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ABSTRACT
Session-based recommendation (SBR) aims at the next-item predic-
tion with a short behavior session. Existing solutions fail to address
two main challenges: 1) user interests are shown as dynamically
coupled intents, and 2) sessions always contain noisy signals. To
address them, in this paper, we propose a hypergraph-based solu-
tion, HIDE. Specifically, HIDE first constructs a hypergraph for
each session to model the possible interest transitions from distinct
perspectives. HIDE then disentangles the intents under each item
click in micro and macro manners. In the micro-disentanglement,
we perform intent-aware embedding propagation on session hyper-
graph to adaptively activate disentangled intents from noisy data.
In the macro-disentanglement, we introduce an auxiliary intent-
classification task to encourage the independence of different in-
tents. Finally, we generate the intent-specific representations for
the given session to make the final recommendation. Benchmark
evaluations demonstrate the significant performance gain of our
HIDE over the state-of-the-art methods.
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1 INTRODUCTION
Recommender systems play critical roles in helping users discover
items on e-commerce platforms. However, in real-world scenarios,
user profiles and long-term historical interactions are usually not
available [31], resulting inferior performance of traditional recom-
mendation approaches [4, 10, 24]. Hence, session-based recommen-
dation (SBR) [11], focusing on predicting users’ next interacted
items based on short anonymous behavior sequences (sessions),
has attracted broad attention in the community.

The existing works of SBR can be principally divided into three
types: conventional models, sequential-based models, and GNN-
based models [9]. Conventional models [23, 25] rely on item
co-occurrences but neglect the sequential patterns. Sequential-
based methods [11, 16, 18] model the items in chronological order
with GRU [6] or attention layers [27]. Recently, Graph Neural Net-
works (GNN) [26] have been getting increasing attention in SBR. In
particular, GNN-based methods represent each session as a graph
to consider the relations of items, which further fall into two cate-
gories: normal graph (NG) and hypergraph (HG) [1]. Specifically,
NG-based methods [31, 32] model the session as directed item-item
graph to capture the item correlations; HG-based methods [33]
regard the item transitions as high-order relations (item transition
is often triggered by the joint effect of previous item clicks) and
introduce hypergraph to model the high-order relations. However,
these existing works commonly concentrate on how to model the
item transitions, with two unresolved challenges as follows.

• User interests are dynamic andmade up of coupled intents.
The item transitions in a session reveal the user’s dynamic inter-
ests, and each item click can be regarded as the result of coupled
intents. For example, user clicks an iPhone probably because
he/she is an Apple fan or he/she just wants to buy a smartphone.

• Session contains both user interests and noisy signals. In
SBR, a user may accidentally click on items that are not interested.
Suppose a session for a certain user, iPhone → iPad → milk →
AirPods. Obviously, milk may be a noisy sample that clicked by
mistake which may affect the modeling of the user’s real interests.

To tackle these challenges, we propose Hypergraph neural net-
works with Intent DisEntanglement (HIDE). In particular, we first
convert each session sequence into a hypergraph [8], encoding
the possible high-order interest transitions with multiple types of
hyperedges from distinct perspectives. Then, to address the coupled
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intents in the user’s dynamic interests, we propose to disentangle
the intents under each item click in both micro and macro man-
ners. For the micro-disentanglement, we slice each item embedding
into disentangled chunks (each chunk corresponds to a specific
intent) and then separately perform intent-aware embedding prop-
agation to learn the disentangled intent in each item click. For the
macro-disentanglement, we introduce an auxiliary learning task of
intent classification to ensure the independence of the disentangled
chunks. Finally, we unify the recommendation task and the intent
classification task under a primary&auxiliary learning framework
and jointly optimize them for better recommendation and intent
disentanglement.

To sum up, the main contributions of our paper are as follows.
• We develop HIDE to 1) capture the high-order interest transitions
with hypergraph and 2) activate user’s core preferences under
different intents with intent disentanglement.

• We perform intent-aware attentive convolution on each session
hypergraph to generate disentangled intent chunks (micro in-
tent disentanglement) , and further unify two tasks (recommen-
dation and intent classification) to encourage the independence
of different intents (macro intent disentanglement).

• Extensive experiments on benchmark datasets show HIDE has
overwhelming superiority over the state-of-the-art methods.

2 PRELIMINARIES
2.1 Problem Statement
Let V = {𝑣1, 𝑣2, ..., 𝑣𝑚} denote the set of items where 𝑚 is the
number of items. A session 𝑠 can be denoted as an item-click se-
quence 𝑠 = [𝑣𝑠,1, 𝑣𝑠,2, ..., 𝑣𝑠,𝑛], which ordered by the timestamps,
where 𝑣𝑠,𝑖 ∈ V is the item clicked in 𝑠 and 𝑛 is the session length.
Given a session 𝑠 , SBR aims to predict the next interaction 𝑣𝑠,𝑛+1.
The recommendation model generates preference scores for all the
items in V and selects top-K preferred items to make the final
recommendation.

2.2 Hypergraph
Hypergraph [1] introduce a special kind of edge (can connect more
than two nodes), hyperedge, to capture high-order relations. For-
mally, a hypergraph can be formulated as G = (V, E), where V
and E denote the set of nodes and hyperedges, respectively. The
hyperedge 𝑒 ∈ E can be denoted as 𝑒 = {𝑣𝑖1 , 𝑣𝑖2 , ..., 𝑣𝑖𝑘 } ⊆ V , and
thus hyperedge can be regarded as a subset of node set V .

3 METHODOLOGY
In this section, we first introduce the initialization of intent-aware
embedding for each item and then show how to construct a session
hypergraph for each session from distinct perspectives. After that,
we represent how to generate disentangled item embeddings with
micro-and macro-disentanglement. Finally, we describe how to
predict the next item and optimize the HIDE model.

3.1 Intent-Aware Embedding
As discussed above, existing SBR methods [22, 31–33] embed the
items into the same embedding space, which fails to capture disen-
tangled user intents. Distinct from those methods, we slice the item

embeddings into 𝐾 chunks, coupling each chunk with a certain
user intent. For each item 𝑣𝑖 ∈ V , its intent-aware embedding is ini-
tialized as h𝑣𝑖 = (h1𝑣𝑖 , h

2
𝑣𝑖
, ..., h𝐾𝑣𝑖 ), where h𝑣𝑖 ∈ R

𝑑 is the embedding
of 𝑣𝑖 and 𝑑 denotes the embedding size. h𝑘𝑣𝑖 ∈ R

𝑑
𝐾 is 𝑣𝑖 ’s chunked

representation under 𝑘-th intent. Obviously, the 𝑘-th chunk of all
items are in the same 𝑘-th subspace, which indicates a certain user
intent. For 𝑘-th subspace, we build an intent prototype (serves as
the center of the corresponding subspace), by clustering the 𝑘-th
chunk of all items, denoted as h𝑘𝑝 = Mean(h𝑘𝑣𝑖 |𝑣𝑖 ∈ V).

3.2 Session Hypergraph Construction
In SBR, the item transitions are many-to-many and thus high-order
since the current item click is often triggered by the joint effect of
previous item clicks. Moreover, the contextual relations of items
and the similarity of items under certain intent are also high-order.
To accurately capture the above high-order relations, we propose
to construct a hypergraph G𝑠 = (V𝑠 , E𝑠 ) for each session 𝑠 , where
node set V𝑠 ⊆ V consists of the clicked items in session 𝑠 and
E𝑠 denotes the hyperedge set. As Figure 1 (a) shows, we construct
three types of hyperedges to capture the high-order item relations
from three distinct perspectives as follows.
a) Transition Hyperedges E𝑡𝑠 . The relative chronological order of
item transitions is demonstrated the key factor to SBR [11, 32]. To
maintain the item-transitions order in each session, as Figure 1 (a)
shows, for item 𝑣2, we connect its incoming items {𝑣1, 𝑣2, 𝑣3} with
a hyperedge, which reveals the high-order correlation of items that
facilitate the click on 𝑣2.
b) ContextHyperedges E𝑐𝑠 . Since sequential context depicts user’s
latent interests [28], we utilize𝑤-size sliding window on item se-
quence to capture local interest. Then the items in window are
connected by hyperedges, such as 𝑒 = {𝑣1, 𝑣2} ∈ E𝑐𝑠2 when 𝑤 = 2.
Obviously, with various window sizes, we can obtain user’s local
interests from different granularities. Finally, we gather hyperedges
from different sliding windows as E𝑐𝑠 = ∪𝑊

𝑤=1E
𝑐
𝑠𝑤

.
c) Intent Hyperedges E𝑖𝑠 . The items under different intents tend to
have different similarities. For example, iPhone and iPad are similar
under the intent of Apple brand while irrelevant under the intent
of buying a smartphone. Hence, we construct intent hyperedges
to capture intent-specific item correlations based on intent proto-
types. For the 𝑘-th intent, we first calculate the cosine similarity
between the 𝑘-th intent prototype and item 𝑣𝑖 ∈ V𝑠 , denoted as
𝑆𝑘𝑖 = cos(h𝑘𝑝 , h𝑘𝑣𝑖 ). We then regard each intent as a hyperedge that
connects the top-𝜀𝑛 items according to 𝑆𝑘𝑖 , where 𝑛 is the item
number in session, and 𝜀 controls the sparsity of hyperedge.

We gather the above three types of hyperedges to generate the
hyperedge set of session 𝑠 as E𝑠 = E𝑡𝑠∪E𝑐𝑠 ∪E𝑖𝑠 . Note that we remove
the redundant overlapping hyperedges during the gathering.

3.3 Micro-disentanglement
Session data always contains noisy signals such as items clicked by
mistake, which may confuse the recommendation model. Luckily,
the intents provide an opportunity to filter out noises, since intents
under item clicks in each session are more stable. For example, the
intent of session iPhone → iPad → Macbook → AirPods may be
Apple brand. Hence, it will be easier to detect the items clicked by
mistake as noise from the intent perspective. To sufficiently capture
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Figure 1: Illustration of the session hypergraph construction (a) and the general architecture of HIDE model (b).

user intents, we propose to disentangle 𝐾 distinct user intents with
𝐾 parallel intent-aware encoders in a micro manner, where each
encoder separately captures a certain intent.
Intent-aware Encoder. To ensure the encoder only captures one
aspect of intent, we propose to perform propagation on intent-
specific sub-hypergraph with corresponding intent chunks of items.
For each session 𝑠 , its sub-hypergraph under𝑘-th intentG𝑘𝑠 contains
all the transition and context hyperedges but only involves the
intent hyperedge under 𝑘-th intent. As for the node features, we
only take the 𝑘-th chunk for each item as the input of the encoder.
Inspired by [7, 28], we propose hypergraph attentive convolution
(HGAConv) to learn intent-specific chunks for items on intent-
specific sub-hypergraph G𝑘𝑠 , which contains node to hyperedge (n2e)
and hyperedge to node (e2n) propagation.

1) Node to hyperedge (n2e). Some nodes connected by a hyper-
edge reveal intents, but others may be noise. Therefore we aggre-
gate the nodes 𝑣𝑜 with attention mechanism [27] to obtain the
corresponding hyperedge feature f𝑘

𝑗
under 𝑘-th intent, denoted as

f𝑘
𝑗
= AGG𝑛2𝑒

(
𝛼𝑘
𝑗𝑜
h𝑘𝑣𝑜 |𝑣𝑜 ∈ 𝑒 𝑗

)
, where AGG𝑛2𝑒 is the aggregation

function (we use SUM here) and 𝛼𝑘
𝑗𝑜

denotes the attention coeffi-
cient of node 𝑣𝑜 in hyperedge 𝑒 𝑗 . To calculate it, we assume that
the nodes connected by hyperedge 𝑒 𝑗 can form a cluster and then
calculate the cluster’s average as h𝑘𝑐 𝑗 = Mean(h𝑘𝑣𝑜 |𝑣𝑜 ∈ 𝑒 𝑗 ). Since
nodes close to the cluster center are more likely to be core intents,
we calculate attention scores as follows,

𝛼𝑘𝑗𝑜 =
exp(LeakyReLU(q𝑘1

⊤ (h𝑘𝑐 𝑗 ⊙ h𝑘𝑣𝑜 )))∑
𝑣𝑜′∈𝑒 𝑗 exp(LeakyReLU(q

𝑘
1
⊤ (h𝑘𝑐 𝑗 ⊙ h𝑘𝑣𝑜′ )))

, (1)

where q𝑘1 ∈ R
𝑑
𝐾 is the attention vector under the 𝑘-th intent and ⊙

denotes the Hadamard product.
2) Hyperedge to node (e2n). Given the hyperedge features, we can

further update node chunk-embedding under 𝑘-th intent as h𝑘𝑣𝑖
′
=

AGG𝑒2𝑛
(
𝛽𝑘
𝑖 𝑗
f𝑘
𝑗
|𝑒 𝑗 ∈ E𝑠𝑣𝑖

)
, where h𝑘𝑣𝑖

′ is the output feature of node

𝑣𝑖 and 𝛽𝑘𝑖 𝑗 is the attention coefficient of hyperedge 𝑒 𝑗 on node 𝑣𝑖 in𝑘-
th intent. Here E𝑠𝑣𝑖 is the set of hyperedges that connected to 𝑣𝑖 . For

each node 𝑣𝑖 , we generate query representation as h𝑘𝑞𝑣𝑖 = h𝑘𝑣𝑖 + s𝑘 ,
where s𝑘 is the average 𝑘-th intent feature of items in session s.
Since hyperedges that match the intent of the current session and
current item click will be more favorable (assigned with larger
weights), we calculate the query-aware attention score as follows,

𝛽𝑘𝑖 𝑗 =
exp(LeakyReLU(q𝑘2

⊤ (h𝑘𝑞𝑣𝑖 ⊙ f𝑘
𝑗
)))∑

𝑒 𝑗′∈E𝑠𝑣𝑖
exp(LeakyReLU(q𝑘2

⊤ (h𝑘𝑞𝑣𝑖 ⊙ f𝑘
𝑗′ )))

, (2)

where q𝑘2 ∈ R
𝑑
𝐾 is the attention vector for the 𝑘-th intent.

With the 𝐾 intent-aware encoders, we can obtain the intent-
specific chunks (h1𝑣𝑖

′
, h2𝑣𝑖

′
, ..., h𝐾𝑣𝑖

′) for each item 𝑣𝑖 in any given
session with the micro-disentanglement.

3.4 Macro-disentanglement
To avoid the redundancy among intent-aware chunked represen-
tations, we should encourage the intent-aware chunks to be inde-
pendent of the macro perspective. Existing works [20, 29] simply
regularize the independence in an unsupervised way, which has
been demonstrated insufficient to capture semantics [19]. Different
from it, we formulate the macro-disentanglement as an intent classi-
fication task. Specifically, we predict the intent class with the intent
chunks of items {h𝑘𝑣𝑖

′ |𝑣𝑖 ∈ V𝑠 } in the given session 𝑠 , denoted as,

𝑦̂
𝑝
𝑠 = Softmax(MLP( {h𝑘𝑣𝑖

′ |𝑣𝑖 ∈ V𝑠 })), (3)

where 𝑦𝑝𝑠 denotes the predicted probability for all intents and MLP
is the one-layer multilayer perceptron. The loss function of intent
classification can be formulated as follows,

L𝑠
𝑑
= −

∑︁𝐾

𝑘=1
1𝑝=𝑘 log(𝑦̂

𝑝

𝑠𝑘
), (4)

where 1𝑝=𝑘 is an indicator function, taken to be 1 when the pre-
dicted intent label is correct.

3.5 Session Generation and Prediction
Given a session 𝑠 = [𝑣𝑠,1, 𝑣𝑠,2, ..., 𝑣𝑠,𝑛], we have the disentangled
intent-specific chunks for each item 𝑣𝑠𝑖 as (h1𝑣𝑠𝑖

′
, h2𝑣𝑠𝑖

′
, ..., h𝐾𝑣𝑠𝑖

′).
Following GCE-GNN [31], the reversed position embeddings are
introduced to learn the corresponding weights of items under each
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Table 1: Statistics of datasets (★ denotes session number).
Dataset #Clicks #Train★ #Test★ #Items Average length

Tmall 818,479 351,268 25,898 40,728 6.69
Last.fm 3,043,614 2,434,242 315,850 35,232 11.76

intent. Similar to [31, 33], we first calculate the item weights 𝛾𝑘
𝑖

under each intent with a soft-attention mechanism as follows,

z𝑘𝑖 = tanh(W𝑘
1 [h𝑘𝑣𝑠𝑖

′ ∥p𝑛−𝑖+1 ]), h𝑘𝑠∗ = W𝑘
2 [h𝑘𝑣𝑠𝑖

′ ∥h𝑘𝑣𝑠𝑛
′],

𝛾𝑘𝑖 = q𝑘
⊤
𝜎 ( (W𝑘

3 [h𝑘𝑣𝑠𝑖
′ ⊙ h𝑘𝑠∗ ]) ∥ (W𝑘

4 h
𝑘
𝑠∗) ∥ (W𝑘

5 z
𝑘
𝑖 ) + b𝑘 ),

(5)

where p𝑛−𝑖+1 and h𝑘𝑣𝑠𝑖
′ are the reversed position embedding and the

k-th intent chunk of item 𝑣𝑠,𝑖 , respectively. HereW𝑘
1 ,W

𝑘
2 ∈ R

𝑑
𝐾
× 2𝑑
𝐾

,W𝑘
𝑖
|5
𝑖=3 ∈ R

𝑑
𝐾
× 𝑑
𝐾 and b𝑘 , q𝑘 ∈ R

3𝑑
𝐾 are the learnable parameters

for the 𝑘-th intent.
Then, we aggregate the learned 𝑘-th intent chunks of items

in session 𝑠 to generate the corresponding intent-specific session
representation h𝑘𝑠 , denoted as,

h𝑘𝑠 =
∑︁𝑛

𝑖=1
𝛾𝑘𝑖 · h𝑘𝑣𝑠𝑖

′
, (6)

where h𝑘𝑠 is the representation of session s under 𝑘-th intent.
Finally, we calculate the preference score under each intent of

session 𝑠 on candidate item 𝑣𝑖 and combine the scores among all
intents to get the final preference score, denoted as,

𝑝𝑠𝑖 =
∑︁𝐾

𝑘=1
h𝑘𝑠

⊤
h𝑘𝑣𝑖 . (7)

For session 𝑠 , p̂𝑠 = [𝑝𝑠1, 𝑝𝑠2, ..., 𝑝𝑠𝑚] is the score vector that contains
the predicted scores on all𝑚 candidate items, and the final probabil-
ity of each candidate item can be formulated as 𝑦𝑠 = Softmax(p̂𝑠 ).

3.6 Model Optimization
To optimize our HIDE model, we leverage a standard cross entropy
loss function for each session 𝑠 , which is defined as follows,

L𝑠𝑟 = −
∑︁𝑚

𝑖=1
𝑦𝑠𝑖 log(𝑦̂𝑠𝑖 ) + (1 − 𝑦𝑠𝑖 ) log(1 − 𝑦̂𝑠𝑖 ), (8)

where 𝑦𝑠 denotes the ground truth label (one-hot vector).
Finally, we unify this recommendation task with the auxiliary

intent prediction task mentioned above. The total loss for session 𝑠
is then defined as,

L𝑠 = L𝑠𝑟 + 𝜆L𝑑𝑟 , (9)

where 𝜆 denotes the weight to balance the above two tasks.

4 EXPERIMENTS
4.1 Experimental Settings

4.1.1 Datasets. We evaluate HIDE on two benchmark datasets
(Tmall1 and Last.fm2) in SBR. Tmall contains anonymized shop-
ping logs on Tmall APP. Last.fm collects the music listening behav-
ior of users. Following [32, 33], we conduct the same preprocessing
step for all methods to ensure a fair comparison. Specifically, we
filter out sessions with only one item and items that appear less
than 5 times. Moreover, for each session 𝑠 , we generate sequences
and corresponding labels by splitting the original sequence for data
augmentation. The statistics of datasets are shown in Table 1.

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
2http://mtg.upf.edu/static/datasets/last.fm/lastfm-dataset-1K.tar.gz

Table 2: Benchmark evaluation (“M” refers to MRR).

Method Tmall Dataset Last.fm Dataset

P@10 M@10 P@20 M@20 P@10 M@10 P@20 M@20

Item-KNN 6.68 3.12 9.20 3.34 11.89 4.42 15.27 4.79
FPMC 13.05 7.11 16.08 7.34 8.53 3.56 12.91 3.85

GRU4Rec 9.50 5.75 10.98 5.92 12.85 5.18 14.94 5.57
NARM 19.21 10.39 23.35 10.68 14.64 6.39 18.07 6.73
STAMP 22.64 13.08 26.44 13.35 13.97 6.26 17.23 6.68

SR-GNN 23.49 13.47 27.65 13.76 15.53 6.74 19.74 7.18
FGNN 20.64 10.05 25.27 10.41 14.86 6.51 18.95 6.94

GCE-GNN 28.03 15.07 33.41 15.43 16.38 7.17 22.03 7.63

DHCN 26.24 14.63 31.51 15.08 16.58 7.02 22.29 7.49
SHARE 25.14 14.13 30.46 14.57 15.57 6.68 19.87 7.01

HIDE 31.10 16.77 37.12 17.19 18.65 8.11 25.15 8.56

Improv. 10.95% 11.28% 11.10% 11.41% 12.48% 13.11% 12.83% 12.19%

4.1.2 Metrics. Following [31, 32], we use two ranking metrics,
i.e., Precision@K (P@K) and MRR@K (M@K), for evaluation.

4.1.3 Baselines. We compare HIDE with the following methods,
including: two conventionalmethods (Item-KNN [25] and FPMC [23]);
three sequential-based methods (GRU4Rec [11], NARM [16] and
STAMP [18]); three GNN-based methods (SR-GNN [32], FGNN [22]
and GCE-GNN [31]) and two hypergraph-based models (DHCN [33]
and SHARE [28]).

4.1.4 Hyper-parameters Settings. Following [32, 33], we set the
item embedding size, the batch size and the 𝐿2 penalty as 100,
100, and 1𝑒−5, respectively. To optimize all methods, we use Adam
optimizer with an initial learning rate of 0.001. For all baselines, we
carefully tuned the hyper-parameters based on the original papers.
For HIDE, we set the sparsity coefficient 𝜀 to 0.4. We conduct careful
grid search for hyper-parameters (i.e. maximum window size𝑊 ,
intent number 𝐾 and balanced weight 𝜆), and use the best settings
in our paper (we finally set𝑊 = 6, 𝐾 = 5, 𝜆 = 1𝑒−4 ).

4.2 Overall Performance
Table 2 shows the overall performance, from which we have the
following conclusions.
• Our HIDE achieves the best performance. HIDE significantly
outperforms all baselines, outperforming the best baseline by
11.18% on Tmall and 12.65% on Last.fm on average. Moreover,
HIDE outperforms the hypergraph-based methods (i.e., DHCN
and SHARE), which verifies the effectiveness of our designs for
intent disentanglement to enhance the hypergraph model in SBR.

• Sequential-based methods outperform the conventional
models. Sequential-based methods (i.e. NARM and STAMP) sig-
nificantly outperform the conventional models (i.e. FPMC), which
stresses the key role of the sequential modeling in SBR. That is,
it verifies the necessity of our HIDE to appropriately model the
sequential patterns with transition hyperedges.

• GNN-based methods outperform sequential methods. The
performance gain of GNN-based models confirms GNN’s remark-
able capacity in SBR. Among them, GCE-GNN (capturing the
chronological order) is the best baseline on Tmall while DHCN
(modeling high-order relations) performs better in Precision on
Last.fm. It demonstrates both chronological order and high-order
relations are crucial in SBR , which validates our motivation
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Table 3: Ablation study of the key designs of HIDE.

Model
Tmall Last.fm

P@20 M@20 P@20 M@20

Multi-type
Hyperedges

w/o T 36.88 16.87 22.43 7.51
w/o C 35.02 14.96 23.64 7.92
w/o I 36.96 16.95 24.87 8.32
All 37.12 17.19 25.15 8.56

Micro-
Disentanglement

HyperGAT 33.14 15.26 23.51 8.24
HyperGCN 34.05 15.57 24.17 8.47
HGAConv 37.12 17.19 25.15 8.56

Macro-
Disentanglement

w/o Prediction 36.73 16.81 24.68 8.29
w Prediction 37.12 17.19 25.15 8.56

Session
Generation

HIDE-NP 32.78 15.14 22.34 7.38
HIDE-NA 35.04 15.82 21.89 7.45
HIDE 37.12 17.19 25.15 8.56
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Figure 2: The impact of intent number 𝐾 .

to model these high-order relations in session with multi-type
hyperedges from three perspectives.

4.3 Ablation Study
To evaluate the effectiveness of several key designs in HIDE, we
performed ablation studies as shown in Table 3.
1) Multi-type Hyperedges.We compare the performance without
Transition Hyperedge (w/o T), without Context Hyperedge (w/o
C), without intent Hyperedge (w/o I), and with all hyperedges, re-
spectively. The results show that removing any type of hyperedges
will lead to performance degradation.
2) Micro-disentanglement.We compare the performance of mod-
els with different propagation mechanisms, i.e., HyperGAT [28],
HyperGCN [8] and our designed HGConv. The results in Table 3
show that our designed HGConv achieves the best performance.
3) Macro-disentanglement.We remove the intent prediction task,
and the performance drops significantly, which verifies the intent
prediction task contributes to better performance.
4) Session Generation. We compare the models without posi-
tion embedding (HIDE-NP), without soft attention (HIDE-NA), and
HIDE, respectively. The results show that both position embedding
and soft attention enhance the recommendation performance.

4.4 Hyper-parameter Study
As for the hyper-parameter study, we discuss the impact of one of
the most critical hyper-parameters, intent-number 𝐾 . Specifically,
we vary 𝐾 from 1 to 8 to study its impact. As Figure 2 shows, the
performance of HIDE achieves the best when 𝐾 = 5 and then
drops when 𝐾 > 5. Hence, we set 𝐾 as 5 for all datasets to ensure
promising performance.

4.5 Disentanglement Analysis
We further analyze the impact of intent disentanglement on session
length. Specifically, we divide all sessions into five groups based

0~2 2~4 4-6 6-8 8~10
0.27
0.29
0.31
0.33
0.35
0.37

P@20 (Tmall)
HIDE
DHCN
GCE-GNN

0~4 4~8 8-12 12-16 16~20
0.15

0.17

0.19

0.21

0.23

0.25

P@20 (Last.fm)

HIDE
DHCN
GCE-GNN

Figure 3: Performance with different session lengths.

on the length. For each group, we compare the performance of our
HIDE with two SOTA baselines (GCE-GNN and DHCN) and present
the P@20 performance. From the results in Figure 3, with longer
sessions, GCE-GNN and DHCN suffer from significant performance
drop, and the performance gap (between HIDE and baselines) be-
comes larger, which verifies that HIDE can effectively model user
intents in a longer session (more complex intents).

5 RELATEDWORKS
Session-based Recommendation (SBR). Earlier works [23, 25]
on SBR foucs on the similarity of items. Then, Sequential-based
methods [11, 16, 18] model the session with GRU [6] or attention
layers [27]. Recently, the GNN-based methods [21, 22, 26, 28, 31–34]
propose to build a session graph and capture the complex relations
among items with graph neural network (GNNs) [26].
Hypergraph Learning. Hypergraph [1, 17] extends the capability
of high-order relations with hyperedge, which can connect more
than two nodes. HGNN [8] extends graph convolution to hyper-
graph. HyperGAT [7] proposed hypergraph attention networks and
HGC-RNN [13] proposed dynamic hypergraph neural networks for
the hypergraph learning.
Disentangled Representation Learning. Early studies [2, 3, 5,
12, 14] are based on variational auto-encoders (VAE) [15]. Recently,
several methods [17, 20, 30, 35, 36] are proposed to disentangle
the multiple latent factors in graph-based data mining, such as
DGCF [29]. However, the above disentangled methods are not ap-
plicable to the session-based recommendation (SBR).

6 CONCLUSION AND FUTUREWORK
In this work, we propose a hypergraph-based solution HIDE for
the session-based recommendation, which captures the high-order
relations and latent intents in item transitions. Specifically, we first
perform intent-aware embedding propagation to learn the disentan-
gled intent chunks of each item click with micro-disentanglement;
we then encourage the independence of each intent-specific chunk
with intent classification from a macro perspective. Benchmark
evaluations verify the effectiveness of our HIDE model and the
necessity of the modeling of disentangled intents. As for future
work, further A/B tests in real-world recommender systems can
verify HIDE’s effectiveness in industrial applications.
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