University

7 of Glasgow

Wang, X., MacAvaney, S., Macdonald, C. and Ounis, I. (2022) An Inspection of
the Reproducibility and Replicability of TCT-ColBERT. In: SIGIR 2022: 45th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, Madrid, Spain, 11-15 Jul 2022, pp. 2790-2800. ISBN
9781450387323.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

© Association for Computing Machinery 2022. This is the author's version of the
work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval, Madrid,
Spain, 11-15 Jul 2022, pp. 2790-2800. ISBN 9781450387323.
https://doi.org/10.1145/3477495.3531721.

https://eprints.gla.ac.uk/268399/

Deposited on: 9 May 2022

Enlighten — Research publications by members of the University of Glasgow_
http://eprints.gla.ac.uk

https://doi.org/10.1145/3477495.3531721
https://eprints.gla.ac.uk/268399/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

An Inspection of the Reproducibility
and Replicability of TCT-ColBERT

Xiao Wang
University of Glasgow
Glasgow, Scotland, United Kingdom
x.wang.8@research.gla.ac.uk

ABSTRACT

Dense retrieval approaches are of increasing interest because they
can better capture contextualised similarity compared to sparse
retrieval models such as BM25. Among the most prominent of these
approaches is TCT-ColBERT, which trains a light-weight “student”
model from a more expensive “teacher” model. In this work, we
take a closer look into TCT-ColBERT concerning its reproducibility
and replicability. To structure our study, we propose a three-stage
perspective on reproducing the training, inference, and evaluation
of model-focused papers, each using artefacts produced from dif-
ferent stages in the pipeline. We find that — perhaps as expected
— precise reproduction is more challenging when the complete
training process is conducted, rather than just inference from a
released trained model. Each stage provides the opportunity to per-
form replication and ablation experiments. We are able to replicate
(i.e., produce an effective independent implementation) for model
inference and dense indexing/retrieval, but are unable to replicate
the training process. We conduct several ablations to cover gaps
in the original paper, and make the following observations: (1) the
model can function as an inexpensive re-ranker, establishing a new
Pareto-optimal result; (2) the index size can be reduced by using
lower-precision floating point values, but only if ties in scores are
handled appropriately; (3) training needs to be conducted for the
entire suggested duration to achieve optimal performance; and (4)
student initialisation from the teacher is not necessary.

CCS CONCEPTS

« Information systems — Retrieval models and ranking.

KEYWORDS
Dense Retrieval; Knowledge Distillation; Reproducibility

ACM Reference Format:

Xiao Wang and Sean MacAvaney, Craig Macdonald, Iadh Ounis. 2022. An
Inspection of the Reproducibility and Replicability of TCT-ColBERT. In
Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR °22), July 11-15, 2022, Madrid,
Spain. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3477495.
3531721

SIGIR °22, July 11-15, 2022, Madrid, Spain

© 2022 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
45th International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 22), July 11-15, 2022, Madrid, Spain, https://doi.org/10.1145/3477495.
3531721.

Sean MacAvaney, Craig Macdonald, Iadh Ounis
University of Glasgow
Glasgow, Scotland, United Kingdom
first.last@glasgow.ac.uk

1 INTRODUCTION

For decades, the ranking task in information retrieval has been
dominated by sparse retrieval models such as BM25, where the
relevance score measured relies on a lexical matching between
the queries and documents. However, considering only exact term
matching while measuring query-document similarity can hinder
effectiveness for queries and documents containing polysemous or
synonymous terms. To better cope with this, the BERT-based [4]
cross-encoder reranking models have been proposed [11, 17, 22].
Such models increase effectiveness by reranking a set of candidate
documents obtained from a sparse retrieval model.

Going further, and to address any limit in the recall achieved by
a sparse retrieval model, end-to-end dense retrieval approaches are
of increasing interest. By encoding queries and documents (inde-
pendently) into dense vectors, these models can score the similarity
of text even in the absence of lexical matches. This setting also
allows for efficient dense retrieval using approximate nearest neigh-
bour (ANN) search algorithms on specialised indices, such as those
provided by the FAISS library [8]. Two families of end-to-end dense
retrieval models have become apparent in the literature, based on
the nature of representation for the queries and documents: single
representation models (e.g. DPR [9] and ANCE [30]) encode each
query or document into a single dense representation, which allows
a simple similarity function, usually the dot-product, to compute
relevance scores. In contrast, in a multiple representation dense re-
trieval model (e.g. [10]), each query or document is encoded into
many embeddings, one for each token. The final score for a docu-
ment is obtained by applying a MaxSim operator for each query
embedding over the document embeddings. However, while a multi-
ple representation dense retrieval model can be more effective [20],
its larger index representation is a significant drawback, as it must
be loaded into memory for sufficiently efficient retrieval. For this
reason, single representation dense retrieval is considered to be
more attractive, and is subject to much ongoing research.

To this end, one possible solution is to distill the learned knowl-
edge from a more effective retrieval model to a single representation
dense retrieval model [6, 7, 14, 15]. Indeed, Hofstatter et al. [6] at-
tempted to distill knowledge of a complex cross-encoder into a
single-representation model. Separately, Lin et al. developed an
approach called TCT-ColBERT [14, 15], which aims to distill knowl-
edge from a multiple-representation model (ColBERT) into a sin-
gle representation model. Indeed, since multiple-representation
and single-representation dense retrieval models capture different
knowledge and measure relevance scores in different ways, knowl-
edge distillation allows the smaller model to learn relevant patterns
from the larger model. TCT-ColBERT was applied by several groups

https://doi.org/10.1145/3477495.3531721
https://doi.org/10.1145/3477495.3531721
https://doi.org/10.1145/3477495.3531721
https://doi.org/10.1145/3477495.3531721

in TREC 2021 [2]. For this reason, we consider it to be worthy of a
further in-depth reproduction study.

In this paper, we take a closer look at TCT-ColBERT, in terms
of reproducibility and replicability. In particular, while ACM de-
scribes [24] reproducibility as “different team, same experimental
setup”, and replicability as “different team, different experimental
setup”, we interpret this in a more nuanced manner, by carefully
considering different levels of reproducibility. Indeed, while there
has been reproducibility of TCT-ColBERT at a level of “do the author-
provided TCT-ColBERT encoded queries and indexed documents attain
the expected effectiveness?”, we argue that the main novelty in TCT-
ColBERT is its knowledge distillation training regime, and hence for
our science to be able to progress, it is important to reproduce and
replicate the training regime. Moreover, due to the complex nature
and expensive manner in which TCT-ColBERT was trained (using
Google TPUs, with batch size 96, for 500k batches), we investigate
some particular choices made by the authors to test whether such
an expensive training process is necessary.

To structure our reproduction and replication efforts, we per-
form our study in three stages, aligned with training, inference,
and evaluation. First, in what we call last-metre reproduction, we
use the pre-indexed documents and pre-computed queries released
by the paper’s authors. This stage establishes whether the nearest-
neighbour search from a pre-existing tool produces comparable
results to the original paper. Providing further value, the follow-
ing last-mile reproduction stage performs inference, i.e., computing
query and document vectors from released model checkpoints. This
stage establishes whether the released models are able to produce
comparable results to the original paper. Finally, the complete repro-
duction stage performs the whole process, including training. We
find that reproduction and replication become more challenging as
we advance from last-metre to complete reproduction. Neverthe-
less, each stage provides us with opportunities to ablate the model,
filling in gaps in knowledge left by the original paper.

Among our interesting observations, we find that: (1) the TCT-
ColBERT model can function as an inexpensive re-ranker, establish-
ing a new Pareto-optimal result; (2) the index size can be reduced
by using lower-precision floating point values, but only if ties in
scores are handled appropriately; (3) training needs to be conducted
for the entire suggested duration to achieve optimal performance;
and (4) student initialisation from the teacher is not necessary.

The structure of the remainder of this paper is described as
follows: Section 2 provides some necessary background on single
and multiple dense retrieval; Section 3 proposes a framework for
discussing a number of aspects when reproducing dense retrieval
models; Section 4 provides a summary of TCT-ColBERT. Section 5
describes the aims of our study and highlights the questions we
aim to answer, categorised as last-metre, last-mile and complete.
We experiment to address these categorised questions respectively
in Sections 6, 7, & 8. Concluding remarks follow in Section 9.1

2 BACKGROUND

In the following, we describe in detail both multiple- and single-
representation dense retrieval models.

! Virtual Appendix: https://github.com/Xia00728/TCT-Repro-Virtual Appendix
Data: http://dx.doi.org/10.5525/gla.researchdata.1276

2.1 Multiple representation Dense Retrieval

We first focus on the working principle of the multiple representa-
tion based ColBERT [10] model, which is employed as the teacher
model of TCT-ColBERT. In a multiple representation dense retrieval
paradigm, all tokens of the query or document? are encoded by a
BERT-style encoder. More formally, a query g is firstly segmented
and appended with additional [MASK] tokens to a fixed length,
typically set to 32. Then the input query tokens are encoded into
a set of |g| embeddings ¢ = {¢q,, - - "¢q\q|} = Encoderg(q). Sim-
ilarly a document d can be encoded into a set of |d| embeddings
¢a =A{bd---> ¢d\d|} = Encoderp (d). For model-specific design of
CoIBERT encoding process, we refer readers to [10] for full details.

Thus, the relevance score between a query and a document can
be calculated as follows:

lq|
T

$(q, D) Maxsim = ; j:T".ij(ldl ¢qi¢dj (1)
CoIBERT is normally trained on the triple files, where each training
sample consists of a query g, a positive document d* and a negative
document d~. The model is optimised by minimising the pair-wise
cross-entropy loss computed over the MaxSim scores of a query
between its positive document and negative document (in-batch
negatives — discussed further below — can also be used for improved
effectiveness [26]).

After the model is trained, the document embeddings are pre-
computed and indexed, while also compressed into a FAISS index [38]
that supports approximate nearest neighbour search. In the retrieval
phase, ColBERT usually performs in a late interaction paradigm as
the FAISS compression makes their scores inaccurate for effective
ranking. Hence, for each query embedding, it performs the first
stage approximate nearest neighbour (ANN) search to produce a set
of candidate documents, followed by a second exact scoring stage.

ColBERT has been shown to be effective (more so than the ANCE
single-representation model, particularly for complex, multi-aspect
information needs [20]) and extensible (e.g. embeddings in the
top-ranked documents can be added to the query as a form of
pseudo-relevance feedback (PRF) [28]). Furthermore, the per-token
embeddings are interpretable [20], and exhibit correlations with
IDF [5, 27]. On the other hand, access to the voluminous accurate
document embeddings in main memory required for the efficient ap-
plication of the second stage is a major drawback of ColBERT. While
a followup work, ColBERT v2 [26], demonstrated that quantised
embeddings could reduce the space consumption, the need for the
two-stage scoring stages remains a significant drawback for such
multiple representation models, and makes single representation
more attractive.

2.2 Single representation Dense Retrieval

In the single representation dense retrieval paradigm, each query
or document is encoded into one single embedded representation.
A typical implementation separately applies the encoder to docu-
ments and queries, and thus such retrieval models are usually called
as Bi-Encoder or dual-encoder. In doing so, a single pre-indexed rep-
resentation for each document can be indexed into an approximate

2 In the following, we use the phrases document and passage interchangeably.

https://github.com/Xiao0728/TCT-Repro-VirtualAppendix
http://dx.doi.org/10.5525/gla.researchdata.1276

trained model
pretrained model

Legend

queries and documents
Artefact

training data

training impl. model inference impl.

q

Contributions of a

hypothetical paper dense indexing impl.

Training

l Inference & Indexing

measurement
result list

query vectors

. relevance judgments
document index

dense retrieval impl. evaluation tool

R Evaluation
Retrieval

| Last-Metre]

Last-Mile]

Complete l

Figure 1: Our conceptual framework for reproducing and replicating various stages of a dense retrieval model. Each arrow
represents an artefact (e.g., code, data, model, etc.). Arrows can have dependent artefacts that are shown directly in the figure or
hidden to save space (e.g., training data may come from yet another trained model).

nearest neighbour search index (e.g. as provided by the FAISS li-
brary), resulting in a considerably smaller index size compared to
ColBERT. Further, due to the smaller size of the embedded repre-
sentations, compression may not be required for nearest neighbour
search (e.g. [30]), and hence there is no need for an accurate re-
ranking stage.

Similar to multiple representation dense retrieval, a contextual
language model, such as BERT, which has considerable pre-trained
knowledge, is employed as the query and document encoder, thus
the encoded embeddings are capable of capturing contextualised
information. The query encoder encodes the query g into a single
query embedding /3 = Encoderg(q) and the document d into a
single document embedding /; = Encoderp (d). The single repre-
sentation of the query or document can be obtained in different
ways. For instance, most Bi-Encoder dense retrieval models adopt
the BERT [CLS] embedding produced by the query or document
encoder as the input representation. In TCT-CoIBERT, the authors
applied a pooling layer to combine the embeddings obtained from
the various input tokens, namely AvgPool or MaxPool (the original
work used AvgPool as default). Thus, the input query g and doc-
ument d can be represented as g = AvgPool{dg,....,¢q, } and
Yq = AvgPool{¢g,, ..., ¢d\d| }, respectively.

To make the query encoder and document encoder produce bet-
ter representations, such that the query and relevant document
embeddings are similar and the query and document embeddings
of non-relevant documents are positioned far apart from each other,
the BERT-based query encoder and the document encoder are fur-
ther fine-tuned. Usually, each training instance consists of a triple
<q, dt, d_>. During training, the model is optimised via the cross-
entropy loss between the positive and negative pair scores. Af-
ter obtaining the trained model, each document is encoded into a
single embedding using the trained model and stored within an
embedding-based nearest neighbour index. During retrieval, for
an input query, the trained model firstly encodes it into a single
query representation and a simple dot-product searching function
is employed to calculate the relevance score between the query
representation and each document representation in the index.

Yet the training of effective single-representation models is chal-
lenging: in particular, a model trained for separating relevant and
non-relevant (aka. negative) documents using cross-entropy may

not be able to create embeddings that easily distinguish among rele-
vant, “could be” relevant and non-relevant documents [25, 30]. As a
result, many initial dense retrieval models required significant GPU
training, while there has also been significant work towards nega-
tive sampling. For example, DPR [9] required 8 GPUs for training;
RocketQA [25] is trained on upto 8 x V100 GPUs with cross-batch
negative sampling with batch size of 512; ANCE [30] similarly used
multiple GPUs, and samples negatives based on an nearest neigh-
bour index from a previous checkpoint. On the other hand, in-batch
negatives are commonly used to supplement the training triples
by using documents from other queries in the batch as additional
non-relevant documents. An alternative approach has been to distill
knowledge from a more effective model into a single-representation
model [7, 14, 15]. One such approach, TCT-CoIBERT, is the focus of
this paper, for which we conduct the reproduction and replication
studies. In the following, we describe a framework for reproduc-
tion, replication, and ablation that allows us to clearly delineate our
contributions. Later, in Section 4, we describe TCT-ColBERT.

3 A FRAMEWORK FOR MULTI-STAGE
REPRODUCTION AND ABLATION

The ACM Reproducibility guidelines [24] place a high importance
on produced artefacts; the criterion for a “Results Reproduced”
badge are “The main results of the paper have been obtained in
a subsequent study by a person or team other than the authors,
using, in part, artefacts provided by the author” However, we argue
that this criterion is insufficient for much recent work in IR that
involves pipelines of dependent artefacts.

To make the problem more concrete, we consider a simple hy-
pothetical paper that proposes an approach for training a dense
retrieval model. The process consists of four stages: (1) model train-
ing, (2) inference & dense indexing, (3) retrieval from the dense
index, and (4) evaluation. Figure 1 shows that each of these steps can
make use of some artefacts from the previous step (e.g., a trained
model), also introducing new artefacts (e.g., implementations, data,
etc.). As an example, the inference & indexing stage uses the trained
model from the prior stage, an inference implementation for the
model (often distinct from the training implementation), query and
document data, and a dense indexing implementation. It produces

a set of vectors representing each query and a dense index of the
documents, which are used by the subsequent retrieval step.

We find that many reproduction efforts — such as those docu-
mented on the TCT-ColBERT reproduction log® ~ focus almost
exclusively on the final retrieval and evaluation steps. Though re-
producing results at this stage has some value (and meets the ACM
criteria of reproduction), we posit that this barely represents a re-
production of the contributions of a typical dense retrieval paper
(here, the training approach). All that is involved in the final stages
are running an established dense retrieval tool (e.g., FAISS [8]),
and using an established evaluation tool (e.g., trec_eval) with a
standard set of relevance assessments. In some sense, it is only test-
ing the reproducibility of the dense retrieval and evaluation tools,
rather than the paper’s main contributions. We refer efforts that use
post-inference artefacts as last-metre reproductions because only
the final (often trivial) steps are examined. Another problem with
last-metre reproduction is that it offers relatively little room for
performing interesting ablations. For instance, a researcher could
try a different similarity measure (e.g., cosine similarity rather than
dot product), but this is unlikely to be effective because the model
was not trained with the alternative measure.

Some reproduction efforts go slightly further. The above repro-
duction log? gives a note about how to perform “on-the-fly” encod-
ing of queries (though it is unclear whether doing so is required to
log a successful reproduction). By performing some inference, there
are more opportunities for performance to diverge.* There exist
even more opportunities for ablation when the document inference
& indexing procedures are also considered, as we find in Section 7.
We refer to efforts that use the final trained model checkpoints as
last-mile reproduction.®

Finally, we consider the complete reproduction of a result to be one
that covers all the intermediate artefacts central to the contribution
of a paper. In most cases, this will include model training, which
can be one of the most involved and challenging processes.

Throughout this paper, we consider results to be reproduced or
replicated if we can achieve similar metrics to those reported by
Lin et al. [14]. An alternative approach would have been to test the
rank-biased correlation of the result lists themselves, using a tool
like repro_eval [1]. However, this is not possible for our study
because the original result files for Lin et al. [14] are not available.

Reproduction is an important aspect of science, and to build upon
the work of others, we first must be able to reproduce it. As such,
last-metre and last-mile reproductions alone are insufficient. How-
ever, we certainly do not argue against the release of intermediate
artefacts, such as trained models. In fact, we find that the released
TCT-ColBERT models are useful for conducting last-mile repro-
duction, replication, and ablation. They also clearly have benefits
outside of reproducibility too, since they allow others to performing
model analysis and use existing models as baselines.

Throughout the remainder of this paper, we use this framework
to design and motivate our reproduction, replication, and ablation
studies over TCT-ColBERT.

3 https://github.com/castorini/pyserini/blob/master/docs/experiments-tct_colbert-v2.md
4 Indeed, Lin et al. [14] observed slight differences in performance between their
released TensorFlow and PyTorch implementations. > We recognise that we mix
metric and imperial units in our nomenclature; so it goes in the United Kingdom.

1(a) train ColBERT 1(b) save ColBERT checkpoint
(initialised from bert-base) (500k steps, bsize=96, Ir = 7x107°)

Know\edge Distillation

1(c) train TCT-ColBERT 1(d) save TCT-ColBERT checkpoint]
(initialised from ColBERT 1(b)) (500K steps, bsize=96, Ir = 7x107°)

Stage 1

triples.train.small

2(a) build dense index
(using TCT-ColBERT 1(d))

_| 2(b) hard negative sampling
(sampled from top 200 psgs)

Stage 2

3(b) save ColBERT checkpoint
(100k steps, bsize=96, Ir = 7x1076)
Distillation

3(a) retrain ColBERT
(initialised from ColBERT 1(b))

Knowledge

3(c) retrain TCT-ColBERT
(initialised from ColBERT 3(b))

Stage 3
HN samples

3(d) save TCT-ColBERT checkpoin{]
(100k steps, bsize=96, Ir = 7x1076)

Figure 2: Training steps of a TCT-ColBERT variant.

4 TCT-COLBERT

To achieve the aim of creating an effective single-representation
model for dense retrieval, Lin et al. [15] proposed the distillation
of ranking knowledge from an effective multiple representation
ColIBERT model. Indeed, as the late interaction paradigm used by
ColBERT is more efficient than the cross-encoder ranking models
(e.g. BERT s or monoT5), thus, the ColBERT model is selected
as the teacher model, while a Bi-Encoder model is employed as
the student model. This design allows the teacher and the student
models to perform inference in a tightly-coupled way in response
to the input query, giving the name of the model Tightly-Coupled
Teacher ColBERT model, short for TCT-ColBERT. Thus, by distilling
knowledge from ColBERT during training, the student (Bi-Encoder)
model can learn to generate better representations.

The authors proposed two versions of TCT-ColBERT models
successively [14, 15]. Of these, [15] is as an early effort released
as a preprint, which employs ColBERT as the teacher model and
distills knowledge in a tightly coupling method to a Bi-Encoder
based student model. Later, the same authors introduced additional
training ingredients in [14] to further improve its performance.
Since the main structures of the two versions are the same, in our
work, we focus on reproducing the latest version of TCT-ColBERT.
The training steps of a TCT-ColBERT variant are summarised in
Figure 2. In the following, we introduce the main ingredients and
working principles of TCT-ColBERT.

Knowledge Distillation: TCT-ColBERT employs ‘soft labelling’
to achieve knowledge distillation from teacher to student, in that the
student model is trained to model the score outputs of the teacher,
rather than the (hard) labels. Let the probability distributions pro-
duced by teacher and student models be defined as follows:

eXP(‘/’q “Ya)

pl d,Dg) = 2
0; student (B) Zd'EDB exp (l//q . wd') ()

q _ exp(MaxSim(¢q, $4)/7)
Pé; teacher (4 Dg) = Zd’EDg exp(MaXSim(¢q, (ﬁdr)/l')’ ®)

where D g denotes a batch of documents from the training triples, 7
denotes the temperature hyperparameter, ¢g = {¢g,. . . ., ¢q,, } and
¢a =A{Pd,---> ¢d‘ d }. TCT-ColBERT is trained to force the student
model to mimic the probability distribution predicted by the teacher

https://github.com/castorini/pyserini/blob/master/docs/experiments-tct_colbert-v2.md

model, by minimising the KL divergence between the above two
distributions, as follows:

18]
— q q
L= Kups o @DB)IPG e (4.D8) (4)
i=1

In-Batching Negative Training: Additionally, the authors used
in-batch negatives to train TCT-ColBERT, treating the documents
for other queries in the batch as additional non-relevant (negative)
documents (7, 9, 15].

Hard Negative Sampling: Another trick used in TCT-ColBERT
is hard negative sampling, which can be described as the pink box
in Figure 2. In more detail, after obtaining the TCT-ColBERT model
trained using the standard MSMARCO:triples. train. small train-
ing triples, the authors produce the document embeddings for all
the documents in the collection using the saved checkpoint. They
then perform dense retrieval for each input query using the trained
TCT-ColBERT model on the built dense index. Finally, for each
query, hard negative instances are sampled from the top 200 re-
turned passages to create hard negative samples (denoted HN).
Indeed, as any effectiveness improvements obtained from training
with in-batch negatives is limited, existing work [25, 30, 32, 33]
have shown that more informative (harder) negative samples allow
to train a more effective dense retrieval model. Finally, HN+ denotes
distillation from the teacher trained used hard negatives, and using
the same hard negatives during distillation.

Student Model Initialisation: As the student model applies an
Average Pooling over the embedded representations, the student
model is initialised by taking the weights from the teacher model.
In this way, the student training does not need to learn from scratch
the layer weights inside the model, but instead just how to adjust
those weights to best address the new Average Pooling objective.
This explains the use of Pooling for the Bi-Encoder model structure,
rather than the embeddings of the [CLS] token, which are more
conventionally used.

Training Procedure: Figure 2 provides an overview of the train-
ing procedure and specific training setup for the TCT-ColBERT
model, which falls into three stages. In Stage 1, the teacher then the
student models are consecutively trained using the standard triple
samples: triples.train.small. Then, in Stage 2, TCT-ColBERT
employs a hard negative sampling technique to create the HN sam-
ples. Finally, in Stage 3, the teacher model and the student models
are further fine-tuned following the same steps as Stage 1, but using
the HN samples obtained in Stage 2. For both Stage 1 and Stage 3
training, the original work follows the following two training steps:
(I) fine-tune the ColBERT teacher model and save the trained Col-
BERT checkpoint after 500k training steps; (II) freeze the trained
teacher model and initialise the parameters of the student model
from the trained teacher model, then perform knowledge distilla-
tion. In essence, knowledge distillation is only a part of the overall
training procedure.

Index Floating Point Precision: From Table 5 in [14], we ob-
serve that the original work proposes to reduce the storage overhead
of the dense index by using half-precision values, i.e. 16 bits rather
than 32 bits. However, any impact on effectiveness is unreported.

Summary: As is clear from the above description and Figure 2,
TCT-ColBERT deploys a complex training procedure. Moreover,

from the original versions, the motivations or impacts of some of
these decisions remain unclear. For this reason, our reproducibility
work goes further than the last-metre re-evaluation of the output
artefacts, by additionally considering questions about the complete
TCT-ColBERT training process. In particular, by ablating (varying)
certain decisions, we draw more insights about which decisions are
necessary for effective retrieval not shown in the original paper.
For instance, the TCT-ColBERT [14] is trained using Google TPUs
for 500k batches with a batch size of 96 - are these considerable
resources necessary? Moreover, the necessity of the student model
initialisation remains unclear. By providing a deeper dive into TCT-
ColBERT, we aim to increase understanding of this interesting and
popular approach, and help others to build upon its key contribu-
tions. We describe in more details the questions tackled by this
work in the next section.

5 AIMS AND EXPERIMENTAL SETTINGS

The primary aim of this reproducibility paper are to reproduce and
replicate the core results of TCT-ColBERT [14]. We consider the
core results of the paper to be the dense passage retrieval results on
the TREC DL 2019 and MSMARCO Dev (small) querysets. We also
aim to meaningful and interesting ablations that were missing from
the original paper, such as those highlighted in Section 4 above.
In particular, we address the following “reproducibility questions”,
across last-metre, last-mile and complete perspectives:

o Last Metre: Can we reproduce the dense retrieval using released
query/doc vectors?

e Last Mile: Can we replicate TCT-ColBERT inference and retrieval
using only the released models?

o Last Mile: Can TCT-ColBERT function as a low-latency re-ranker?

o Last Mile: Is using half-precision floats a safe way to reduce the
dense index size?

e Complete: Can we reproduce first-stage training?

o Complete: Can we reproduce the results of the first training stage
in fewer training samples?

e Complete: What is the impact of initialising the student model
to the teacher?

e Complete: Can we reproduce hard negative training?

We address the last-metre, last-mile and complete reproducibility
questions respectively in Sections 6, 7 and 8. For all the experiments,
we use an RTX 3090 with 24GB GPU memory for indexing/retrieval
and an RTX A6000 with 48GB GPU memory for training, which
are more readily accessible than Google TPUs.

At the end of each result table, we provide a block indicating
which artefacts (e.g., trained models, datasets, evaluation tools)
contributed to the particular experiments, along with the baselines
and details about what (if any) ablation we perform. Table 1 lists
the source of each artefact. Sources can include the URL to the
artefact (sometimes including bash-style wildcards for brevity). The
hgf: prefix indicates models from the HuggingFace model repos-
itory. Given the lack of universally-standard naming convention
for datasets in IR, we use the identifiers from ir_datasets [18], with
an irds: prefix. We report performance using the same evaluation
measures used by the original paper (nDCG@10 and Recall@1000

Table 1: List of artefact sources.

a https://rgw.cs.uwaterloo.ca/JIMMYLIN-bucket0/pyserini-indexes/
dindex-msmarco-passage-tct_colbert-v2{,-hn,-hnp}-bf-*.tar.gz
b https://github.com/castorini/pyserini-data/blob/main/encoded-
queries/query-embedding-tct_colbert-v2{,-hn,-hnp}-msmarco-
passage-dev-subset-*.tar.gz
irds:msmarco-passage/trec-d1-2019
irds:msmarco-passage/dev/small
https://github.com/microsoft/MSMARCO-Passage-Ranking/blob/
master/ms_marco_eval.py
https://github.com/usnistgov/trec_eval
hgf:castorini/tct_colbert-v2-msmarco
hgf:castorini/tct_colbert-v2-hn-msmarco
hgf:castorini/tct_colbert-v2-hnp-msmarco
https://github.com/terrierteam/pyterrier_dr#inference
https://github.com/terrierteam/pyterrier_dr#indexing and
https://github.com/terrierteam/pyterrier_dr#retrieval
https://github.com/terrierteam/pyterrier_dr#training
https://github.com/castorini/tct_colbert/
MSMARCO train triples
ColBERT trained on MSMARCO triples, provided privately by [14]
ColIBERT trained on hard negatives, provided privately by [14]
Hard negative samples we generate from 9
hgf:bert-base-uncased

QU o

Y

A~ 0m

N Q™ o I I ~

[sic]® for ¢; MRR@10 and Recall@1000 for d). For ablations, we indi-
cate significant differences compared to the corresponding baseline.
We cannot report significance because we do not have the original
result files.

6 THE LAST METRE

We start our experiments by exploring the “last metre” of TCT-
ColBERT. Section 6.1 explores whether we can reproduce the main
results of the paper when we are provided with a built index and
pre-computed query vectors from the authors.

6.1 Can we reproduce the dense retrieval using
released query/doc vectors?

Given that, at the time of writing, nobody (aside from Lin et al.
[14]) had reported the reproduction of TCT-ColBERT (v2) retrieval,
we started by following the last-metre reproduction instructions
provided by the authors on Pyserini.” Note that the reproducibility
instructions provided only cover the results on MSMARCO Dev
(small), so this is the setting we pursue for this evaluation.

Table 2 presents the results of this reproducibility experiment.
We find that our reported results match those reported in the paper
in virtually all cases (our RR@10 results differed by a negligible
0.001). However, we note the highly-constrained “last-metre” repro-
duction setting here: we simply test the reproducibility of the FAISS
retrieval, the associated integration in the Pyserini package, and the
evaluation tool. Although it is not a given that this inference stage
will remain stable over time [13], witnessing reproduction at this
stage is far from a complete reproduction of the contributions of the
TCT-CoIBERT paper. The remainder of our experiments explore the
reproduction and conduct ablations beyond the last-metre setting.
Answer: We are able to reproduce the Dev (small) results for TCT-
ColBERT using pre-computed query vectors, pre-indexed document
vectors, and the authors’ retrieval code.

6 We found that [14] reports recall with a binary relevance cutoff of 1, a departure
from the standard practice [2, 3] of applying a cutoff at 2 for binary measures on

MSMARCO. To stay consistent with [14], we follow the same practice in this paper.
7 https://github.com/castorini/pyserini/blob/master/docs/experiments-tct_colbert-v2.md

Table 2: Last-meter reproduction: Dense retrieval from pre-
computed documents and vectors.

dev/small
Setting RR@10 R@ik
TCT-ColBERT
¢ Reported 0.344 0.967
Ours 0.344 0.967
TCT-ColBERT HN
¢ Reported 0.354 0.971
Ours 0.354 0.971
TCT-ColBERT HN+
¢ Reported 0.359 0.970
Ours 0.358 0.970

¢ Baselines: Values reported by Lin et al. [14] in Table 3. Matching Artefacts:
Toolkit: pyserini, Indexed document vectors®, Pre-computed query vectors?, Evalua-
tion Datad, Measurement Toolsef

7 THE LAST MILE

Given that we were able to reproduce the results of TCT-ColBERT
using pre-computed query and document vectors, the logical next
question is whether we can achieve the same inference results
when computing the query and document vectors ourselves. We
first conduct a reproduction study where we build alternative TCT-
ColBERT model inference, dense indexing, and dense retrieval code
(Section 7.1). We then use this as a platform to ablate settings that
were unexplored in the original paper: the effectiveness of TCT-
ColBERT for efficient re-ranking (Section 7.2), and its robustness
to more coarse-grained floating point encoding (Section 7.3).

7.1 Can we replicate TCT-ColBERT inference
and retrieval using only released models?

To answer this question, we conduct a reproduction study using
some of the artefacts produced by the paper (i.e., the released model
checkpoints), but with our own vector inference, indexing, and
dense retrieval implementations. This is an important step because
it allows us to establish (1) whether the released models can gener-
alise to another implementation, (2) whether the query and docu-
ment inference procedures can be replicated, and (3) whether our
implementation could potentially be suitable to replicate the train-
ing procedure (i.e., if it could not replicate inference, it is unlikely
that it would be able to replicate model training).

For this experiment, we use our own Python implementation
for query/document vector inference, and dense indexing/retrieval.
Our query and document encoder for TCT-ColBERT uses PyTorch
and HuggingFace Transformers [29] rather than those based on Ten-
sorFlow in Lin et al. [14]. In one case, we refer to the authors’ model
inference implementation to resolve a tokenisation discrepancy that
was unclear from the original paper.® Our dense indexing and re-
trieval implementations differed substantially from the FAISS-based
implementation used by Pyserini; we store the vector data directly
to disk as a file that can be memmapped by NumPy and PyTorch.
To score, a simple matrix multiplication is conducted. The PyTorch
8 Specifically, we found that the TCT-ColBERT implementation treats the
ColBERT [Q] and [D] prefixes each as three separate tokens (ie., ‘[, ‘Q,

and ‘1°), while the original ColBERT treats them as a single token. See
https://github.com/castorini/pyserini/blob/master/pyserini/dsearch/_dsearcher.py#L88

https://rgw.cs.uwaterloo.ca/JIMMYLIN-bucket0/pyserini-indexes/dindex-msmarco-passage-tct_colbert-v2{,-hn,-hnp}-bf-*.tar.gz
https://rgw.cs.uwaterloo.ca/JIMMYLIN-bucket0/pyserini-indexes/dindex-msmarco-passage-tct_colbert-v2{,-hn,-hnp}-bf-*.tar.gz
https://github.com/castorini/pyserini-data/blob/main/encoded-queries/query-embedding-tct_colbert-v2{,-hn,-hnp}-msmarco-passage-dev-subset-*.tar.gz
https://github.com/castorini/pyserini-data/blob/main/encoded-queries/query-embedding-tct_colbert-v2{,-hn,-hnp}-msmarco-passage-dev-subset-*.tar.gz
https://github.com/castorini/pyserini-data/blob/main/encoded-queries/query-embedding-tct_colbert-v2{,-hn,-hnp}-msmarco-passage-dev-subset-*.tar.gz
https://github.com/microsoft/MSMARCO-Passage-Ranking/blob/master/ms_marco_eval.py
https://github.com/microsoft/MSMARCO-Passage-Ranking/blob/master/ms_marco_eval.py
https://github.com/usnistgov/trec_eval
https://github.com/terrierteam/pyterrier_dr#inference
https://github.com/terrierteam/pyterrier_dr#indexing
https://github.com/terrierteam/pyterrier_dr#retrieval
https://github.com/terrierteam/pyterrier_dr#training
https://github.com/castorini/tct_colbert/
https://github.com/castorini/pyserini/blob/master/docs/experiments-tct_colbert-v2.md
https://github.com/castorini/pyserini/blob/master/pyserini/dsearch/_dsearcher.py#L88

Table 3: Last-mile reproduction: Inference and retrieval.

trec-d1-2019 dev/small

Setting nDCG@10 R@lk RR@10 R@i1k
TCT-ColBERT

¢ Reported 0.685 0.745 0.344 0.967

Ours 0.686 0.747 0.345 0.968
TCT-ColBERT HN

¢ Reported 0.705 0.765 0.354 0.971

Ours 0.710 0.765 0.356 0.972
TCT-ColBERT HN+

¢ Reported 0.719 0.760 0.359 0.970

Ours 0.721 0.762 0.359 0.970

¢ Baselines: Values reported by Lin et al. [14] in Table 3. Matching Artefacts:
Trained models9”?, Evaluation Data®?, Measurement Tools®/ Different Arte-
facts: Toolkit: PyTerrier, Model inference code’, Dense indexing/retrieval code®

implementation allows for scalable acceleration by incrementally
moving batches of document vectors from CPU memory to GPU
memory, and performing the scoring on GPU. This also allows us to
easily reuse the indices for re-ranking (as we explore in Section 7.2).
Table 3 presents the results of our replication experiment. The
reported results for TCT-ColBERT v2, HN, and HN+ correspond
with the results from rows 6, 8, and 9 from Table 3 in [14]. We find
that for all three models, our replication achieves at most a 0.005
difference across all metrics on both TREC DL 2019 and MSMARCO
dev (small), and always in favour of our implementation. These
results suggest that the released TCT-ColBERT models generalise
to an alternative inference implementation (both for documents
and queries), that our dense retrieval methods are correct, and that
our PyTorch-based inference implementation is potentially suitable
for model training.
Answer: We are able to replicate the TCT-ColBERT model infer-
ence using our own implementations for query/document vector
computation, dense indexing, and dense retrieval.

7.2 Can TCT-ColBERT function as a
low-latency re-ranker?

TCT-ColBERT was designed to operate in a dense retrieval set-
ting. However, this is not strictly necessary. MacAvaney et al. [16]
observed that one can use pre-computed document vectors for re-
ranking (albeit they explored it in the context of learned sparse
vectors, rather than learned dense vectors). This is advantageous
because scoring only a subset of candidate documents can be done
very inexpensively (around 4ms/query for 1000 documents from
our tests, under similar memory utilisation as FAISS-based dense
retrieval), while the most expensive parts of the process (sparse re-
trieval @ 9ms/query® and query vector computation @ 7ms/query)
can be done in parallel. This yields a total latency of only around
13ms/query — an order of magnitude faster than the 107ms/query
reported in [14] for full retrieval (which uses a brute force nearest
neighbour search on GPU).

With this potential benefit in mind, we conduct an ablation exper-
iment to test whether TCT-ColBERT is effective in a re-ranking set-
ting. We examine three different candidate document sets (each with

 Our latency measurements use PISA [21], a highly-optimised sparse retrieval
implementation.

Table 4: Ablation study: TCT-ColBERT as a Re-Ranker (RR).

trec-d1-2019 dev/small
Setting nDCG@10 A RR@10 A
TCT-ColBERT
¢ Dense Retrieval 0.686 0.345
RR (official) 0.690 +0.004 *0.338 -0.007
RR (BM25) 0.706 +0.020 0.344 -0.001
RR (d2q BM25) *0.725 +0.039 *0.349 +0.004
TCT-ColBERT HN
¢ Dense Retrieval 0.710 0.356
RR (official) 0.703 -0.007 *0.345 -0.011
RR (BM25) 0.718 +0.008 *0.352 -0.004
RR (d2q BM25) *0.732 +0.022 0.357 +0.001
TCT-ColBERT HN+
¢ Dense Retrieval 0.721 0.359
RR (official) 0.707 -0.014 *0.346 -0.013
RR (BM25) 0.734 +0.013 *0.353 -0.006
RR (d2q BM25) 0.734 +0.013 0.360 +0.001

¢ Baselines: “Ours” from Table 3 Artefacts: From Table3 ~ Ablation: Re-ranking
(instead of retrieval) * Significance: Compared to baseline, paired t-test (p < 0.05)

the top 1000 results): the official re-ranking set from MSMARCO,10
BM25 results retrieved with PyTerrier [19], and BM25 results over
passages expanded using Doc2Query-T5 [23] with PyTerrier. We
note that this ablation experiment is different from the “hybrid”
setting described in [14]. In particular, rather than using a lin-
ear combination of the scores (bm25 + tct_colbert), we use a
pipelined re-ranking approach (bm25 » tct_colbert), which can
yield substantially lower latency.

Table 4 provides the results for this ablation experiment. We ob-

serve that the official re-ranking results are the least effective, and
usually reduce the retrieval effectiveness. However, the BM25 and
doc2query rankings often actually improve the effectiveness, partic-
ularly on TREC DL 2019, where the model gains between 0.008 and
0.039 nDCG@10. This is an especially encouraging result, given that
the approach significantly reduces the query latency (107ms/query
down to 13ms/query). Figure 3 shows the re-ranking ablation result
plotted alongside various other ranking and re-ranking techniques.
We observe that the approach appears to extend the Pareto frontier
due to its very low latency, achieving high effectiveness and fast
retrieval. We further test the re-ranking approach using ANCE [30],
and observe an even more dramatic boost in effectiveness over
dense retrieval approaches (in grey), along with a similar low la-
tency.
Answer: We find that TCT-ColBERT also functions as an effective
re-ranker of the Doc2Query-T5 expanded passages, and, to the best
of our knowledge, results in a new Pareto-optimal result, with a
query latency of 13ms/query and a TREC DL 2019 nDCG@10 of
0.734 RR@10.

7.3 Is using half-precision floats a safe way to
reduce the dense index size?

Table 5 in [14] suggests reducing the precision of the document
representations from 32 bits (FP32) to 16 bits (FP16) in order to
reduce the storage overhead. However, the paper does not mention

10 Lin et al. [15] explored re-ranking the official set in the pre-print [15], but dropped
it in the published paper [14] (which featured new models).

0.80
TAS-B + d2q >> mT5 >> dT5|
0.75 1 d2q >> TCT-HN* 929 + TCT-HN *
o
. / TAS-B# TCT-HN* BM25 >> BERT
=) [}
= 0.70 A o
% d2q 3> ANCE Deeplmpact CoIBERT
o}
% 0.65 A ®
- ANCE
)]
b 4
8. 0.60
3
9 |
g 0.55 DeepcT —— Previous frontier
—— Pareto frontier
0.50 1. ® Reference points
BM25 P
Ours
0.45 T T T T
10! 10? 103 104
Latency (ms)

Figure 3: Pareto-optimality of TCT-ColBERT as a re-ranker.
A » B denotes a re-ranking of the results of A by B.

whether these reduced-precision values were used in the experi-
ments. The available downloadable indices? (used in Section 6.1)
suggest that the larger FP32 values were used in Lin et al. [14].
Given that reduced precision can result in more tied ranking scores
which can ultimately affect performance [31], we perform an abla-
tion experiment using FP16 indices. For this ablation experiment,
we downcast the computed query and document vectors from FP32
to FP16 using our dense retrieval implementation.

Table 5 provides our ablation results. We observe an interesting

trend: although the performance on TREC DL 2019 is largely unaf-
fected when using FP16, the RR@10 performance on Dev (small) is
consistently reduced (by 0.005). Upon closer inspection, we see that
FP16 resulted in considerably more tied scores than FP32 (around
97% of scores are tied when using FP16, compared to under 1% for
FP32). We further find that 86% of queries in the Dev (small) set
have a document ID above 7M (of around 9M total), while only
3% of queries in the train set do. Since our implementation (and
most retrieval and evaluation systems in general [12]) break ties by
document ID (ascending), this disadvantages our system. We were
able to correct the behaviour simply by shuffling the tied values
prior to evaluation (shuffle-ties). We also suspect that this property
could be used to “game” the leaderboard,!! by favouring passages
with a higher ID above those with a lower one. Indeed, we observe
that the ranking effectiveness increased by between 0.004-0.006
through this exploit (rev-ties) — though we firmly believe that
this technique should not be employed to artificially boost one’s
leaderboard placement.
Answer: We observe that using FP16 results in minimal changes to
ranking effectiveness, but it needs to be aligned with responsible
handling of ties (shuffling or similar) to avoid unfair comparisons
on the MSMARCO leaderboard.

8 COMPLETE REPRODUCTION

Given that our last-mile reproduction experiments were successful,
we now explore complete reproduction by training TCT-ColBERT

1 To the best of our knowledge, this is a previously unknown and undesirable bias of
MSMARCO. Exploiting this property does not bring any new scientific understanding
and is counter to the spirit of the MSMARCO coopetition. Nevertheless, we choose to
disclose this exploit so appropriate steps can be taken by the leaderboard owners.

Table 5: Ablation study: Floating point precision.

trec-d1-2019 dev/small

Setting nDCG@10 R@lk RR@10 R@i1k
TCT-ColBERT
¢ FP32 0.686 0.747 0.345 0.968
FP16 0.691 0.745 *0.340 0.968
FP16 (shuf-ties) 0.686 0.745 0.346 0.968
AFP16 (rev-ties) 0.683 0.745 *0.351 0.968
TCT-ColBERT HN
¢ FP32 0.710 0.765 0.356 0.972
FP16 0.709 0.765 *0.351 0.972
FP16 (shuf-ties) 0.709 0.765 0.355 0.972
AFP16 (rev-ties) 0.702 0.765 0.360 0.972
TCT-ColBERT HN+
¢ FP32 0.721 0.762 0.359 0.970
FP16 0.720 0.761 *0.354 0.970
FP16 (shuf-ties) 0.716 0.761 0.358 0.970
AFP16 (rev-ties) 0.712 0.761 *0.366 0.970

¢ Baselines: “Ours” from Table 3 Artefacts: From Table 3 Ablation: FP16
scoring (rather than dense FP32) * Significance: Compared to baseline, paired
t-test (p < 0.05) A Note: Lines marked with A use a newly-discovered exploit
in the MSMARCO ranking dataset, and should not be considered valid in terms of
leaderboard performance.

models and Bi-Encoder baseline. We begin by exploring training
that does not involve hard negatives (Section 8.1) and then perform
ablations that explore the amount of training data required (with the
goal of reducing the cost of training, Section 8.2) and test the effect
of student model initialisation (Section 8.3). Finally, we test whether
we can reproduce the hard negative training process (Section 8.4).
The experiments in this section focus on unanswered questions
pertaining directly to the methodology of the original paper. This
leaves adjacent studies, such as generalisability to other datasets
and the stability over initial conditions!? to future works.

8.1 Can we reproduce first-stage training?

We first explore whether we can reproduce the main results of the
models that do not make use of hard negatives during the training
process — namely the directly-supervised Bi-Encoder model and the
plain, distilled TCT-ColBERT model. We conduct two sets of experi-
ments: one using the released training implementation, and another
using a training implementation that we wrote independently (with
the goal of achieving replication). During this process, we make use
of the trained ColBERT teacher model that the authors privately
shared with us, both for model initialisation (both models) and as the
teacher itself (for the TCT model). In the pursuit of achieving com-
plete reproduction, we also include a version where we first train
the teacher model using the released code, before proceeding to
TCT training. We reduce all batch sizes to 32 (from the 96 used in the
original paper), based on what we could fit into our GPU’s memory.

Table 6 presents the results of our first-stage training reproduc-
tion experiment. We find that when we use the (TensorFlow-based)
training code provided by the authors and their trained teacher,
we are able to achieve a performance that is on par with what was
reported for the TCT-ColBERT (without hard negatives), but not
12 An example is stability over random seeds, which is frequently left untested in IR

literature, and when it has been studied, hasn’t shown to have a strong impact on
results [7].

Table 6: Reproduction study: Single-stage model training.

trec-d1-2019 dev/small

Setting nDCG@10 R@lk RR@10 R@ilk
Bi-Encoder
¢ Reported 0.626 0.658 0.310 0.945
Ours, their impl 0.614 0.661 0.282 0.940
Ours, our impl. 0.607 0.632 0.292 0.928
TCT-ColBERT

¢ Reported 0.685 0.745 0.344 0.967
Ours, their impl. 0.698 0743 0.348 0.969

+ train teacher 0.545 0.637 0.270 0.924
Ours, our impl. 0.623 0.631 0.312 0.945

¢ Baselines: Values reported by Lin et al. [14] in Table 2. Matching Artefacts:
Training code (“their impl”)™, Evaluation Data®?, Measurement Tools®/, Training
Data”, Teacher® Different Artefacts Toolkit: PyTerrier, Training code!, Model
inference code’, Dense indexing/retrieval code®

for the Bi-Encoder model. Variations of the approaches were un-
successful, however. Training the teacher model ourselves resulted
in a very poor performance. Further, our own (PyTorch-based)
implementation of the training procedure is unable to achieve com-
parable performances to the originally reported results. This is
despite the effectiveness of our model inference implementation
(as demonstrated throughout Section 7) and considerable time and
effort attempting to diagnose and resolve differences between our
implementation and theirs. Given the lack of success completely
replicating the training process in the most basic condition, we do
not seek any further replication efforts of TCT-ColBERT in this pa-
per, and instead focus on reproduction using the available artefacts.
Answer: We are able to successfully reproduce TCT-ColBERT per-
formance (without hard negatives), to a reasonable approximation
when using the authors’ training code and trained teacher model.
However, we are unsuccessful when training the Bi-Encoder model,
when training the TCT-ColBERT using our own teacher model, and
when writing our own training implementation.

8.2 Can we reproduce first-stage training using
fewer training iterations?

Although we are successful in reproducing the first-stage training
procedure using the authors’ released code in Section 8.1, the pro-
cess is extremely expensive. On our modern GPU, the training pro-
cess (for 500k batches) takes roughly 60 GPU hours. Although the
process was likely faster for the authors on a TPU, these resources
are often not practically available to research teams. However, we
postulate that their models are likely trained longer than necessary.
After all, the necessary batch size reduction used in Section 8.1
meant that the model encountered only 1/3 the number of training
samples than the original model did (since we keep the number of
training iterations constant!?). To test whether the models could
be trained effectively using considerably less compute, we conduct
an ablation study on both Bi-Encoder and TCT-ColBERT models,
using the authors’ training implementation, where we check model
performances at only 1/2 (250k), 1/5 (100k), and 1/10 (50k) of the
number of training iterations.

13 For a potentially fairer comparison, we considered adjusting the number of training
iterations and applying gradient accumulation accordingly. However, the prospect of
training a single model taking over a week was unsavoury.

Table 7: Ablation study: Number of training steps.

trec-d1-2019 dev/small

Setting nDCG@10 R@lk RR@10 R@ik
Bi-Encoder
¢ 500k batches 0.614 0.661 0.282 0.940
250k batches 0.564 *0.613 *0.263 *0.931
100k batches *0.539 0.644 0.280 0.938
50k batches *0.544 0.669 *0.269 0.936
TCT-ColBERT
¢ 500k batches 0.698 0.743 0.348 0.969
250k batches 0.685 0.737 *0.345 0.967
100k batches 0.685 0.737 0.346 0.967
50k batches 0.680 0.737 *0.344 *0.966

¢ Baselines: “Ours, their impl” from Table 6 ~ Artefacts: From Table 6 Ablation:
Reducing the number of training iterations for faster training. * Significance: Com-
pared to baseline, paired t-test (p < 0.05)

We present the results of our ablation experiment in Table 7. We
find that for both models, the full training regime (500k steps) al-
ways yielded the highest performance in absolute terms. However,
the differences between 500k and fewer steps are not always statis-
tically significant and there are moderate fluctuations — especially
for the Bi-Encoder model. These results suggest that an early stop-
ping approach over validation data could be employed (though this
process itself would add computational overhead to the training
process). Finally, we note that, at least, our Bi-Encoder models may
actually be under-trained, given that their highest performance is
at the end of their training process.

Answer: Comparable performance can be achieved in some mea-
sures at earlier stages in the training, but for best overall perfor-
mance across measures, the full 500k training steps are necessary.

8.3 What is the impact of initialising the
student model to the teacher?

Another setting not explored by the original authors is the initialisa-
tion of the student model weights to those of the teacher model. We
perform an ablation experiment to fill in a gap in understanding the
effect of this decision. Simply, we train versions of the Bi-Encoder
and TCT-ColBERT models that we successfully reproduced above,
but initialise the weights to those from bert-base-uncased, rather
than the teacher model. Table 8 presents results for this ablation
experiment. We observe that using the teacher’s weights to ini-
tialise the model has little effect on model performance - both for
the Bi-Encoder model and TCT-ColBERT. This suggests that the
experimental setup can be simplified by eliminating this step.
Answer: Teacher weight initialisation does not affect performance
in a direct supervision or distillation setting.

8.4 Can we reproduce hard negative training?

Finally, we explore whether we can reproduce the process of TCT-
ColBERT training using hard negatives. Given that we are unable
to reproduce the teacher model training (Section 8.1), we train
using a version of the teacher model provided by the authors that
was fine-tuned on their hard training triples. However, the authors
were unable to provide their hard triples file, so we attempt to re-
create it using our implementation (which we verified as effective

Table 8: Ablation study: Model initialisation.

trec-d1-2019 dev/small

Setting nDCG@10 R@lk RR@10 R@ilk
Bi-Encoder
¢ Teacher Init 0.614 0.661 0.282 0.940
BERT Base” 0.620 0.667 0.282 0.942
TCT-ColBERT
¢ Teacher Init. 0.698 0.743 0.348 0.969
BERT Base” 0.696 0.740 0.348 0.968

¢ Baselines: “Ours, their impl” from Table 6 ~ Artefacts: From Table 6
Ablation: Change model initialisation from teacher to”. * Significance: Compared
to baseline, paired t-test (p < 0.05); no sig. differences observed

in Section 7.1). As an ablation of this approach, we also train a
version instead using the MSMARCO’s triples (but with a teacher
fine-tuned on hard negatives) to test whether the enhanced teacher
alone is sufficient for producing a more effective model. All training
is conducted using the original TCT-ColBERT code™.

Table 9 presents the results of this experiment. We find that when
using the hard negatives that we generated ourselves, the model
is unable to achieve the performance reported. This observation
suggests that, potentially, the same set of training triples is required
by both the student and teacher to achieve maximal results. Our
ablation using the official MSMARCO triples provides further evi-
dence of this; the stronger teacher provides virtually no change in
precision (see Table 6, nDCG@10 of 0.698 vs. 0.705, RR@10 of 0.348
vs. 0.345) and harms recall (0.743 vs 0.705), compared to the teacher
trained on official MSMARCO triples. We recognise that further
experiments may be warranted to provide stronger evidence of this
claim, but given the considerable expense of training these models,
we do not pursue this direction further.

Answer: Hard negative training can help, but we find some evi-
dence that when the teacher is trained on hard negatives, the same
sequence of hard negatives should be used during model distillation.

9 CONCLUSIONS

In this work, we inspect the reproducibility and replicability of
TCT-ColBERT. In particular, we address reproducibility questions
from three perspectives to reproduce TCT-ColBERT, namely the
last-metre, last mile and complete. Based on the last-metre experi-
ments, we claim that we can replicate the model performance using
the released query/doc vectors. We further conduct several abla-
tions that were missing from the original work in the last-mile
experiments and find that (a) TCT-ColBERT can function as an
inexpensive effective re-ranker; and (b) index size can be reduced
with the low-precision floating point but needs to be aligned with
responsible handling of ties. Finally, from the complete reproduc-
tion experiments, we conclude that (a) TCT-ColBERT does benefit
from longer training durations; and (b) performing student model
initialisation from the teacher does not necessarily to lead a bet-
ter TCT-ColBERT model. Overall, while we are able to reproduce
and replicate results from last-metre and last-mile perspectives,
complete reproduction of the core results remains a challenge -
particularly for the most effective “HN+” model variant.

Table 9: Reproduction/ablation study: Hard negative models.

trec-d1-2019 dev/small

Setting nDCG@10 R@lk RR@10 R@i1k
TCT-ColBERT HN+

¢ Reported 0.721 0.762 0.359 0.970

Ours 0.712 0.725 0.353 0.962

+ MSMARCO triples 0.705 0.712 0.345 0.964

¢ Baselines: Values reported by Lin et al. [14] in Table 3. Matching Artefacts:
Training code™, Evaluation Data®?, Measurement Tools¢/, Teacher? Different
Artefacts Toolkit: PyTerrier, Model inference code’, Dense indexing/retrieval codeX,
Training Data? Ablation: Teacher trained on hard negatives?, but distilling using
MSMARCO triples™ * Significance: Comparing “Ours” with “+ MSMARCO triples®,
paired t-test (p < 0.05)

ACKNOWLEDGEMENTS

We thank the authors of TCT-ColBERT for providing their teacher
checkpoints, Sasha Petrov for assistance with TensorFlow, and
anonymous reviews for helpful feedback.

Xiao Wang acknowledges support by the China Scholarship
Council (CSC) from the Ministry of Education of P.R. China. Sean
MacAvaney, Craig Macdonald and Iadh Ounis acknowledge EP-
SRC grant EP/R018634/1: Closed-Loop Data Science for Complex,
Computationally- & Data-Intensive Analytics.

REFERENCES

[1] Timo Breuer, Nicola Ferro, Maria Maistro, and Philipp Schaer. 2021. repro_eval: A
Python Interface to Reproducibility Measures of System-Oriented IR Experiments.
In Proceedings of ECIR. 481-486.

[2] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2021. Overview
of the TREC 2020 Deep Learning Track. In Proceedings of TREC.

[3] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M
Voorhees. 2020. Overview of the TREC 2019 Deep Learning Track. In Proceedings
of TREC.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of ACL. 4171-4186.

[5] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. A White
Box Analysis of ColBERT. In Proc. ECIR. 257-263.

[6] Sebastian Hofstétter, Sophia Althammer, Michael Schroder, Mete Sertkan, and
Allan Hanbury. 2020. Improving Efficient Neural Ranking Models with Cross-
architecture Knowledge Distillation. arXiv preprint arXiv:2010.02666 (2020).

[7] Sebastian Hofstétter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan
Hanbury. 2021. Efficiently Teaching an Effective Dense Retriever with Balanced
Topic Aware Sampling. In Proceedings of SIGIR. 113-122.

[8] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale Similarity

Search with GPUs. In IEEE Transactions on Big Data. 535-547.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Dangi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-

Domain Question Answering. In Proceedings of EMNLP. 6769-6781.

Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage

Search via Contextualized Late Interaction over BERT. In Proceedings of SIGIR.

39-48.

[11] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2021. Pretrained Transformers
for Text Ranking: BERT and Beyond. In Synthesis Lectures on Human Language
Technologies. 1-325.

[12] Jimmy Lin and Peilin Yang. 2019. The Impact of Score Ties on Repeatability in
Document Ranking. In Proceedings of SIGIR. 1125-1128.

[13] Jimmy Lin and Qian Zhang. 2020. Reproducibility is a Process, not an Achieve-
ment: The Replicability of IR Reproducibility Experiments. In Proceedings of ECIR.
43-49.

[14] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2021. In-batch Negatives

for Knowledge Distillation with Tightly-coupled Teachers for Dense Retrieval.

In RepL4NLP-2021 Workshop. 163-173.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy J. Lin. 2020. Distilling Dense Rep-

resentations for Ranking using Tightly-Coupled Teachers. ArXiv abs/2010.11386

(2020).

Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli

Goharian, and Ophir Frieder. 2020. Expansion via Prediction of Importance with

[

[10

[15

[16

[17]

(18]

[19

[20]

[
=

[22

[23]

[24

[25]

Contextualization. In Proceedings of SIGIR. 1573-1576.

Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. 2019. CEDR:
Contextualized Embeddings for Document Ranking. In Proceedings of SIGIR.
1101-1104.

Sean MacAvaney, Andrew Yates, Sergey Feldman, Doug Downey, Arman Co-
han, and Nazli Goharian. 2021. Simplified Data Wrangling with ir_datasets. In
Proceedings of SIGIR. 2429-2436.

Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, and Iadh Ounis. 2021.
PyTerrier: Declarative Experimentation in Python from BM25 to Dense Retrieval.
In Proceedings of CIKM. 4526-4533.

Craig Macdonald, Nicola Tonellotto, and Iadh Ounis. 2021. On Single and Multiple
Representations in Dense Passage Retrieval. In IIR 2021 Workshop.

Antonio Mallia, Michal Siedlaczek, Joel Mackenzie, and Torsten Suel. 2019. PISA:
Performant Indexes and Search for Academia. In Proceedings of OSIRRC. 50-56.
Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019. From Doc2query to
DocTTTTTquery. Online preprint (2019).

Association of Computing Machinery. 2020. Artifact Review and Badg-
ing. https://www.acm.org/publications/policies/artifact-review-and-badging-
current.

Yinggi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxi-
ang Dong, Hua Wu, and Haifeng Wang. 2021. RocketQA: An Optimized Training
Approach to Dense Passage Retrieval for Open-Domain Question Answering. In

[26

[27

(28]

[29

[30

[31

[32

[33

]

]

]

Proceedings of NAACL. 5835-5847.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei
Zaharia. 2021. ColBERTv2: Effective and Efficient Retrieval via Lightweight Late
Interaction. arXiv preprint arXiv:2112.01488 (2021).

Nicola Tonellotto and Craig Macdonald. 2021. Query Embedding Pruning for
Dense Retrieval. In Proceedings of CIKM. 3453-3457.

Xiao Wang, Craig Macdonald, and Nicola Tonellotto. 2021. Pseudo-Relevance
Feedback for Multiple Representation Dense Retrieval. In Proceedings of ICTIR.
297-306.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2020. Transformers: State-of-the-art Natural Language Processing. In Proceedings
of EMNLP. 38-45.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. In Proceedings of ICLR.
Ziying Yang, Alistair Moffat, and Andrew Turpin. 2016. How Precise Does
Document Scoring Need to Be?. In Proceedings of AIRS. 279-291.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.
2021. Jointly Optimizing Query Encoder and Product Quantization to Improve
Retrieval Performance. In Proceedings of CIKM. 2487-2496.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.
2022. Learning Discrete Representations via Constrained Clustering for Effective
and Efficient Dense Retrieval. In Proceedings of WSDM. 1328-1336.

	Enlighten Accepted coversheet (ACM Statement)
	268399
	Abstract
	1 Introduction
	2 Background
	2.1 Multiple representation Dense Retrieval
	2.2 Single representation Dense Retrieval

	3 A Framework for Multi-Stage Reproduction and Ablation
	4 TCT-ColBERT
	5 Aims and Experimental Settings
	6 The Last Metre
	6.1 Can we reproduce the dense retrieval using released query/doc vectors?

	7 The Last Mile
	7.1 Can we replicate TCT-ColBERT inference and retrieval using only released models?
	7.2 Can TCT-ColBERT function as a low-latency re-ranker?
	7.3 Is using half-precision floats a safe way to reduce the dense index size?

	8 Complete Reproduction
	8.1 Can we reproduce first-stage training?
	8.2 Can we reproduce first-stage training using fewer training iterations?
	8.3 What is the impact of initialising the student model to the teacher?
	8.4 Can we reproduce hard negative training?

	9 Conclusions
	References

