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ABSTRACT
Zero-shot intent classification is a vital and challenging task in
dialogue systems, which aims to deal with numerous fast-emerging
unacquainted intents without annotated training data. To obtain
more satisfactory performance, the crucial points lie in two aspects:
extracting better utterance features and strengthening the model
generalization ability. In this paper, we propose a simple yet effec-
tive meta-learning paradigm for zero-shot intent classification. To
learn better semantic representations for utterances, we introduce
a new mixture attention mechanism, which encodes the pertinent
word occurrence patterns by leveraging the distributional signa-
ture attention and multi-layer perceptron attention simultaneously.
To strengthen the transfer ability of the model from seen classes
to unseen classes, we reformulate zero-shot intent classification
with a meta-learning strategy, which trains the model by simulat-
ing multiple zero-shot classification tasks on seen categories, and
promotes the model generalization ability with a meta-adapting
procedure on mimic unseen categories. Extensive experiments on
two real-world dialogue datasets in different languages show that
our model outperforms other strong baselines on both standard
and generalized zero-shot intent classification tasks.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Natu-
ral language processing.
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1 INTRODUCTION
Dialogue systems are widely used in many real applications, i.e.,
mobile apps, virtual assistants, smart home and so on [3, 18, 29,
33, 41]. Understanding user intent is a crucial step in dialogue
systems [16, 21, 22, 25, 38, 39], since its performance will directly
affect the downstream decisions and policies. As user interests
may change frequently over time and user expression is diverse,
many new intents emerge quickly, which motivates zero-shot intent
classification. However, related researches are still in infancy, only
a few approaches are proposed to tackle this challenge.

Some works rely on some external resources like label ontolo-
gies, manually defined attributes or knowledge graph to find the
relationship between seen and unseen intent labels [7, 27, 36, 42].
However, such resources are usually unavailable or difficult to ob-
tain, this is because that collecting or producing these resources is
labor intensive and time consuming.

To overcome the above issue, recent works utilize the word
embeddings of intent labels instead of the external resources, which
are easily to obtained via pretraining on text corpus. Specifically,
Chen et al. [4] and Kumar et al. [15] project the utterances and intent
labels to a same semantic space, and then compute the similarities
between utterances and intent labels. Xia et al. [34] leverage capsule
networks [23] to extract high-level semantic features, and transfer
the prediction vectors from seen classes to unseen classes. Liu et al.
[19] introduce the dimensional attention mechanism to extract
semantic features, and then reconstruct the transformationmatrices
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Figure 1: Illustration of the proposed framework. In the training procedure, utterances are first encoded by Bi-LSTM, and then
extracted semantic features with themixture attentionmechanism. Specifically, the distributional signature attention utilizes
all the seen data to learn the general word importance and leverages the label description information to estimate the class-
specific word importance. Meanwhile, the MLP attention automatically calculates different weights for different words. Then
the mixture attention, which combines the above two attentions, assigns more appropriate weights for different words. In the
meta-learning paradigm, seen data is divided into meta-seen data for meta-training and meta-unseen data for meta-adapting.
The model is first trained on meta-seen samples and then is fine-tuned on meta-unseen samples. In the testing procedure,
utterances are first encoded by the mixture attention module, and then are classified by the final model which is obtained by
the meta-learning paradigm.

in capsule networks for unseen intents by utilizing abundant latent
information of the labeled utterances. Yan et al. [35] integrate the
unknown intent identifier into themodel [19] to further improve the
performance. Ye et al. [37] attempt to use the reinforced self-training
framework to learn data selection strategy automatically. Si et al.
[26] propose a class-transductive framework which uses a multi-
task learning objective function to find the inter-intent distinctions
and a similarity scorer to associate the inter-intent connections.
However, due to the instability in training and the imbalanced
classification shift issue, i.e., the model tends to misclassify the
unseen test instances into the seen classes, these methods still
struggle in generalized zero-shot learning tasks.

After analyzing previous works comprehensively, we find that
there are two key points for implementing zero-shot intent classifi-
cation. The first is to extract better semantic features for utterances,
and the second is to strengthen the model generalization ability.
Inspired by the success of attention mechanism in representation
learning [31] and meta-learning strategy in few-shot learning [8],
we propose a simple yet effective meta-learning paradigm for zero-
shot intent classification with mixture attention mechanism. Specif-
ically, we first extract semantic features with the mixture attention
mechanism, which can assign more reasonable weights for different
words by leveraging the distributional signature attention and the
multi-layer perceptron attention simultaneously, thus improving
the quality of feature extraction greatly. Then to simulate the multi-
ple zero-shot classification tasks on seen data, we divide seen data
into meta-seen data for meta-training and meta-unseen data for
meta-adapting, and train the model with a meta-training strategy,
which helps to obtain better generalization ability.

The overall framework of our proposed model is shown in Fig-
ure 1. As far as we know, it is the first work to extend meta-learning
to the Zero-Shot Intent Classification (ZSIC) task. Extensive exper-
imental results on two dialogue datasets in different languages
demonstrate that the proposed model dramatically outperforms
other baselines on both standard and generalized zero-shot intent
classification tasks.

2 THE PROPOSED METHOD
2.1 Problem Formulation
Zero-shot learning aims to predict the label𝑦∗ of any test sample 𝒙∗
belonging to an unseen class, leveraging the training data from seen
classes. In general, there are two common settings. (1) Standard
zero-shot classification: in this case 𝑦∗ ∈ {𝐶unseen}; (2) Generalized
zero-shot classification: in this case𝑦∗ ∈ {𝐶seen,𝐶unseen}.𝐶seen and
𝐶unseen are the sets of seen and unseen intent classes respectively,
and there is no overlap between them, i.e., 𝐶seen

⋂
𝐶unseen = ∅.

2.2 Extracting Semantic Features with Mixture
Attention

Given an utterance with 𝑁 words [𝒘1,𝒘2, ...,𝒘𝑁 ], where 𝒘𝑡 ∈
R𝑑𝑤×1 is the 𝑡-th word embedding which can be pre-trained with
any language model, we follow [19, 35] to use a bidirectional LSTM
[11] to pre-process these embeddings, i.e., 𝒉𝑖 = BiLSTM(𝒘𝑖 ) ∈
R2𝑑ℎ×1. Then an utterance can be represented as a matrix 𝑯 =

[𝒉1,𝒉2, . . . ,𝒉𝑁 ] ∈ R2𝑑ℎ×𝑁 , where 𝑑ℎ is the hidden dimension of
the forward/backward LSTM.



2.2.1 Distributional Signature Attention. Distributional signature
attention has shown to be effective in few-shot text classification
[1], which can utilize all the seen data to learn the general word im-
portance and leverage the label description information to estimate
the class-specific word importance.

(1) General word importance. Frequently occurring words usually
have limited discriminative information [13]. To downweight fre-
quent words and upweight rare words, we compute general word
importance by 𝑠 (𝒘𝑡 ) = Y

Y+P(𝒘𝑡 ) , where Y = 10−5, and P(𝒘𝑡 ) is
unigram likelihood of the 𝑡-th word over all the seen data.

(2) Class-specific word importance. As the importance of a word
can be measured by its prediction result for different categories,
we can calculate the class-specific word importance by 𝑡 (𝒘𝑡 ) =

H(P(𝑦 |𝒘𝑡 ))−1, where H(·) is the entropy operator, and P(𝑦 |𝒘𝑡 ) is
the conditional probability of 𝑦 given𝒘𝑡 , which can be obtained via
a ridge regression classifier. 𝑡 (𝒘𝑡 ) measures the uncertainty of the
class label𝑦 given the word𝒘𝑡 . So words with a skewed distribution
will be highly weighted.

In zero-shot scenarios, the label description is the only known
information of unseen data. We attempt to use it to calculate the
class-specific word importance. Specifically, given the label descrip-
tion embedding matrix 𝑬 = [𝒆1, 𝒆2, . . . , 𝒆𝐶 ]𝑇 ∈ R𝐶×𝑑𝑤 , 𝒆𝑖 is the
embedding of the 𝑖-th label description which is computed by the
average of its word embeddings, 𝒀 ∈ R𝐶×𝐶 is the one-hot label
matrix, and 𝐶 is the total number of seen and unseen intent labels.
Then we minimize the following regularized squared loss:

L = ∥𝑬𝑾 − 𝒀 ∥2𝐹 + 𝛽 ∥𝑾 ∥2𝐹 , (1)

where𝑾 ∈ R𝑑𝑤×𝐶 is the learnable weight matrix, ∥ · ∥𝐹 denotes
the Frobenius norm. 𝛽 is the hyperparameter to avoid overfitting
and we set 𝛽 = 1 consistently. Obviously,𝑾 has the closed-form
solution:

𝑾 = 𝑬𝑇 (𝑬𝑬𝑇 + _𝑰 )−1𝒀 , (2)
where 𝑰 is an identity matrix. Then given a word𝒘𝑡 ∈ R𝑑𝑤×1, we
can estimate its conditional probability with:

P(𝑦 |𝒘𝑡 ) = softmax(𝒘𝑇𝑡 𝑾 ) . (3)

(3) Distributional signature attention. To combine the general
and class-specific word importance, we use a bidirectional LSTM
to deal with each word, i.e, 𝒛𝑡 = BiLSTM(𝑠 (𝒘𝑡 ) | |𝑡 (𝒘𝑡 )) ∈ R2𝑑𝑏×1,
where 𝑑𝑏 is the hidden dimension of the forward/backward LSTM.
Then for an utterance, we can calculate the distributional signature
attention 𝒑 ∈ R1×𝑁 by:

𝒑 = softmax(𝑭𝒁 ), (4)

where𝒁 = [𝒛1, 𝒛2, . . . , 𝒛𝑁 ] ∈ R2𝑑𝑏×𝑁 , and 𝑭 ∈ R1×2𝑑𝑏 is a trainable
parameter vector.

2.2.2 Multi-layer Perceptron (MLP) Attention. MLP attention can
automatically calculate the appropriate weights for different words
with the guide of loss function [24, 35]. Given an utterance represen-
tation 𝑯 ∈ R2𝑑ℎ×𝑁 , the MLP attention 𝒒 ∈ R1×𝑁 can be calculated
with:

𝒒 = softmax(𝑾2 (ReLU(𝑾1𝑯 ))), (5)

where 𝑾1 ∈ R𝑑𝑎×2𝑑ℎ and 𝑾2 ∈ R1×𝑑𝑎 are trainable parameter
matrices.

2.2.3 Mixture Attention. Mixture attention aims to combine the
distributional signature attention and MLP attention, and then as-
signs more appropriate weights for different words in an utterance.
We use an adaptive weight vector 𝒃 to integrate the distributional
signature attention and the MLP attention. Specifically, the mixture
attention 𝒂 ∈ R1×𝑁 can be calculated with:

𝒂 = 𝒃 [𝒑; 𝒒], (6)

where 𝒑 ∈ R1×𝑁 and 𝒒 ∈ R1×𝑁 are the distributional signature
attention and the MLP attention respectively, and 𝒃 ∈ R1×2 is
a trainable parameter vector. Then given an utterance, the final
semantic feature 𝒙 ∈ R2𝑑ℎ×1can be computed by:

𝒙 = 𝑯𝒂𝑇 , (7)

where 𝒂𝑇 is the transpose of 𝒂. Hereinafter, we use 𝒙 to represent
an utterance or an utterance embedding.

2.3 Meta-learning Paradigm for ZSIC
Meta-learning has shown promising performance in few-shot learn-
ing [10, 12, 20, 30, 44], while only a few meta-learning based meth-
ods are designed for zero-shot learning, which leverage some com-
plex models like VAE or GAN [32, 40]. In addition, these methods
mainly concentrate on image domain, and are difficult to directly
applied in the intent classification task.

In this work, we propose a simple meta-learning paradigm for
Zero-Shot Intent Classification (ZSIC), which is trained with the
episode strategy. Different from existing meta-learning based few-
shot approaches, each episode in our method mimics a zero-shot
classification task. In particular, we divide each episode into two
phases: Meta-training and Meta-adapting. Accordingly, to simulate
a fake ZSIC task, we randomly divide the seen classes 𝐶𝑠𝑒𝑒𝑛 into
the meta-seen classes 𝐶meta-s (the samples belonging to 𝐶meta-s
are denoted by 𝑋meta-s and used in meta-training phase) and the
meta-unseen classes 𝐶meta-u (the samples belonging 𝐶meta-u are
denoted by 𝑋meta-u and used in meta-adapting phase). Note that
𝐶meta-u ∩𝐶meta-s = ∅.

2.3.1 Meta-training. Intuitively, the class label description usually
contains lots of class-indicative information, so it can be treated as
the class prototype (center). If we can learn a model 𝐺 to project
the class label description to the utterance representation space,
the embeddings of utterances belonging to the same class should
be close to the projection embedding of their label description.

Assume 𝒆𝑖 ∈ R𝑑𝑤×1 is the embedding of the 𝑖-th label description
in meta-seen classes, and the model𝐺 is a two-layer neural network,
we can project 𝒆𝑖 to the utterance representation space by:

𝐺 (𝒆𝑖 ) = Tanh(𝑴2Tanh(𝑴1𝒆𝑖 )), (8)

where 𝐺 (𝒆𝑖 ) ∈ R2𝑑ℎ×1 denotes the class prototype of the 𝑖-th cat-
egory in the utterance representation space. 𝑴1 ∈ R𝑑𝑠×𝑑𝑤 and
𝑴2 ∈ R2𝑑ℎ×𝑑𝑠 are trainable parameter matrices. Then the probabil-
ity that an utterance 𝒙 belongs to the 𝑖-th category can be calculated
by:

𝑝𝑖 (𝒙) =
𝑒𝑥𝑝 (−𝑑 (𝒙,𝐺 (𝒆𝑖 )))∑
𝑗 𝑒𝑥𝑝 (−𝑑 (𝒙,𝐺 (𝒆 𝑗 )))

, (9)

where 𝑑 denotes the Euclidean distance.



Table 1: Dataset statistics.

Dataset SNIPS SMP

Vocab Size 11641 2682
Number of Samples 13802 2460
Average Sentence Length 9.05 4.86
Number of Seen Intents 5 24
Number of Unseen Intents 2 6

In the meta-training procedure, we aim to maximize the probabil-
ities between each utterance and its corresponding class prototype,
which can be reformulated by minimizing the following loss func-
tion:

L𝑡𝑟𝑎𝑖𝑛 = −
∑︁

𝒙∈𝑋meta-s

𝑙𝑜𝑔𝑝𝑖 (𝒙). (10)

By optimizing L𝑡𝑟𝑎𝑖𝑛 with gradient descent, each utterance will
be forced to have higher affinity with its corresponding class pro-
totype. During meta-training, we take all utterances in meta-seen
classes to train all parameters in the whole model, includingmixture
attention module and meta-learning module.

2.3.2 Meta-adapting. To enhance the model generalization ability,
we add the meta-adapting phase to refine the model parameters
in 𝐺 using meta-unseen classes. Specifically, given an utterance
𝒙 ∈ 𝑋meta-u, we use the model learned in meta-training phase to
obtain its probability distribution over different classes, i.e., 𝑝 (𝑦 =

𝑖 |𝒙) =
𝑒𝑥𝑝 (−𝑑 (𝒙,𝐺 (𝒆𝑖 )))∑
𝑗 𝑒𝑥𝑝 (−𝑑 (𝒙,𝐺 (𝒆 𝑗 ))) , where 𝒆𝑖 is the embedding of the 𝑖-

th label description in meta-unseen classes. By minimizing the
negative log-probability of the true class 𝑦𝑘 , i.e.,

L𝑎𝑑𝑎𝑝𝑡 = −
∑︁

𝒙∈𝑋meta-u

𝑙𝑜𝑔𝑝 (𝑦 = 𝑘 |𝒙), (11)

the model parameters in 𝐺 can be further updated to adapt the
unseen classes.

2.3.3 Testing. Given a test utterance 𝒙∗, its class label 𝑦∗ can be
predicted by:

𝑦∗ = argmin
𝑘

(𝑑 (𝒙∗,𝐺 (𝒆𝑘 )), (12)

where 𝑑 denotes the Euclidean distance. 𝒆𝑘 is the embedding of
the 𝑘-th label description. 𝐺 (𝒆𝑘 ) is the class prototype of the 𝑘-th
category in the utterance representation space.

3 EXPERIMENTS
3.1 Datasets and Splitting
3.1.1 Datasets. We follow [19, 35] to evaluate our method on two
real dialogue datasets: SNIPS [5] and SMP [43]. SNIPS is an open-
source single turn English corpus dialogue, which includes crowd-
sourced queries distributed among 7 user intents. SMP is a Chinese
dialogue corpus for user intent classification released in China Na-
tional Conference on Social Media Processing. The detailed dataset
statistics are summarized in Table 1.

3.1.2 Data Splitting. For data splitting, we follow [19, 35] to divide
the datasets. Specifically, for standard zero-shot intent classification,
we take all the samples of seen intents as the training set, and all the

samples of unseen intents as the test set. For generalized zero-shot
intent classification, we randomly take 70% samples of each seen
intent as the training set, and the remaining 30% samples of each
seen intent and all the samples of unseen intents as the test set.

3.2 Baselines
We compare the proposed model with the following state-of-the-
art baselines: DeViSE [9], CMT [28], CDSSM [4], ZSDNN [15], In-
tentCapsNet [34], ReCapsNet [19], RL Self-training[37], CTIR [26]
and SEG [35]. SEG is a plug-and-play unknown intent detection
method, and it integrates with ReCapsNet in the original paper. For
fair comparison, we combine our method with SEG and test it in
generalized ZSIC. Note that SEG is unsuitable in standard ZSIC as
all test utterances are from unseen classes.

In addition, we conduct ablation study to evaluate the contribu-
tions of different components in our model. Specifically, we test our
model without (w/o) general word importance (gw), class-specific
word importance (cw), distributional signature (DS) attention, MLP
attention and meta-adapting phase respectively.

3.3 Implementation Details
3.3.1 Evaluation Metrics. We adopt two widely used evaluation
metrics: accuracy (ACC) and micro-averaged F1 scores (F1) to eval-
uate the performance. Both metrics are computed with the average
value weighted by the support of each class, where the support
means the sample ratio of the corresponding class.

3.3.2 Experiment Settings. In terms of embeddings, for SNIPS, we
use the embeddings pre-trained on English Wikipedia [2]. For SMP,
we use the Chinese word embeddings pre-trained by [17]. We also
evaluate our model with word embeddings pre-trained by BERT
[6] on the standard zero-shot classification task. In generalized
zero-shot tasks, to alleviate the issue that the model tends to clas-
sify samples into seen classes, we set a threshold _. If a sample’s
maximum predictive value is less than _, the model will classify it
among unseen classes. And we set _ = 0.6 on SNIPS, and _ = 0.8
on SMP respectively.

In addition, we use the Adam optimizer [14] to train the proposed
model. For SNIPS, in standard and generalized zero-shot intent
classification, we set the initial learning rate 0.006 and 0.002 for
meta-training and meta-adapting respectively. And in each episode,
we randomly select 4 intents from seen intents as meta-seen classes,
and the remaining intents as meta-unseen classes. For SMP, in
standard and generalized zero-shot intent classification, we set the
initial learning rate 0.008 and 0.004 for meta-training and meta-
adapting respectively. And in each episode, we randomly select 21
intents from seen intents as meta-seen classes, and the remaining
intents as meta-unseen classes.

3.4 Result Analysis
Table 2 and Table 3 report the experimental results of generalized
zero-shot classification and standard zero-shot classification respec-
tively. Some baselines results are taken from [35]. And the best
result is highlighted in bold. Based on the results, we can make the
following observations.



Table 2: Results of generalized zero-shot classification. ‘Seen’, ‘Unseen’ and ‘Overall’ denote the performance on the utterances
from seen intents, unseen intents, and both seen and unseen intents respectively.

SNIPS SMP

Method Seen Unseen Overall Seen Unseen Overall

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

DeViSE [9] 0.9481 0.6536 0.0211 0.0398 0.4215 0.3049 0.8040 0.6740 0.0270 0.0310 0.5030 0.4250
CMT [28] 0.9755 0.6648 0.0397 0.0704 0.4438 0.3271 0.8314 0.7221 0.0798 0.1069 0.5398 0.4834
CDSSM [4] 0.9549 0.7033 0.0111 0.0218 0.4234 0.3194 0.6653 0.5540 0.1436 0.1200 0.4864 0.4052
ZSDNN [15] 0.9432 0.6679 0.0682 0.1041 0.4488 0.3493 0.7323 0.6116 0.0590 0.0869 0.5013 0.4316
IntentCapsNet [34] 0.9741 0.6517 0.0000 0.0000 0.4200 0.2810 0.8850 0.7281 0.0000 0.0000 0.5375 0.4423
ReCapsNet [19] 0.9664 0.6743 0.1121 0.1764 0.4805 0.3911 0.8230 0.7450 0.1720 0.1526 0.5674 0.5124
RL Self-training [37] 0.7391 0.7558 0.5505 0.6901 0.6257 0.7182 0.5254 0.4791 0.4538 0.4479 0.4654 0.4868
CTIR [26] 0.9693 0.6524 0.0067 0.0132 0.4220 0.2890 0.8322 0.7016 0.1839 0.2083 0.5774 0.5077
SEG [35] 0.8644 0.8658 0.6961 0.6931 0.7685 0.7674 0.6821 0.7359 0.4848 0.3806 0.6046 0.5963

Ours (w/o gw) 0.6328 0.5236 0.4291 0.4671 0.5170 0.4915 0.7584 0.7320 0.3964 0.3942 0.6161 0.5992
Ours (w/o cw) 0.7514 0.6143 0.4714 0.5512 0.5922 0.5784 0.7383 0.7179 0.3808 0.3051 0.5978 0.5556
Ours (w/o DS attention) 0.7537 0.6036 0.4671 0.5342 0.5907 0.5641 0.7970 0.7464 0.2772 0.2868 0.5927 0.5657
Ours (w/o MLP attention) 0.7551 0.5944 0.4835 0.5566 0.6006 0.5729 0.8087 0.7446 0.2047 0.2268 0.5713 0.5411
Ours (w/o meta-adapting) 0.9507 0.6702 0.2071 0.3267 0.5279 0.4749 0.7651 0.7159 0.2876 0.2916 0.5774 0.5491

Ours 0.7588 0.5944 0.5053 0.5576 0.6146 0.5735 0.7466 0.7268 0.4352 0.4107 0.6242 0.6026
Ours (SEG) 0.7750 0.7903 0.7708 0.7597 0.7726 0.7729 0.7061 0.7046 0.5025 0.4740 0.6261 0.6140

Table 3: Results of standard zero-shot classification.

Method SNIPS SMP

Acc F1 Acc F1

DeViSE [9] 0.7447 0.7446 0.5456 0.3875
CMT [28] 0.7396 0.7206 0.4452 0.4245
CDSSM [4] 0.7588 0.7580 0.4308 0.3765
ZSDNN [15] 0.7165 0.7116 0.4615 0.3897
IntentCapsNet [34] 0.7752 0.7750 0.4864 0.4227
ReCapsNet [19] 0.7996 0.7980 0.5418 0.4769
RL Self-training [37] 0.8253 0.8726 0.7124 0.6587
CTIR [26] 0.6865 0.6823 0.5462 0.5739

Ours (w/o gw) 0.6832 0.6676 0.5440 0.5492
Ours (w/o cw) 0.7349 0.7342 0.5233 0.4460
Ours (w/o DS attention) 0.7480 0.7471 0.5492 0.5292
Ours (w/o MLP attention) 0.8111 0.8072 0.4741 0.4175
Ours (w/o meta-adapting) 0.8390 0.8370 0.5751 0.5436

Ours 0.8444 0.8443 0.6088 0.5803
Ours (BERT) 0.9139 0.9135 0.7335 0.7022

• In the standard zero-shot intent classification task, our model
outperforms other strong baselines on both SNIPS and SMP,
which validates the effectiveness of our model in dealing
with zero-shot intent classification. In addition, we can also
observe that the pre-trained model BERT can improve our
model performance effectively.

• In the generalized zero-shot intent classification task, our
model performs worse than some methods in detecting seen
intents. This is because that some baselines tend to classify
the test utterances as seen intents, which also explains the
reason that these methods perform much worse in detecting

unseen intents. From the overall performance, it can be ob-
served that our method can achieve satisfactory results in
most cases.

• When combining with SEG, our method performs much bet-
ter than the original version, which indicates that unknown
intent detection is helpful to improve generalized zero-shot
intent classification and achieve remarkable performance.

• From ablation study, it can be seen that all modules con-
tribute to the model to some extent, which proves that the
mixture attention is powerful and the meta-adapting phase
is indispensable.

4 CONCLUSION
In this paper, we propose a novel meta-learning paradigm for zero-
shot intent classification. The performance gains of the proposed
method come from two aspects. By constructing mixture attention
mechanism, more reasonable word importance can be learned to
obtain better semantic features for utterances. By introducing meta-
learning paradigm, the model can achieve better generalization abil-
ity to classify utterances in unseen classes. Extensive experimental
results confirm the superiority of our method on both standard and
generalized zero-shot intent classification tasks. In future work, we
plan to extend our framework to deal with multiple-label zero-shot
intent detection, and explore more meta-learning strategies for
zero-shot intent classification.
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