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ABSTRACT
Scaling reinforcement learning (RL) to recommender systems (RS)
is promising since maximizing the expected cumulative rewards for
RL agents meets the objective of RS, i.e., improving customers’ long-
term satisfaction. A key approach to this goal is offline RL, which
aims to learn policies from logged data rather than expensive online
interactions. In this paper, we propose Value Penalized Q-learning
(VPQ), a novel uncertainty-based offline RL algorithm that penalizes
the unstable Q-values in the regression target using uncertainty-
aware weights, achieving the conservative Q-function without the
need of estimating the behavior policy, suitable for RS with a large
number of items. Experiments on two real-world datasets show the
proposed method serves as a gain plug-in for existing RS models.

CCS CONCEPTS
• Theory of computation → Reinforcement learning; • In-
formation systems → Learning to rank; Recommender sys-
tems.

KEYWORDS
offline reinforcement learning, sequential recommender systems,
long-term satisfaction
ACM Reference Format:
Chengqian Gao, Ke Xu, Kuangqi Zhou, Lanqing Li, Xueqian Wang, Bo
Yuan, and Peilin Zhao. 2022. Value Penalized Q-Learning for Recommender
Systems. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’22), July 11–15,

∗Part of this work is done when taking an intership in Tencent AI Lab, Shenzhen.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’22, July 11–15, 2022, Madrid, Spain
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8732-3/22/07. . . $15.00
https://doi.org/10.1145/3477495.3531796

2022, Madrid, Spain. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3477495.3531796

1 INTRODUCTION
Practical recommender systems (RS) are usually trained to generate
relevant items for users, considering less on their long-term utilities.
Reinforcement learning (RL) methods maximize the discounted
cumulative rewards over time, meeting the original needs of RS.
Driven by this, there has been tremendous progress in developing
reinforcement learning-based recommender systems (RLRS) [1].

Directly utilizing RL algorithms to train agents from the offline
data often results in poor performance [16, 25, 27], even for off-
policy methods, which can leverage data collected by other policies
in principle [7, 14]. The main reason for such failures is the overes-
timation of out-of-distribution (OOD) queries [17], i.e., the learned
value function is trained on a small set of action space while is
evaluated on all valid actions. Offline RL [7, 17] focuses on the prob-
lem of training agents from static datasets, addressing the OOD
overestimation problem without interacting with the environment,
making it achievable to build RLRS agents from offline datasets.

There are still challenges for offline RL-based RS models due to
the different settings between RL and RS tasks. The first is the large
action space (the number of candidate items for RS agents is usually
above 10k), which exacerbates the OOD overestimation problem
and also makes it difficult to estimate the behavior policy that
generated the datasets [6, 7, 9, 13, 14, 21, 22]. Another problem is
the mismatch between relevant and valuable recommendations. RL
approaches produce recommendations with the highest long-term
utility while ignoring their relevance to users. Finally, the non-
stationary dynamic of RS also differs from RL environments. In
general offline RL problems, e.g., D4RL [5], trajectories are collected
by policies with an environment whose dynamics are exactly as
same as the test environment. While in RS scenarios, the dynamics
constantly change as the user preferences change over time.

In this work, we propose Value Penalized Q-learning (VPQ), an
uncertainty-based offline RL method, to alleviate the OOD overesti-
mation issue. Then we integrate it into classic RS models, enhancing
their capacity to generate relevant and valuable recommendations.
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Specifically, we use a sequential RS model to represent the se-
quence of user-item interactions (mapping the last 10 items into
hidden state 𝑠𝑡 ). The value function regresses on the discounted
cumulative reward𝑄 (𝑠𝑡 , 𝑎𝑡 ) =

∑inf
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) for each recommen-
dation item 𝑎𝑡 with respect to the sate 𝑠𝑡 , immediate reward 𝑟 (1.0
for purchases and 0.2 for clicks), and a discount factor 𝛾 .

Algorithmically, we take two techniques to address the OOD
overestimation problem. Firstly, we stabilize the Q-predictions us-
ing an ensemble of Q-functions with different random learning rates
and set the variance of their predictions as the uncertainty quan-
tifier. Secondly, we penalize the unstable Q-values in regression
target with uncertainty-aware weights, reducing the overestima-
tion for OOD actions. The key component is to reduce the unstable
predictions with the proposed 𝑝 −𝑚𝑢𝑙 form penalty. We will de-
tail it in the method section. In order to exploit the learned value
function for the non-stationary environment, we employ the critic
framework [24], to generate recommendations with both relevance
and long-term satisfaction. To summarize:

(1) We propose an uncertainty-based offline RL method, VPQ,
to alleviate the OOD overestimation problem during train-
ing by penalizing the unstable predictions with uncertainty
quantification, without estimating the behavior policy.

(2) We empirically show that it is more effective to attain the
conservative value function by the proposed 𝑝 −𝑚𝑢𝑙 form,
i.e., multiplying the unstable predictions with uncertainty-
aware weights, in the recommendation scenarios.

(3) Extensive experiments show that the benefit of integrating
with VPQ contains better representation and reinforcing
actions with long-term rewards.

2 METHODS
We propose Value Penalized Q-learning (VPQ), an uncertainty-
based offline RL algorithm, to estimate the long-term rewards for
recommendation candidates. We then integrate it into classic RS
models to generate relevant and valuable recommendations.

2.1 Value Penalized Q-Learning
2.1.1 Preliminary: Q-Learning Algorithm. The Q-learning frame-
work for recommendation has been adopted in many previous work
[24, 28–31]. It usually learns a state-action value function𝑄𝜃 (𝑠𝑡 , 𝑎𝑡 )
by minimizing L𝜃 = 1

2 E
(𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑠𝑡+1)∼𝐷

[ (
𝑦 − 𝑄𝜃 (𝑠𝑡 , 𝑎𝑡 )

)2] with a

dataset 𝐷 , and a target 𝑦 = 𝑟 + 𝛾 max𝑎 𝑄𝜃𝑇 (𝑠𝑡+1, 𝑎) with frozen
parameters from historical value function 𝑄𝜃 .

However, when learning from static datasets, the max operator
inhibits the performance as it queries all successor Q-values while
only a small set of actions has been recorded. Unstable predictions
on unseen actions undermine the learned Q-function and thus, in
turn, exacerbate instability, resulting in erroneous Q-function when
learning from static datasets [7, 14].

2.1.2 Two Different Ways of Using the Uncertainty Metric. An in-
tuitive way to uncertainty-based offline RL [4, 10, 17], denoted as
p-sub, is removing the successor uncertainty from each query via:

𝑦 = 𝑟 + 𝛾 max
𝑎

(
𝑄 (𝑠𝑡+1, 𝑎) − 𝜆 Unc(𝑠𝑡+1, 𝑎)

)
, (1)

where Unc quantifies the amount of uncertainty for each Q query.

Our approach to penalizing the unstable prediction is:

𝑦 = 𝑟 + 𝛾 max
𝑎

(
𝑄 (𝑠𝑡+1, 𝑎) ·𝑊 (𝑠𝑡+1, 𝑎)

)
, (2)

with an uncertainty-aware weight𝑊 (𝑠𝑡+1, 𝑎) designed as:

𝑊 (𝑠𝑡+1, 𝑎) =
1

1 + 𝜆 Unc(𝑠𝑡+1, 𝑎)
, (3)

with 𝜆 > 0 controlling the strength of penalty on uncertain queries.
Unc(𝑠𝑡+1, 𝑎) is defined as the standard deviation across the target
Q-function ensemble, i.e., 𝜎̃𝑇 (𝑠𝑡+1, 𝑎) = 𝑆𝐷

(
{𝑄𝜃𝑘 (𝑠𝑡+1, 𝑎)}

𝐾
𝑘=1

)
. We

denote this form as p-mul for the stable predictions are estimated
by multiplying the unstable values by uncertainty-aware weights.

2.1.3 Analysis: Penalizing in a Stable Manner. Assuming that un-
stable predictions on OOD actions for a given state are i.i.d. random
variables follow a normal distribution 𝑥𝑖 = 𝑄 (𝑠𝑡 , 𝑎𝑖 ) ∼ N (𝜇, 𝜎2),
then the target value for OOD actions (denoted as 𝑦𝑂𝑂𝐷 ) follows:

𝑦𝑂𝑂𝐷 = 𝑟 + 𝛾 max
1≤𝑖≤𝑛;𝑥𝑖∼N(𝜇,𝜎2)

𝑥𝑖 , (4)

where 𝑛 is close to the number of candidate items in RS, and for
brevity, we denote 𝑄𝑇 as the output of the max operation. We can
approximate the expectation of 𝑄𝑇 through the form [3, 8, 19]:

E
[

max
1≤𝑖≤𝑛;𝑥𝑖∼N(𝜇,𝜎2)

𝑥𝑖

]
≈ 𝜇 + 𝜎Φ−1 ( 𝑛 − 0.375

𝑛 − 2 × 0.375 + 1
), (5)

where Φ−1 is the inverse of the standard normal CDF.

Algorithm 1 VPQ: Value Penalized Q-Learning

Input: K 𝑄-functions with parameters {𝜃𝑘 }𝐾𝑘=1,
a categorical distribution 𝑃Δ for Random Ensemble Mixture,
a scale factor 𝜆 for VPQ, and an offline dataset 𝐷 .

Output: {𝜃𝑘 }𝐾𝑘=1
1: Initialize {𝜃𝑘 }𝐾𝑘=1.
2: while not done do
3: Sample a mini-batch of transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟 , 𝑠𝑡+1) randomly

from 𝐷

4: Sample mixture weights {𝛼𝑘 }𝐾𝑘=1 from 𝑃Δ
5: Compute the sample standard deviation 𝜎̃𝑇 (𝑠𝑡+1, 𝑎)
6: Compute random mixture of target networks:

𝜇̃𝑇 (𝑠𝑡+1, 𝑎) =
∑𝐾
𝑘=1 𝛼𝑘𝑄𝜃𝑇𝑘

(𝑠𝑡+1, 𝑎)
7: Compute the uncertainty-aware weight:

𝑊 (𝑠𝑡+1, 𝑎) =
(
1 + 𝜆 𝜎̃𝑇 (𝑠𝑡+1, 𝑎)

)−1
8: Compute the penalized target:

𝑦𝑡 = 𝑟 + 𝛾 max𝑎
(
𝜇̃𝑇 (𝑠𝑡+1, 𝑎) ·𝑊 (𝑠𝑡+1, 𝑎)

)
9: Update each Q-function with the mixture weight 𝛼𝑘 :

L𝜃 = 1
2
(
𝑦𝑡 −

∑𝐾
𝑘=1 𝛼𝑘 ·𝑄𝜃𝑘 (𝑠𝑡 , 𝑎𝑡 )

)2
10: end while

By using the properties of the expectation and max operator, we
have expectation of penalized 𝑄𝑇 with the p-sub formulation:

E
[
𝑄𝑇 − 𝜆𝜎

]
= 𝜇 + (𝐶0 − 𝜆)𝜎 (6)

and the expected value of that with the p-mul form:

E
[ 𝑄𝑇

1 + 𝜆𝜎

]
=

1
1 + 𝜆𝜎

(𝜇 + 𝜎𝐶0), (7)

where 𝐶0 is a constant number for a given 𝑛.



The proposed form of penalization has two advantages. Firstly,
the p-mul form is more robust. For training RLRS agents, 𝐶0 in-
creases with the dimension of action space. To reduce unstable
predictions, p-sub has to increase its 𝜆 in Equation (6), increasing
the risk of producing negative Q-values, and thus resulting in un-
stable training. By contrast, the penalty form p-mul would always
keep the target value greater than zero, even with a large scale
factor 1. Secondly, the proposed p-mul can heavily penalize the
unstable and large predictions, while the p-sub formulation mainly
concerns the small and unstable Q-values and thus may fail to ob-
tain a conservative prediction. To illustrate this, we provide a toy
experiment in Figure 1.

A keen reader may note that the proposed p-mul form fails to
penalize Q-values that less than zero. However, we argue that such
failures can be avoided via a linear reward transformation [18].
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Figure 1: Penalize the simulated unstable predictions in dif-
ferent ways. Heavy black lines are dense points sampled
fromaGaussian distribution and sorted by their values. Scal-
ing factor 𝜆 controls the strength of penalization.

2.1.4 Analysis: Uncertrainty-Aware Discount Factor. We note the
proposed uncertainty weight can be absorbed into the discount
factor term 𝛾 in target, i.e., 𝑦 = 𝑟 +max𝑎 [𝛾 ·𝑊 (𝑠𝑡+1, 𝑎)] ·𝑄 (𝑠𝑡+1, 𝑎).
This motivates the proposed VPQ algorithm in another perspective,
as 𝛾 affects the performance of the learned value function [14]:

lim
𝑘→∞

E𝑑0
[���𝑉 𝜋𝑘 (𝑠𝑡 ) −𝑉 Π (𝑠𝑡 )

���] ≤
2𝛾

(1 − 𝛾)2
𝐶Π,𝜇E𝜇

[
max
𝜋 ∈Π
E𝜋 [𝛿 (𝑠𝑡 , 𝑎𝑡 )]

]
, (8)

with Π for a set of policies, 𝑉 Π for the fixed point that the con-
strained Bellman backup TΠ convergences to, concentrability co-
efficient 𝐶Π,𝜇 for quantifying how far the distribution of the pol-
icy action 𝜋 (𝑎𝑡 |𝑠𝑡 ) ∼ Π is from the corresponding dataset action
𝜇 (𝑎𝑡 |𝑠𝑡 ), and 𝛿 (𝑠𝑡 , 𝑎𝑡 ) ≥ sup𝑘 |𝑄𝑘 (𝑠𝑡 , 𝑎𝑡 )−TΠ𝑄𝑘−1 (𝑠𝑡 , 𝑎𝑡 ) | bounds
the Bellman error.

The proposed weight𝑊 affects the bound (8) through the ab-
sorbed term 2𝛾𝑊

(1−𝛾𝑊 )2 . For example, for two queries with discount
factor 𝛾 = 0.99 and uncertainty-aware weight𝑊 = 0.9, 0.5, the
absorbed term can be 149.98 and 3.88. In this way, the proposed
𝑝 −𝑚𝑢𝑙 form controls how much importance we assign to future
rewards with uncertainty.
1In our setting, the Q-value should be a positive number, with reward 𝑟 = 0, 0.2, 1.0.

2.1.5 Details about the Proposed Algorithm. Inspired by the pow-
erful penalty form, p-mul, we developed VPQ. It contains an en-
semble of Q-functions with the Random Ensemble Mixture (REM)
technique [2] for diversity and assigns the standard deviation of
Q-values across the ensemble as an uncertainty indicator.

VPQ eliminates the need to estimate the difficult behavior policy
for constraint [6, 7, 9, 13, 14, 21, 22]. Besides, as an uncertainty-
basedmethod, VPQ enjoys benefits from the progress in uncertainty
measurement. Finally, we summarize our method in Algorithm 1.

2.2 Relevant v.s. Valuable
So far, we have developed VPQ to indicate the long-term rewards
for recommendation candidates. However, there exists another con-
cern for RLRS, i.e., how to exploit the learned agent. Generating
recommendations via 𝑎 = argmax𝑎 𝑄 (𝑠𝑡 , 𝑎) leads to valuable rec-
ommendations without considering their relevance, while classic
sequential RS models recall and/or rank relevant items ignoring
their long-term utilities. To tackle this, we introduce the critic
framework [24], which is inspired by Konda [12].

Specifically, we use the classic sequential RS model to extract
hidden states for the input interaction sequences and map them to
two types of outputs, Q-values through the Q head and classification
logits using a CE head. We optimize the Q head with VPQ algorithm
and minimize the reweighted cross-entropy loss for CE head, i.e.,

L𝜙 = 𝐶𝐸 (𝑠𝑡 , 𝑎) · no_gradient(𝑄 (𝑠𝑡 , 𝑎)) (9)

At test time, we only use the CE head to generate recommendations.
Although it is a trade-off between the classic recommendation
paradigms and alluring RL methods, the critic framework improves
the performance of RS with stability, as shown in our experiments.

3 EXPERIMENTS
In order to verify the effectiveness of the proposed VPQ, we con-
duct experiments 2 on two standard recommender systems datasets,
namely Retailrocket 3 and Yoochoose 4, following the data process-
ing details in Xin et al. [24]. We use two metrics: HR (hit ratio)
for recall and NDCG (normalized discounted cumulative gain) for
rank and compute the performance on clicked and ordered items
separately. For example, we define HR for clicks as:

HR(click) = # hits among clicks
# clicks

(10)

3.1 Performance Gains from VPQ
We integrate VPQ with three classic sequential RS methods: Caser
[20], NextItNet [26] and SASRec [11]. We also compare its perfor-
mance with the following online and offline RL-based methods:
SAC [24], REM [2], Minus (involved the p-sub formulation in Equa-
tion (1)), CQL [15], and UWAC [23]. All the above methods are
embedded with the classic RS models under the critic framework.
We select the best hyper-parameter 𝜆 for Minus, 𝛼 for CQL, and 𝛽

for UWAC by sweeping on each dataset. 𝜆 for VPQ is set to 20.

2Code is available at https://drive.google.com/drive/folders/1i3E1QTkscyoCAXRH
28OxNLpbJeH19sSm?usp=sharing
3https://www.kaggle.com/retailrocket/ecommerce-dataset
4https://recsys.acm.org/recsys15/challenge/



Table 1: Overall performance comparison on two recommendation datasets, averaged over 5 runs. NG is short for NDCG.

Models
Retailrocket Yoochoose

Totalpurchase click purchase click

HR@20 NG@20 HR@20 NG@20 HR@20 NG@20 HR@20 NG@20

Caser .4226 .3076 .2813 .1875 .6607 .3911 .4613 .2545 2.9665 (0.00%)
Caser-SAC .4617 .3336 .3006 .1985 .6889 .4173 .4513 .2472 3.0991 (4.47%)
Caser-REM .4711 .3390 .3019 .1999 .6916 .4216 .4481 .2452 3.1184 (5.12%)
Caser-Minus .4618 .3325 .2991 .1984 .7029 .4330 .4429 .2419 3.1124 (4.92%)
Caser-CQL .4699 .3376 .3048 .2009 .6705 .4008 .4598 .2527 3.0970 (4.40%)
Caser-UWAC .3884 .2851 .2588 .1714 .6758 .4126 .4509 .2464 2.8893 (-2.60%)
Caser-VPQ .4775 .3454 .3067 .2036 .7081 .4350 .4459 .2439 3.1661 (6.73%)

Next .6564 .4961 .3329 .2130 .5934 .3352 .4937 .2715 3.3922 (0.00%)
Next-SAC .6741 .5354 .3346 .2149 .5899 .3383 .4730 .2584 3.4186 (0.78%)
Next-REM .6839 .5387 .3433 .2216 .6025 .3509 .4781 .2623 3.4812 (2.62%)
Next-Minus .6835 .5432 .3446 .2227 .6047 .3511 .4771 .2622 3.4890 (2.85%)
Next-CQL .6845 .5399 .3423 .2215 .6073 .3509 .4802 .2635 3.4901 (2.89%)
Next-UWAC .6840 .5310 .3452 .2206 .6155 .3583 .4861 .2694 3.5102 (3.48%)
Next-VPQ .6990 .5714 .3556 .2330 .6226 .3672 .4944 .2744 3.6175 (6.64%)

SASRec .6387 .4599 .3516 .2190 .6630 .3733 .5044 .2761 3.4861 (.00%)
SASRec-SAC .6981 .5629 .3603 .2347 .6786 .3955 .5015 .2760 3.7077 (6.35%)
SASRec-REM .6655 .5113 .3650 .2361 .6809 .3986 .5033 .2779 3.6387 (4.37%)
SASRec-Minus .6666 .5125 .3634 .2353 .6815 .3965 .5038 .2783 3.6378 (4.35%)
SASRec-CQL .7046 .5599 .3749 .2404 .6631 .3805 .5013 .2751 3.6997 (6.12%)
SASRec-UWAC .6657 .5015 .3715 .2367 .6786 .3959 .5126 .2850 3.6475 (4.63%)
SASRec-VPQ .7171 .5914 .3785 .2484 .6841 .4063 .5081 .2814 3.8153 (9.44%)
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Figure 2: Comparison of performance of utilizing the learned Q-function in different ways. Error bars show standard devia-
tions.

The consistent performance improvement shown in Table 1
demonstrates that the integration with the learned Q-function
generally outperforms the original RS models. Compared to other
baseline algorithms, the proposed VPQ achieves more performance
gains, illustrating the effectiveness of our approach.

3.2 Ablation Study
We conduct ablation study with four settings: (1) Q-only, which
generates recommendations with the highest Q-values (the most
valuables), (2) CE, which generates recommendations with only
the original model (the most relevant ones), (3) Q-aux, minimizing

the TD-error as an auxiliary task without utilizing the Q-values
(for representation), (4) Q-critic, reinforcing the recommendation
actions with Q-values (using the loss function in Equation (9)).

Results are shown in Figure 2.Q-only achieves the worst perfor-
mance on both datasets, illustrating that valuable recommendations
(items with high Q-values) tend to lose relevance. Q-aux surpasses
CE, suggesting that minimizing the TD-error benefits represen-
tation learning. The results above suggest that improvement of
Q-critic comes from better state representation (auxiliary loss) and
exploiting accurate Q-values (reinforcing the valuable actions).
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Figure 3: Sweeping the scaling factor on Yoochoose dataset.

3.3 Hyper-parameter Study
The scaling factor 𝜆 controls the strength of uncertainty penalty for
VPQ (Equation 3) and thereby affects the performance. For a small
scaling factor, VPQ degrades to REM [2] without explicit penalty
on OOD predictions. With a large one, VPQ tends to regress on
immediate rewards rather than the long-term rewards. Results in
Figure 3 verifies this on the Next-VPQ model. The best 𝜆 for the
other two base models and the Retailrocket dataset is also 20.

4 CONCLUSION
Directly scaling RL methods into offline setting often end up with
unsatisfied results. This work proposes an uncertainty-based offline
RL method, Value Penalized Q-Learning (VPQ), which captures un-
certainty information across an ensemble of Q-functions to tackle
the overestimations on OOD actions and thus estimates the long-
term rewards for RLRS, without estimating the diffcult behavior
policy and thus suitable for RS scenarios. Evaluations on two stan-
dard RS datasets demonstrate that the proposed methods could
serve as a gain plug-in for classic sequential RS models.
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