Compunicating Seguenfial Proceszos,

C,a. R, Hoare

Department of Computer Solence,
The Queon's University, Belfast,

MARCE 1977

tiveg

-

Summary: This paper suggsesis that input and ocutput are basic prim

oy

of programming; and that parallel composition of communicating. seguential procezses

e

is a fundawmental program structuring mothod., When combined with a development of

P
I

m

Dijkstra's guarded command, these concepts are surprisingly versatile. Thelir uss

A

illustrated by sample solutiong of a variety of familiar programming exergises,

by

Key wvords and phrases: programming,

-r

nondetermninacy, coroutines, procedures, multiple entries, multiple exits, c¢lasses,

data representations, recursion, conditional critical regions, wmonitors, iterative arrays.

CR categories: 4.2, 4.22, 4.32, '

This research was supporbed by a Senior Fellowship of the Sglence

Research Council.

1. Intrvoduction.

Among the primitive concepts of computsar programuing, and of the high
2

Tev % languages in which progrems are expressed, the action of asgigonent is famniliar

and well understood. In fact, any change of the internal stete of a machin

l'D

executing a program can be modelled zs an assignment of a new value to some variable
part of that machine. However, the operations of input and output, which affect

the external environment of a machine, are not nearly so well understood. Often
they are added to a programming language only as an arterkhqug 1, designed withoutb

due regard to efficiency, security, or simplicity.

Among the structuring methods for computer programs, three basic constructs
have received widespread recognition and use:~ a repatitive construct (e.g., the
while loop), - 81 alternative construct {e.qg., the conditional if.. then.. else),
and normal seguential »rogram Com 1¢ion {often denoted by semicoion). Less agreement
has been reached aboul the design of other important program structures, and many
suggestions have besn made: subroutines (FORTRAN), procedures (ALGCL 60 [13] v,
entries (PL/I), coroutines (UNIX [13]), classes (SIMULA 67 [5] iy rocesses and
monitors (Concurrent PASCAL {23), clusters (CLU {121), forms (ALPHARD [16] Y,

actors (Hewitt [1] J.

The traditional stored program digital computer has been designed primarily
fior deterministic execution of a gingle ssquential program, Where the desire
for greater speed has led to the intyoductio n of parallelism, every attempt has been
made to disguise thig fact from the programmer, elther by harvdware itself {as in
'tne miltiple function units of the DO 66009, or by the software (as in an 670 control
package, or a miltiprogrammed operating system). However, developmer to of processor
technoldgy suggest that a multiprocessor madhiné constructed from a number of similar
self-contained procassors (each with its own store) ma y become appreciably more
'_powerful, capacious, reliable, and economical than 'a machine which is disguised as a

MONOProCassor .,

In order to use such a machine effectively on a single task, the cohponent
processors must be able to communicate and to synchronise with each other; and many
methods of échieving this have been proposed. B3 widely adopted method of communication
ig by inspection and updating of a common store (as in ALCOL 68 [isly, Pt /', and

many machine codes). However, this can create severc problens in the construction of

corcect programs; and it may lead to expense (e.g., crosshar switches) and unreliability

-

(e.g., glitches) in a hardware implementation. A greater variety of methods has been®

proposed Ffor synchronisation: semaphores [6], events (PL/I), conditionsl critical

reglons [101, monitors and queues (concurrvent PASCAL [2]), and path expressions [31.

‘Most of these are demonstrably adeguate for their purpose

, but there is no widely

recognised criterion for choosing bhetween them.

This paper makes an ambitious attempt to find a single simple solution to all

these problems. The essentlal opronosals are:
P 2

(1)

(2}

(3)

(4)

(5}

(6}

Dijkstra’s guarded commands [8] are adopted (with a slight change of notation)
as sequential control structures, and as the sole means of introducing and

controlling non-determinism.,

A parallel command, based on Dijkstra's parbegin [6], specifies concurrent

execution of its constituent sequential commands (processes). . All the processes
start and end simultanecusly. They may not communicate with each cther by

updating global variables.

Simple forms of input and output commands are introduced. They are used for

comnunication between concurrvent processes.

Such communication 6ccurs when cne process names another as destination for output
and the second process names the first as source for input. In this cagse, the
value to be output is copied from the first process to the second. There is no
avtomatic buffering; 1a general, an input or output command is delayved until the
other process is ready with the-corresponding output or input. Such . delay is

invisible to the delayed pﬁogram.

Input commands are allowed to appear in grards. If they appear in several quards
of a set of alternatives, the first such command which can be executed will
determine the selection of the alternative, and the remaining guards will have

no effect. Since only thefselected guard has any actual effect, we avoid the

problem of side effects of failed or unselected guards.

A simple "pattern matching"” mechanism is used to discriminate the structure of

an input message, and to assign names to its components in a secure fashion.

The programs expressed in the proposed language are inténdedrto be

implementable both by a conventional machine with a single main store, and by a

Fixed network of processors connected by input/output channels (although very

different optimisations are appropriate in the different cazes). Consequently

it is

a rather static languags: the text of a program determines a fixed upper

sng eonzurrently, there is no

The concept of a com - process is shown in sections 3-5

to provide a method of expressing solutions to many simple programming

exerclses, which have been used bafore to illustrate the use of various othar

preposed preogramming langusge features. This suggasts that this concept may
constitute a synthesis of z nurher of familiar and new programming ideas.

>

Howaver, this paper also 1gnores_maﬁy serious problems, The most serious is
that it Ffails to suggest any proof methoed to éssist in the davelopment and
'veﬂlflcet;on of correct programs. Secondly, it pays no attention to the serious
prOUlema of efficient implementation, partic ularly on a traditional quuentval |

computer. It is probable that a solution %o these problems will require:
(1) imposition of restricticns in the ‘use of the proposed features,

(2) reintroduction of tistinctive notations for the most common and

useful special cases
(3) the design of more appropsiate hardwape.

Thus the concepts and notaticns Introduced in this paper (although described in

the next section in the form of a prograwsing languags fragment) should not be

regarded as sultable for vss ag = programming language, either for abstract op Fop .
concreta programming. They are at best only a partial sclution of the problams L
Ctacklad,
lf
|
X : !
2. Concepts and notations. :

*

The style of the following description is borrowad from ALGOL 60[:13]

lypes, declarvations, and ax wressions have not been treated; in the exam les, a.
o 3 >

P;SC&Lmlike notation [17] . has bsen used. rTha curly braces { } have basn
introduced into BNF to dencte ncpe or more repetitions of the enclosed material,

-Fe

<command9 iR <simple comm@”d>[<°tﬂhutLrsd comrand> | | :

<simple command> ::= <null comma >]<assxynmcnt command>

iéiﬁput command>!<outpuf.Command> 5

<structured command> ::= <glternative com#aﬂd>|<repetitive compand>
|<paraliel commands

<null comsand> ::= skip

<gcermand list

W

{<declaration>; <eowmmand>;} <command>

a device exseo

erecution of s

efifect on the

uting

a simple commarn

; thae command.

owma or all of its

d may fail, and have

Internal stats of the

g <avice {(an assignment), o its external envivenmant (an output), or
o both {an input). no effect and never Tails,

Fallure of a cornand appearing in & guard prevents
it guards {ssz 2,4), Any other failure prevents Further
Such failures are - due To prograwming errors, datected by

A command list specifies sequential exacution of it

in the order written. ach dezlaration introduces a fres

Rt

that extends from its place of ocour—enca

2,1 Assigrsent commands.

<constructor>(<expr
<gonstructor> iz <identifier>}<empty>
<expression list>
<targef variable> R

Pi= <constructor>{<targei v

'expr9851on has a wvalue which ‘may ba simple

14E <empty>l<expression>{,<exprés

structure of the tax

has a structured valus, with the sped

gdiMWfLVA

the commnand
commands .

seuting devicae;

s constituent cowmaﬁds,

h variable with a 5c0pu

the end of the command list.

sssion list>)

sion>}

sirple variable>[<structured target>
ariable list>)
<empt3>] 1arget variable>{,<target variable>}

raluation of its expression, and assigument

Tt fails if the expression is undefined,

ariable,

.
argat

or structured. A

¢ified constructor, and

easions of the

b

4

A simple target variable may be assigned anvy value of the same type. An

assigmuent with a structured target. specifies multiple assigoments to its

COn

stituent simple variables of the corresponding components of the structured value

of the expression. Consequently, the value of the target varvisble after a sucaessfnl

assigoment is always the same as the value of the expression hefore the assignment.

IT this is not posgible, the assignment fails.

A simple tavget variable matches any value of its type. A structured target

variable matches a structured value, provided that:

(1) they have the same congtructor

{2} the tarxget variable list is-tie same length as the list of
components of the valus

(3) each target variable of the list matches the corresponding

~component of the value list.

Examplies:
(1) x := xtl ~ the value of n after the assignment is the same as the
value of %+l before.

(2} ®,y) := (v,x) - exchanges the values of x and y

{3) left := cons(left.right) - constructs a structured wvalue and assigng it to left

(4} cons{left,right) := left - £ails if left is an atom. Ctherwise right gats
the value of the second component of left, and left
gets the value of its own first component

(5} dnsert{n) := insert(2%x+l) - eguivalent to n := 2%x+1

{(6) ¢ = P() - aséigns to ¢ a "signal'" with constructor P, and no components

{(7) P{) := ¢ - fails if the value of ¢ ig not P(}; otherwise has no effect

(2) insert(n) := has{n) ~ fails, due to mismatch.

2,2 Twmput and output companda,

I

ut command> :Z <souvree

\‘f
-3
.‘.\‘.
s
2
i
e
\’w\
=7
<t
w
wy
.
i
.o
halt
Y
v

<output command> ::¥ <dzstination®l<expression:

L
i}
t
-
J-is
o)
i
pry
P
O
e
v
s
4
[
I
"I
&
8}
[
i)
w
v
b
ol
=
b
v

<Process namner 1iE xidgntifier>]{ident$Fier>(csubscripts>)
<subscplipis 1iF <ipteser expression>{ <integer ewprsssion>)}

Input and output commands specify cormunication betwesn concurcently operating

sequential processes. Such a process may be implemented in hardware as a spacial-

purpose davice (=.g. cardrea@ar-or lineprinter) or its behaviour may be spacified
by one of the constituent processss of a parallel command (see 2.3), ©

Communiication occours whensver:

) one process names another as the source for input

—

1
and {2) that other process names the first process as destination for output
and {3) the target variable of the input matches the value output.
On each such occasion, the two commands are sxecubted simultaneously, and theix

combined effect lg to assign the value of the expression in the output command to

P mrsm e

the target variable in the input command. A conseguence of the requirement for
synchronisation is that in general one of the two commands will have to wait for

the other.) :

An input or output command fails if its source or destinaﬁion is
terminated. An output command faiils if its expression is undefined; and an input
command fails (with no effect} 1f its target'variable'doés not match the value
next output by the named destination to the given source. In this case, ths

output ‘cvommand ‘is merely delayed, and does not fail.

Bxamples:

{1) cardresader?cardimage - from cardreader, read a card and assign its
value {an array of characters) to the
variable cardimage

(2) lineprinterl!lineimage - to lineprinter, send the value of lLineilmage

for printing,

(R —e

(2} ¥2(s,y) - X, input two valuas
and as3sign them to x and v
{4) DIVI{3sarb,13) - » output the two spacified valuss,
Note: it @ process named DIV dssues command (3), znd a process
named X Issues command (8), these ave executed simultanecusly, and
have the same effect as the assignment:
(x,v) (3*a+h,13)
) o - K= ‘th o Fadi 4T P R
(5) console(i)?x = from the i~ element of an array of conzolas,
input a value and assign it To x
{6) conzole{j-1)i"a" = to the j-17 console, output chavacter “aY
"“ XY l\;\' . . 3 'th = E= e 2 2y L v
7y X(i)v(s - from the 17 of an array of procassss X,
imput a signal V{); reject any other signal
{8) semlpP() - to sem®output a signal P{)
2.3 Parallsl commands.

<parallel command> ::2 [<process>{|]|<proce

LProcess> - iT <processlabel> <command
”)]

a 2

<processlabefr::: =mptv>l<1de filer> 1

[<identifier>(<constant_subscript>{5<constant subscripnt>})

»e

-t

<copstant subscript> ::% <integer constant>|<range>
<integer congtant> 1% <numer al>|<bound variable>
<bound varlahl > 1:= <identifier>

<ranger variable>: <1mt°gpr -'*om,*ta’ﬂ'> N .‘C'LHLE-'UEI" conzatan

A parallel command gpecifies

concurrent execution of its

constituent processes,

All of them are started simaltansously,

they are all terminated.

and the parallel command terminates only when

command.

(L)

and (2)

(2)

Fach process must be disjoint from every other process of the
Two processes are dlujOLnL if:

neither of them assigns to any non~local variable mentioned in the other,
neither communicates with any non-local process with which the othar also

communicates {either directly or indirectly}.
The intended effect of these restrictions is:
Processes of a parallel command interact only by input and output commands.

The non-local inputs and outputs of a parallel comnand are logilcally
indistinguishable from those of an equivalent sequential command.
parallelism should be invisible from the ontsida.

Intarnal

'Y}

Where a constant subscript is defined as a range, the effect iz the same
as woiting cut an array of processes, each with the same command Tisty; oand each
with a different wvalue of tha bound variable, within the spzeified randgs., Foi

example, X(i:1..n)::CL is eguivalent o

X(2})::Cx l

.l.12

X(l);:CLlI

oot X(n)::Ch

viere each CL, is formed from CL by replacing each ocourrence of the bound variable i
J : _
by the numeral 7.
Consequently: (1) a bound variable must not appear (anywhere) ag a.
target variable '

(2) the rule of disjointness prohibits CL from updating
non-local varisbles, o communicating with
non-local processes. *#

The process labels which prefix the processes of a pavallel command are
‘local to the command, and are used for communication between processes of that
command. A process with empty name cannot engage in such communication. The

roceas labels must be unigue after the expansion described in the nrevious paragrach.
P a ioy &£ = I

Ezamples:

(1) [cardreader?caxdimagel]lineprinterilineimagej

Pefforms the input concurrently with the output. and terminates only when
both operations are complete. The time taken may be ag low as the longer of times
taken by the constituent processes, i.e., the sum of its waiting and its transfer :
“tima.)

least: :AssEMBLE] I

{2) [west::prsassEmpLE] |X: :souasH

The three processes may communicate with each other, using the names "west"”, -
"¥Y, and "east" as sources and destinations for input and output. The capitalised

words stand for command lists which will be defined in later examples. : !

(3) [xoom::rRoom| |fork (1:0..4) : :FORK] | phil (1:0..4) : :PHIL]

There are eleven processes. The behaviour of Proom® is specified by the
command list ROOM. The behavionr of the five processes fork(0), fork (1), fork(2),

ork (3), fork(4), is speaified by the command list FORK, within which the bound

Hh

varlable i may be used to indicate the identity of the particular fork. Similar
J“

remarks apply to the five processes PHTL.

It may be desirable to relax this rule to permit each process to
access and update an array element provided that this elemant is
subscripted by the full procass ind Thus 1t is guaranteed that
each process is actually operating on a différent element of the
array.

|
|
|

2.9 Alternative and repesiliiive comnends.

<alternative command>

L<guardad command> {deguarded cor
<gu&1;*ded copmand> 13 <cuardro<cormand list>

|(<ranJﬂ>)k:ua“ﬂ>+<foﬂT41d lists

st>,<input command>

Fte

[od 1avra
ZMand

<guard> 1= <guard l; [<
|<input command>

< uasd ist> 1% <guard element>{I<guard eléﬂent)}
(o=

<guard element> ::= <koolean expression>|<declaration>

A guard is execnted From left to right. A Boolean expression is evaluared

if the value is false, executil

T 3
othervise it has no effect. A dsclapation

introduces varizbles with a scope extending to the end of the guarded command. An

input command is exscuted only if it dess not Ffail., Thus, a guard which
discontinued, and has no effect,
A guarded comnand with a range takes the form (iim..n)G+0L. It is

\

gguivalent to the n-m+l

where @.CL., 1is the result of replacing every ocourrence of the bound var
3 I ¥

N
in 6+CL by the pumeral 3.

-

An zlternative command specifiss concu Lrent exacution of all its gue

-,.

command with the earliest successfully completed guard is selected and e

®

If all ths guards fail, the altsrnative co “waﬂd falls. Otherwise, the guardad

acutad,

followed by execution of its command list; execution of all the other guarnds is
s - .

6lSCOﬁtlﬂue4, without any effect. Since the relative speeds of execution of the

f

guards is not determined, neither is the choice batwesn two or more non-f

guards,

A TL atitive command spec

v iterations as possible of it

ailliog

=
constituent alternative command. ~Thus, if all of its guards fail, the repetitive

command - ive command is exescuted once,

this dis repatitive command again.

Note that when a guard ends with an input command, execution of the guard

may be delayed walting for the r matehing output. An alternative
is delayed 1f all its guards are ‘delayed; however, if all tha
are ready and fail to match,; the alternative command fails.

command

i s Cufe-

AWalved s, puts
&

epe LLLVH command 1s also delayed if its guards are all delaved; and it 1o
n:natex onlv when all awalted inpot gusrds have failed (as a result of mismeteh

LT yEx agsign y to w; iF hoth w2y and y2x, elthsr

{2} i:=0yxlicsizaico ontent{i)#ir=iel]
The repetitive commaud geans the elements content(i), for 1=0,1,.., watil

eithar izsize, or a valus squal to 1 is Found.

(33, 3§ scharactenivastloreasticl

This reads all the characters ocutput by west, and outputs them one by one

to east. The repetition terminates when the process west ferminates, or offers

a value which is not a character.

() x[{i:1..30)console(i) ?exXI{i,c)jconsoleli}iack()]

o
0
pt
\(v

Repeatedly inputs t 7 of ten comsoles. The identity of the
cengole and the content of Its message are then output to ¥, and an acknowle dgement

is sent back to the originating console.

Un:integmr;X?ha ni+ SLARCngﬁz zsize
] ‘

" On each iteration, accept from X either a request to "ins ?%t(n)”

(followed by INSERT), or a re squest "has(n)", (followed by SEARCH, and an outpuu
_ : . : between these alterna tlves
of an answer back to X). Of couwrse, the cHOWCﬁAm11+ be determined by procpqg X.
The repetltlve congrand tﬂrmknate% when X terminates(or before,if X offers non-
. mdtchlng ocutput) .
(8) #LXeV{()evalizvalsl

BV&1>0;Y°P(}+Val'“V41W

Shan a VO) sigral feom X and incrpwant val, or a

£
P{) signel from Y, and decrement wval., But the second alternative capnot bo

ec
, < . £ o . ¢
galected unless val is positive raifter which val will remain inv&riantky)
nonnegat ,v§} Hhen val>0, the choice CEPQﬁdS on the relative speads of X and Y,
&nd is not determined. The reger1+1ve command will terminate when both X and ¥

gre terminated {or before).

L9

Coroutines,

Fundamental prosy

COOCUT anss apbhaar a3 a

-} . . p - P . - SN .
WhALCh can be regavded as a spaelal case (trazated din

“Froblem: write a process X to copy characters output by process west

to . process east.

Notes:

(1) When west terminates, the input "west?e" will fail, causing termination of
the repetitive command, and of zrocess X. Any subsequent input command From
east will fail. '

{2) " Piocess X acts

Tt permits west to work cn

to input the previous one.

3.2 SQUASH

Problem: adapt the previous progrzm to replace every pair of consecutive
asterisks "»*" by an upward arrow "4+", You may assume that the

=

last character input is not an asterisk.

Solution: Y:iislcicharacteriussties

IROyeas
(1) Since west does not end with zsterisk, the second "west?e" will not £ail.

‘.
{2) As an exercise, adapt this process to deal sansibly with input which ends

1z

TN

3.3 DISASSE

BLE
Probleain: To read cards frem z cardreadsr and output to process X th: stream

Lt
of characters thay contaln, An extra gpace should be ipserted at the
£

Solution: »leardimaga:(1l.,80)cheracter ;

';-cardreader?cardimage+
itinteger; i:=1;
*[12804 cardimage (1) :=1i+1];

Xispace

Note:
(1) "(1..80)character" declaves an array of 80 characters, with subscripts

ranging betwzen 1 and 80.

3.4 ASSEMBLE
Problem: read a stream of characters from a process ¥ and print them in lines

]
of 125 characters on z iinsprinter. The last line should be completed

4]

with spaces if necessary.

Sciution: lineimage:(1..125)character;
iiinteger; i:=1;

Lcicharacter; X7+

] 1;
[i=1+skip

Pi>1+»{ 1125+ 1ineinage (i) 1=space; ir=ivdls
lineprinter!linelzage
Note: .
(1) %hen 3 terminates, so will the first repetitive command of this process.
The last lins will then ha printed, if it has any characters (and sometimes if

it doss not).

—
[V

3.5, Reformat.

Problem: xead a seguence of cards of 80 characters cach, and print the
characters on a linepvinter at 125% chavacters per line. RHvery
card should be followed kv an extra space, and the last line

should ke completed with spaces LI necessary.

Solution: [west::DISASSEMBLE]|X::copy | cast: : ASSEMBLE |

Notes:
(L) The text of the processes iz found in previous sections,

{2} This elementary problem is cdifficult to solve elegantly
without corocutines. '

3.6. Conway's Problem. [47.

Problam: ‘adapt the above program to replace every pair of consacutive

asterisks by an upward arrow.

Solution: [west::DISASSEMBLE||X::squast||east: AssEMerLE].

i4

A conventional subeoutine can ba readily implemented 23 a coproutine,

2d "by value" and "by reault!
(2) it uvpdates no nonlocal varlables used in its calling progoam

Like o FORTEAMN subroutine, & coroutTina m

joi]

v retaln the values of local vapiables

{own variables, in ALGOL terms): and it may use in ut commands to achiave the

R . - Thus in
cints', in a safer way than foI hu5 @ coroutine

effect of "multipla entry

"I

2 uged kikea SIMULA class instance as a concrete :osz"entatton for abstract

A coroutine acting as’ a subroutine is a process operatwng concurrunhlv w1tn

Any commands betwsen these two will be exscuted concuvrently with ths subroutine. - !

. N : . B W
A multiple-antry subroutine, acting as a representation for data% will
, J

prespnt aach eﬂi“y by an alternziive input t a structurad target. i, with the

"

[+

entry name as constructor; e.g.
#*[X?enizyi(values)...

fix? entV*9(vn.ves}+.e.

i

The calling process ¥ will deter=ine which of tﬁe-al+ernativms is activated on

each repetition., When X terminates$ so does this repstitive command. A similar
technigque in. the user program can achieve the effect of multlple axits.

p
e

A recupsive subroutine can te represented by an array of p?OCESSLSD onaz fovr
e level of recursion. The callingz »rocess is level zero; each activation
communicates its parameters and results with its predecessor, and calls its
s ' - s . . .
sub(o)"! ERljrecsub{iti, ,reclimit): i RECSURB] . *
The user will call the first element o recsub:
s yif) of
recsub{l)lzrounentsy .., srecsub(l }:aesulté,
x 8 7

S

15

subreatine is uzed ealy by a

The next section shows how this restriction can bs | Lifted.

L,i1 Tunction: division 1 ith remaindsar.

5_

Problem: construct a process to rppﬂ sent a function-type subroutine, which
accepts two pogitive integer barameters, % and y, and returns thaip

integer quotient and remainder. ; Bfflelency is of no concern.

'jﬁrem2y+rem;:rem—y; quot:=zguot+l];
' Hquot,rem)
i
§1{:1 vser proc

wn

J

B.2 Recursion: factorial.

»

~Problem: compute a factorial by the recursive methed, to a given limit.

‘Solution: [fae(i:l..iinis

_ r:intager;fac(i+)?P;fac(l“l} n*ﬁﬁ

b1 '
| |£ac(0)::USER PROG
3

i

o S P -
small set of integars,

whieh Acrcante s leded o T e R R E:

whlch accepis two kKinds of instruction from ite calll
A . -

{1} = insert the dnteper n in the set

(2) Slhas(n);...;82k ~ b is sat trus $Ff n ig

The initial value of the set is empty.

Solution: S::

EBER: ger; size:rz=l;
*[n:integar; X2has{n)> EARQH; ¥lizsize

where SEARCK is an abbreviation fon:
irinteger; 1:%0;
s[i<size; content(iden+iizicl]
Notes: ""’
(J The alternative comnand with guard "size<lO0" will fail if a

made to dnsert more than 100 elements.

(2) The activity of imsertion will in gener

T
calling process, However, 2Ty %‘b equent’ instruction to S will be delayed until

5 is ready te accept it.

eral take place concurrently with

16

CEUESDNT R

§
P
¥
i
1
i

17

4.4, Soanning g sel.

Problen:

-Solution:

Note:

-extend the solution to 4.3, by providing a fast method for sgcanning all

members of the set, without changing the vaiue of the set, The usear

program will contain repetitive commands of the fovn:

Slscan(};

e

*[x:integer, S?next{x)~> ... deal with x]
Stnoneleft()

where the [ixst line sets the representation into a scanning'modeé_the
second line serves as a for statement inputting tha successive members
of x from the set, and inspecting them; until finally the'representation
sends a signal that there are none left.

The body of the repetitive command is not permitted to communicate

with § in any way.

add a third guarded command to the outer repetive command. of § :

o OX?Pscan{) i:integer; i:=0;

inonelefit(}

(1) As an exercise, extend the above solution to-permit the user program

to test membership of the set 8 while still inside the body of the loop. This

will require a further repetitive command inserted just after i:=it+l.

¥

4.5. Recursive data representation: small set of integers.

Probxlem: same as above; but an array of processes is to be used to achieve high

rarallelism., The 1tb prrocess should contain the ith largest member; when
it does not contain any number, it should answer “false" to all enguiries
about membership. On the first insertion, it changes to a second phase of
behaviour, in which it deals with instructions from its predecessor, passing

some of them on to its successor. The calling process will be named S(0).

I—

Mg aaptilng

p——

/e

S
|
Solution: 3(-onldﬂ‘:
#lurinteger, 5(1-1)7has(n)>S(0 Yifalss
Ty 2 . P * -
Un:integer, ${i-1)7inssre{n)~
sLorinteger ${i~1)%has{(n)+
[mén+5(0)¥h:j§
Dmerog(ie) Thas (m)
|
1
Dm:integer; S(1-1)?insert (m)->
L= 5{i+1 Y Hinsevt (0} nisn
Lrmnaskip -
e S{i+1) D Znsart (m)
Notes:
(1} The calling process S(0) encuires whather n is & mewber by the commands.
i r 3 -~ ;o x 3
S(1)thas{n); [{1:2..200)5{1)?b>sxip]
The appropriate process will respond To the input commapd by the output-command in’
line 2 ox line 5. This tritk avoids pagsing the answer back "up the chain”
(2} Hany insertion operations cen procesd in parallel; yet any subs
-~ - - o~
operation will be performed corvectly. H
B
¥ t

&

wt

e Semo s . - 4 yred . - -
{3) Exercise: extend the sbove solution to respond to a command to.yield the

least member of the set, and then %o rewove it from the ser, 1De user program will

invoke the facility by a pair of commands:

slollleast{ }); [x:integer; slol?x+> ... x ...

s 0 ?noneleft()+ ...
1

or in a "for loop™ hy:

ot

SLollleast(); *[x:integer; slol2z> ... x ... ; sloi?noneleft{);

N TAnET

Hint: introcduce a boolean variable b, 1nltlml' sed to tvun; and prefix this
to all the guards of the inner loop. After responding to a !least{) command
from its predecessor, each process returns its contained value n, asks its
suceassor for its least, and stores the response in n. Bub if the successor
returns "noneleft", b is =et false, and the inner loop terminates. The process
therefore returns fo its initial state. (Solution due to David Crluu).

3. conitors and schaduling.
This secectieon rerevas Lie sed in the
~rhe uwser of a subroutine must ba s -
as a single

course, each user Process musi have & fervent name (e.g:
‘erent subsceript. {e.g. N(i)), eni eczch commuuication with a
its source or destination uniquely.
Comsequently, when a moniror is prepared to communicate
processes (i.e. whichever of them cz2lls first), it will use a

qun:.

-?[(1 1..100) ¥ (i)?valus pavansters »...; X{E)Iresu
If the monitor is nol prepared to accapi input from some parti
X{3)) on a given cccasicn, the inour cosmand may be precadsd b

€.%.
,i;[(i:l. 100) & # j, X(1)7 values =+ ...; j:=il
Ly attempted outpﬁz from N{i) will bz delaved until a subsequ
after the output of scme other process X{1) has been procsssad
Siﬁilariy, conditions cer . acceptence of
violate scheduling constraints, ntil some 1zt
other process has brought the ronitor into a state in which th
be accepted, . . . This techniqus
conditional critical region (Hoare 3: and it obviates the n
synchronising variables such as events, queuas, or conditions.
“5.1.. Boudded buffer.
Problem: construct & bufferirg orocass X td smooth varia

of cutput of producer process an 2t by a consumer proces

trer § - gL 1
Xlioox X7

of cormands

contains pairs » and the producer

1.

of the form X!p., The buffer should zonrtain up to ten portion

wich

be

SN

Lror

OF

process.

o

COTSUMRT) OF

ibify

~

st ,.L(.Lu-

ujer
B

any of its

verdad command with a

Ly
gy
its]

cula

r user {e.

At

4

inputs which would
er occasion when soma
e input can validly
is similar to a

eed for special

tiong in the speed

s, The consumar

conbains comuanda

TR0

intl

out ;= outtl

Totes:

(1) ¥hen out < in < out:l0, the selecticn of the alternative in the repetitive
commandé will depend on whether the producer produces before the consumer

consumes, Oor viee-varsa,

(2) Vhen out = in, the second alternative cannot be salectezd, even 1f the

consumer is ready with its command "Nlrnore(). However, after the
producsy has produced its next poriion, the consumer's rvequest can be
granted on the next following repsiifion.

(3) Bimilar rerarks apply to the producer, when in = out+10.

5.2. Integer sewaphore,
. | _ .

Problem: o implement

f client

o]

ace

w

sas,

"

T
it by SIP(); but the laiter command rust he delayed if the value of the semaphore

is not positive. :
Sclution: Ei:ival:integsr ; val := O3

1Y 7V () > val 1= valtl

{
val >0, {1 7 ?() + val o= val-l

(3]

Note: ’
(1) In this process, no usa is. made of knowledge of the subscript i of the

calling process,

crement the semaphore by §$1V{), or decrement

W s

B

5.3,

Dining philogsophers - (Pxoblem . due to E.W. Dijkstra).
Frobiam: Five p T

hilosophers spend theie lives thinking and eating. The
h

philosophers share a common dining room whers there is a circular table

bt

swrounded by five chairs, each belonging to one philosopher. In the

centra of the table there is a targs bowl of spaghetti, and the table

i 4
. !»*' “‘:% .i_”:- 5 "*‘?‘w’
£ Sl

()

entering the room, ezch pickin

fealing

own chaily, and pleks 5 the forl on

Unzentiunately a0 tangled

o
and use the Ffork on hig »ight ax wall, Wh
down both forks, and ieaves the rooim. The roo

of the numbep of

The bshavicour of

PHIL = "4. “tru Zr

THINK

]

Fork{({i+1) mod 5) iy

he Fats of the i Tork is to bha g

by a philosopher sittine on either side of it

The story of the roem

ROCH = occupangy:ints
Cal(i:0..n
00083

3

Zenter{ Jroccupancy:

All these components cperate in parallel:

[room: :ROCH] | Forke i:r,{)i iFOR

The solutdien given above doss not prev.

)
fom s

3 ‘i 36,_‘_'

.
Z up his

be done by breventing more than four philosophers

{Solution due to 11.v7. Dijkstra).

fork (f3+1) mod 8)1 plckt

ent all five ph

ol J;

putdown{ };

soccupanay+l

)+occupancv;:occupanqy—l

<) lpniltizo. u): $PHIL

From entering

.-,)

ilosophers from

and starving to death, bzcauss

Thism

the room.

|5
L

6. Miscellaneocus.
- "y - — v v]
This section conteins further examples of the use of cownunicating

tal processes for the selution of some Less familiar problems: a parallel version

off the sieve of Eratosthenas, and the design of an iterative avray. The oropnsad
solutiong are even more smpeculative than those of the previous sections, and they have
not. keen tested by a practical implewmentation. In each case, the solutions have baan

constructed not for efficlency or realism, but for simplicity and perhaps elegance.

Pl

.1, Prime Numbers: the sieve of Fratosthenoes.

Problem: to print in ascending order all primes legs than 109000;' Use an array of
processes, SIEVE, in which each procesgsz inputs a prime from its predecessor, and prints
it. The process then inputs an ascending stream of numbers from its pfedecéssar and
passes them on to its successor, suppressing any that aremultiples of the original

prime.

Solution: [STEVE (i:1..100)::
P .mp:integer;
*LeTEVE (i-1)?p>
print!p;
mp:=p; comment mp is a muitible of p;
#lm:integer; SIEVE(i-1)7?m> |
iﬁm§mp ﬁp::mp+p3;
Lo=mprakip
Dnﬁmp+SIEVE(i+l)!m

||SIEVE(O)::print32; n:integer; n:=3;

* [n<100060 + SIBVE(L) in; m:=ni2;]

|ISIEVE(101):: * [n:integer; SIEVE(100)?n - print!n]

|| print:: j_q%;Oathl) n:integer; SIBVE{i)?n + ... -]

4

Note: (1) This beauvtiful solution was contributed Ly David Gries.
(2) Tt is algorithmically similar to the yrogram developed in

(7, pp.27-3387.

solution

o

-The solutlion takes the form shown in Fie.l. Each non-bovden noda

inputs a vector component from the west and a partial sum from the

]

orih. It culputs the vactor'comgonent to itsvaast? and an updated
partial sum to the south. The imput data is produced by tha west
border nodes, and the desired pesults are consumed by south border
nodes. The north horder is a constant sourcé of meroas; and Tha e

N L
L 3 357K,

i

bordar iz ju

No provision is made in this program for terminetion, nor for changing

the values of the arvay A.

o . ’ * -
There ars Twenty one nedss, in Iive groups, comprising the central

four bordecs:

Cri{i:1..3,0)::
P le0,3:0..2):

[1diin..3,8): sast

The west and sounth bhorder the remaining

V]
B
4
[51]
L]
H
(o]
[}
I
0
i
e
123
o
iy
[y
—
5]
e}
i
[
i»]
o
[
]
3
5

DOOCESSEs apre!

i

north = s[true ¥{1,j)I0]
east = #lx:ireal; H{

centres *[xireal; M{i,3-1)7x%

N

. C?) IS S ‘
e 3 {’fmjzi> s .
S 2 Y s oy
oY R 7 @}%)

!

27

Conalusion.

This paper has suggested thet input, output and concurrency should be regaydad

as primitives of procedural programming, which underlie many familiar and less fanilinr
. - - F

nrogramming concepts. However, it womld be unjustified to conalude that these
primitives can replace the other concepts in a programming language. Where a more
elaborate vonstruction (such as a procedure or a monitor) has prayérties which are
more simply provable, and ¢an also be implemented more efficlently, there is a strong
case for including in a prograwmning language.a special notation for that coanstruction.
The fact.that the construction can be defined in tewms of .. simpler underlying .
primitives is a.useful guarantee that lts inclusion is logically consistent with the
remainder of the language.

It is tempting to explore furthe:raxtensions to thé ideas presented in ﬁhis
paper. For example, it may be possible to define arrays of processesrwithrno
a priori bounds on their number. Another possibility would be te allow other commands
besides input commands to appear in guards, for example, assignment commands or even
output commands. However, I fear that such extensions may impede the goals of
provability and efficient implementation; and I suspect that the more promising line
for future research would be to restrict the generality of the primitives, rather

than te extend them.

Acknowledgements.
The research reported in this paper has been encouraged and supported by a

Senior Fellowship of the Science Regearch Councill of Great Britain.

‘The technical inspiration was due to Edsger W. Dijkstral9l, and the paper has
bzen improved in presentation and content by valuable and painstaking advice from

D, Gries, D.Q.M. Fay, Edsger W. Dijkstra, N. Wirth, and Robert Milne,

The rale of IFIP W.G.2.3 as a forum for presentation and discussion is

acknowledged with pleasure and gratitude.

3]

L7

[10]

11l

f12]

L13]

Atliinson, R. and Hewitt, C.
Synchronisation in actor systams,
MEIT room 813, Working Paper 83, Nov. 1975,

Brinch Hansen, P.
The programming language Concurrent FPascal.
LEEE Trans. Soft. BEng. 1,2 {(Juns 1975), 199-207.

Camplbell, R.H.,, Habermann, A.HW.
The specification of process “vﬂchvontsat101 by path expressions.
Lecture Notes in Computer Boience, Springer 1974, B89--102.

Conway,‘M E.
esign of a sepavable transition-diagram compiler.
Lomm, ACM 6,.7. (Y 3296-408.

Dahl, O-J. et al. SIMULA 67, comuon base language.
Noxrweglan Computing Centre, Forskningveien, Oslo (1957).

Dijkstra, E.W.
Co-operating Sequential Processes in

Programming Languages (ed. P, Genuys). Academic Press {1968).

Bijkstra, B.W.
Notes on Structured Programming, in
Structured Programming, Academic Press {1972), 1-82.

Dijkstra, E.W.
Guarded commands, nondeterminacy, and formal devivation of prograns.
Comm.2ACM, 18, 8. {(Aug.1875). 453-457, ’ '

Dijkstra,E.W.
Verbal communication. Marktoherdorf, aug. 1975.

Hoare, C.A.R.
Towaxds a theory of parallel programming, in
‘Cperating Systems Technicques, Academic Press 1972, £1-7z%, D

Hoare, C.A.R, -)
Proof of correctness of data representations
Acta Informatica 1, 271-281 (1972).

Lis skov, B.H.

A note on CLU, ,
MAC TR Magsachusetts Inst. of Technology, June 1975,

Raur, P. led.). Report on the algoritimic language ALGOL 60,
Comm.ACM 3 (May 1960}, 299-214.

Thompson , K.
The UNIX command language, in
Structured Programming, Infotech 1976, 375-384.

[L5] van Wijngaardan {ed.)
Raport on the Algorithmic Lenguage ALOOL 68,
Numerische Math 14 1869, 79-Z2Lr

[1&] Walf, ¥.A., London, R.L., Shaw, M.

Abstraction and vevification in ALPHARD.

Dept.of Computer Science, Carnegle-Mellon University (June 1976).

{17} Wirth, H.
The Programming Language PASCAL.
Acta Informatica 1,1,

