorithm 4 for replication of both base relations and

views, because 𝑅(𝐴) = 𝜋𝐴 (𝜎True𝑅(𝐴)).

Algorithm 5: mergeRelation(⊲⊳, r̃, r̃1Δ, r̃
1, r̃2)

1 r̃1 ← r̃1 ⊔ r̃1Δ;
2 𝑟new ← ∅;
3 for ⟨𝑎, 𝑏, 𝑝1⟩ ∈ r̃1Δ do
4 for ∀𝑐, 𝑝2 : ⟨𝑏, 𝑐, 𝑝2⟩ ∈ 𝑟2 do
5 𝑟new ← 𝑟new ∪ {⟨𝑎, 𝑏, 𝑐, r̃(⟨𝑎, 𝑏, 𝑐⟩) + 𝑝1𝑝2⟩};
6 end
7 end
8 return 𝑟new ;

For simplicity, we assume in algorithm 5 that 𝑅 = 𝑅1 (𝐴𝐵) ⊲⊳
𝑅2 (𝐵𝐶). The algorithm merges the incoming updates in 𝑅1. A

more general multi-way join with updates from multiple incoming

streams takes the form of semi-naïve evaluation of Datalog pro-

grams [1]. We can also combine select and join as in algorithm 4.

In algorithm 5, we first merge the updates with the locally main-

tained 𝑅̃1 (line 1). Then for each incoming update, represented

with ⟨𝑎, 𝑏, 𝑝1⟩ (line 3), and a matching tuple in 𝑅̃2, represented with

⟨𝑏, 𝑐, 𝑝2⟩ (line 4), we generate a new tuple ⟨𝑎, 𝑏, 𝑐⟩ with provenance

𝑝1𝑝2, merged with the existing one in 𝑅̃ (0 if non-existent) (line 5).
Finally, we return the set of all newly merged tuples (line 6).

Since algorithms 3–5 only update 𝑅̃ and CL states with the LUP

operation ⊔, state merges are commutative:

merge(merge(r̃, r̃Δ, clΔ), r̃′Δ, cl
′
Δ)

= merge(merge(r̃, r̃′Δ, cl
′
Δ), r̃Δ, clΔ)

= merge(r̃, r̃ ⊔ r̃′Δ, clΔ ⊔ cl
′
Δ)

Therefore, for the same set of updates, merging them in different

orders leads to the same resulting state.

State merges are also idempotent:

merge(merge(r̃, r̃Δ, clΔ), r̃Δ, clΔ) = merge(r̃, r̃Δ, clΔ)
A site may receive the same update multiple times via different

incoming streams. For example, 𝑅5@𝑠5 in Figure 1 may receive

the same update in 𝑅0@𝑠0 via 𝑅2@𝑠2, 𝑅3@𝑠3 and 𝑅4@𝑠4 . The

idempotence property guarantees that merging the same update

multiple times leads to the same resulting state.

The algorithms has the following consistency results.

Lemma 8.1. Replicated base augmented relations are eventually
consistent.

Proof. Since updates are inflationary, and both p-semiring and

causal-length function are lattices, a replicated base augmented re-

lation is actually a state-based CRDT [14]. The states of a base aug-

mented relation at different replicas eventually converge. Therefore,

a replicated base augmented relation is eventually consistent. □

Lemma 8.2. The augmented views are eventually consistent.

Proof. Because the merges are commutative and idempotent,

the final state of an augmented view depends only on the total

set of updates it has merged, regardless of the order and number

of times the updates are merged. Therefore the final state of the

augmented view is the same as in a non-distributed system. □

Theorem 8.3. The application relations are eventually consistent.

Proof. This follows immediately from Lemmas 8.1 and 8.2. □

Corollary 8.4. Replicated application relations are eventually
consistent.

Proof. Due to Lemma 8.1, replicated base relations are eventu-

ally consistent.

A view 𝑅(𝐴) replicated at sites 𝑠1 and 𝑠2 can be regarded as

𝑅@𝑠1 ← 𝜋𝐴𝑅@𝑠2 and 𝑅@𝑠2 ← 𝜋𝐴𝑅@𝑠1. Following Lemma 8.2,

replicated views are eventually consistent. □

Since the final states of relation instances are independent of the

order and the number of times the incoming updates aremerged, the

correctness of our system does not require the sequence numbers

of the updates. The sequence numbers are useful for avoidance

of unnecessary repeat of messages and for garbage collection of

update streams.

9 EXPERIMENTS
We have implemented the algorithms in Section 8 as well as the

classical counting algorithm by Gupta et al [8] for comparison. The

purpose of the experiments is to study the performance overhead of

our algorithms with regard to the classical non-distributed one. The

implementation is in Elixir
1
(version 1.12.3, compiled with Erlang

OTS 24). We implemented sites using Elixir GenServer
2
and used

ETS
3
(Erlang Term Storage) tables for data storage. We ran the

1
https://elixir-lang.org

2
https://hexdocs.pm/elixir/1.12/GenServer.html

3
https://erlang.org/doc/man/ets.html

344

Toward Replicated and Asynchronous Data Streams for Edge-Cloud Applications SAC’22, April 25 –April 29, 2022, Brno, Czech Republic

1 2 3 4 5 6 7 8 9 10

5

10

15

20

Number of insertions (10
4
)

E
x
e
c
u
t
i
o
n
t
i
m
e
(
m
i
l
l
i
s
e
c
o
n
d
s
)

gupta count

p-semiring cl

1

2

3

4

e
x
t
r
a
m
e
m
o
r
y
(
M
B
)

extra memory

Figure 3: Project insertions

1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Number of deletions (10
4
)

E
x
e
c
u
t
i
o
n
t
i
m
e
(
m
i
l
l
i
s
e
c
o
n
d
s
)

gupta count

p-semiring cl

1

2

3

4
e
x
t
r
a
m
e
m
o
r
y
(
M
B
)

extra memory

Figure 4: Project deletions

experiments on macOS with Apple M1 CPU (8 cores, 3.2GHz) and

16 GB of LPDDR4 (4266MHz) memory.

We use two base relations 𝑅1 (𝐴𝐵𝐶𝐷𝐸) and 𝑅2 (𝐾𝐶) for our ex-
periments, where attributes 𝐴 and 𝐾 are primary keys of relations

𝑅1 and 𝑅2 respectively. The experiments maintain two views 𝜋𝐵𝐶𝑅1
and 𝑅1 ⊲⊳ 𝑅2 incrementally. We run the experiments for both in-

sertions and deletions from the incoming streams of the views.

Figures 3, 4, 5 and 6 show the experimental results.

In the first experiment (Figure 3), we study the performance

of maintaining view 𝜋𝐵𝐶𝑅1 with incoming insertions. Each run

starts with an empty view, and for a given number of insertions

(ranging from 10k to 100k), we maintain the view incrementally.

We repeat each run ten times with the same insertions. Figure 3

shows the average execution time of the runs and the extra memory

overhead of our approach. The extra memory is the difference of

totally memory used for the augmented view and for the Gupta

counting algorithm. In the final view resulted from 100k insertions,

there are around 72k tuples and our algorithm consumes 2.1MB

more memory than the Gupta counting algorithm.

In the second experiment (Figure 4), we study the performance of

maintaining view 𝜋𝐵𝐶𝑅1 with incoming deletions. Each run starts

with a viewwith around 72k tuples generated from 100k base tuples,

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

Number of insertions (10
4
)

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
e
c
o
n
d
s
)

gupta count

p-semiring cl

1

2

3

4

e
x
t
r
a
m
e
m
o
r
y
(
M
B
)

extra memory

Figure 5: Join insertions

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

Number of deletions (10
4
)

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
e
c
o
n
d
s
)

gupta count

p-semiring cl

1

2

3

4

e
x
t
r
a
m
e
m
o
r
y
(
M
B
)

extra memory

Figure 6: Join deletions

and for a given number of deletions (ranging from 10k to 100k), we

maintain the view incrementally. We repeat each run ten times with

the same deletions. Figure 4 shows the average execution time of

the runs and extra memory overhead. The memory overhead of our

approach actually remains unchanged during the runs. The increase

in extra memory is due to the fact that, with Gupta counting, tuples

are deleted when the counter value of a tuple becomes zero.

In the third experiment (Figure 5), we study the performance

of maintaining view 𝑅1 ⊲⊳ 𝑅2 with incoming insertions. We fix the

size of 𝑅2 with 1000 tuples. Each run starts with an empty view, and

for a given number of insertions in 𝑅1 (ranging from 10k to 100k),

we maintain the view incrementally. We repeat each run ten times

with the same insertions. Figure 5 shows the average execution

time of the runs and the extra memory overhead of our approach.

In the final view resulted from 100k insertions, there are around

63k tuples, and our approach consumes 2.4MB more memory than

the Gupta counting algorithm.

In the last experiment (Figure 6), we study the performance of

maintaining view 𝑅1 ⊲⊳ 𝑅2 with incoming deletions. Again, we

fix the size of 𝑅2 with 1000 tuples. Each run starts with a view of

around 63k tuples resulted from 100k tuples from 𝑅1, and for a

345

SAC’22, April 25 –April 29, 2022, Brno, Czech Republic O.Qayyum, W.Yu

given number of deletions in 𝑅1 (ranging from 10k to 100k), we

maintain the view incrementally. We repeat each run ten times with

the same deletions. Figure 6 shows the average execution time of

the runs and the extra memory overhead of our approach.

10 RELATEDWORK
Incremental view maintenance. Incremental maintenance of views is

a well-studied problem [8, 12] for non-distributed database systems.

For example, Gupta et al [8] keeps a count of the number of times

a tuple is derived in the view (see also Section 2). Loo et al [11]

maintains distributed datalog programs incrementally for FIFO

connections. Nigam et al [13] extends the algorithms so that the

connections are not necessarily FIFO. Our work is the first that

supports eventual consistency when both base relations and views

are replicated.

Stream processing. The mainstream research in the field of stream

data processing [10, 15, 17], has focused on high throughput, low

latency and scalability. Data are typically processed on a cluster

of servers that are assumed to be constantly connected. Our work

focuses more on availability during network partitions. We have

not dealt with aggregates and windowed stream processing.

Eventual consistency and coordination-freeness. It is challenging to
maintain data consistency while data are concurrently updated and

consumed during network partition. Coordination-free algorithms

with eventual consistence guarantee are therefore particularly at-

tractive.

The CALM (Consistency And Logical Monotonicity) theorem [2,

9] states that a program has an eventually consistent, coordination-

free execution strategy if and only if it is expressible in monotonic

Dadatlog. Since the updates of our augmented relation instances

are inflationary, we extend the applicability of the CALM theorem

to systems with deletions.

CRDTs (Conflict Free Replicated Datatypes) [14] guarantee data

convergence without coordination. We extend CRR (Conflict-free

Replicated Relations) [16] which applies CRDTs to relational data.

With the extension, not only do the states of the replicas that com-

municate with each other converge, but also do the views that

might not communicate with each other.

Data provenance. Initial study of provenance for relational data can

be found in [6]. Green et al [7] presents an elegant framework of

provenance semirings. Our provenance semiring (Section 5) is actu-

ally c-semiring [3] with an additional property. The theorems in [3]

allow us to connect semirings with lattices, hence also provenance

with CRDTs.

11 CONCLUSION
Wehave presented replicated and asynchronous data streams, a new

approach to sharing and querying data. Our work is particularly

motivated by the applications where data and query results must

be always available, even when the devices might be occasionally

disconnected from the network. We focus on relational data and

maintain original data in base relations and query results in mate-

rialized views. To make the data and query results always available

at local devices, an application can replicate both base relations and

materialized views. We keep the data updated, when the devices are

connected, through asynchronous streaming and incremental view

maintenance. We augment relations with two algebraic structures,

p-semiring and causal-length lattice, and show that our algorithms

guarantee eventual consistency of base relations and views. We

have run experiments to study the performance overhead of our

approach with regard to a classical non-distributed one.

Our current work is limited with conjunctive relational algebra

extended with union. We leave negation and recursion to future

work.

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley.

[2] Tom J. Ameloot, Frank Neven, and Jan Van den Bussche. 2013. Relational trans-

ducers for declarative networking. J. ACM 60, 2 (2013), 15:1–15:38.

[3] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. 1997. Semiring-based

constraint satisfaction and optimization. J. ACM 44, 2 (1997), 201–236.

[4] Eric Brewer. 2010. A Certain Freedom: Thoughts on the CAP Theorem. In Pro-
ceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (Zurich, Switzerland) (PODC ’10). Association for Computing Ma-

chinery, New York, NY, USA, 335. https://doi.org/10.1145/1835698.1835701

[5] Sebastian Burckhardt. 2014. Principles of Eventual Consistency (principles of

eventual consistency ed.). Foundations and Trends® in Programming Languages,

Vol. 1. Now Publishers. 1–150 pages. https://www.microsoft.com/en-us/research/

publication/principles-of-eventual-consistency/

[6] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. 2000. Tracing the Lineage

of View Data in a Warehousing Environment. ACM Trans. Database Syst. 25, 2
(June 2000), 179–227. https://doi.org/10.1145/357775.357777

[7] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance Semir-

ings. In Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems (Beijing, China) (PODS ’07). Association
for Computing Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/

1265530.1265535

[8] Ashish Gupta, Inderpal Mumick, and V. Subrahmanian. 1993. Maintaining views

incrementally. Sigmod Record 22 (06 1993), 157–166. https://doi.org/10.1145/

170035.170066

[9] Joseph M. Hellerstein. 2010. The Declarative Imperative: Experiences and Con-

jectures in Distributed Logic. SIGMOD Rec. 39, 1 (Sept. 2010), 5–19. https:

//doi.org/10.1145/1860702.1860704

[10] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher

Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.

2015. Twitter Heron: Stream Processing at Scale. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (Melbourne, Victoria,

Australia) (SIGMOD ’15). Association for Computing Machinery, New York, NY,

USA, 239–250. https://doi.org/10.1145/2723372.2742788

[11] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion

Stoica. 2009. Declarative Networking. Commun. ACM 52, 11 (Nov. 2009), 87–95.

https://doi.org/10.1145/1592761.1592785

[12] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. 2019. Maintenance

of datalog materialisations revisited. Artif. Intell. 269 (2019), 76–136. https:

//doi.org/10.1016/j.artint.2018.12.004

[13] Vivek Nigam, Limin Jia, Boon Thau Loo, and Andre Scedrov. 2012. Maintaining

Distributed Logic Programs Incrementally. Comput. Lang. Syst. Struct. 38, 2 (July
2012), 158–180. https://doi.org/10.1016/j.cl.2012.02.001

[14] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.

Conflict-Free Replicated Data Types. In Stabilization, Safety, and Security of Dis-
tributed Systems, Xavier Défago, Franck Petit, and Vincent Villain (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 386–400.

[15] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M

Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,

et al. 2014. Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. Association for Computing Machinery, New

York, NY, USA, 147–156.

[16] Weihai Yu and Claudia-Lavinia Ignat. 2020. Conflict-Free Replicated Relations

for Multi-Synchronous Database Management at Edge. In IEEE International
Conference on Smart Data Services. IEEE, Beijing, China, 113–121. https://hal.

inria.fr/hal-02983557

[17] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,

Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.

Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache

Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (Oct.

2016), 56–65. https://doi.org/10.1145/2934664

346

https://doi.org/10.1145/1835698.1835701
https://www.microsoft.com/en-us/research/publication/principles-of-eventual-consistency/
https://www.microsoft.com/en-us/research/publication/principles-of-eventual-consistency/
https://doi.org/10.1145/357775.357777
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/170035.170066
https://doi.org/10.1145/170035.170066
https://doi.org/10.1145/1860702.1860704
https://doi.org/10.1145/1860702.1860704
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1145/1592761.1592785
https://doi.org/10.1016/j.artint.2018.12.004
https://doi.org/10.1016/j.artint.2018.12.004
https://doi.org/10.1016/j.cl.2012.02.001
https://hal.inria.fr/hal-02983557
https://hal.inria.fr/hal-02983557
https://doi.org/10.1145/2934664

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

