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ABSTRACT
Latency and efficiency issues are often overlooked when evaluating

IR models based on Pretrained Language Models (PLMs) in reason

of multiple hardware and software testing scenarios. Nevertheless,

efficiency is an important part of such systems and should not be

overlooked.

In this paper, we focus on improving the efficiency of the SPLADE

model since it has achieved state-of-the-art zero-shot performance

and competitive results on TREC collections. SPLADE efficiency can

be controlled via a regularization factor, but solely controlling this

regularization has been shown to not be efficient enough. In order

to reduce the latency gap between SPLADE and traditional retrieval

systems, we propose several techniques including L1 regularization

for queries, a separation of document/query encoders, a FLOPS-

regularized middle-training, and the use of faster query encoders.

Our benchmark demonstrates that we can drastically improve the

efficiency of these models while increasing the performance metrics

on in-domain data. To our knowledge, we propose the first neural

models that, under the same computing constraints, achieve similar
latency (less than 4ms difference) as traditional BM25, while having
similar performance (less than 10% MRR@10 reduction) as the state-
of-the-art single-stage neural rankers on in-domain data.
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1 INTRODUCTION
As search engines process billion of queries every day, efficiency

has been a long standing research topic in Information Retrieval

(IR). For instance, optimizing an inverted index with compression

techniques or adopting an efficient two stage ranking pipeline to
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improve performance while maintaining an acceptable latency are

commonplace for most search engines. Today, the advances of

Pretrained Language Models (PLMs) have challenged the founda-

tions of many ranking systems, which are based on term-based

approaches like BM25 for first-stage ranking [40]. Among this new

generation of first-stage rankers, there exist two types of models.

On one hand, the dense retrieval models [16, 25, 39, 49] rely on

Approximate Nearest Neighbors (ANN) techniques developed by

the Computer Vision community. On the other hand, the sparse re-
trieval models [1, 6, 11, 13, 29, 37, 52] performmatching at the token

level and therefore use a traditional inverted index for scoring.

If TREC competitions and other retrieval benchmarks report

performance measures such as NDCG@10 and have shown the

immense benefit of pretrained language models, the overall picture

for latency is less clear. In fact, measuring the latency of these novel

models is challenging as there could be multiple testing conditions.

For instance, a standard dense bi-encoder may rely on multiple

CPUs to perform the search while some systems rely only on a sin-

gle core and others onmulti-core implementations. An advantage of

sparse retrieval models is the vast literature [4, 8, 9, 22, 24, 30, 32, 46]

in optimizing retrieval with inverted indices. Furthermore, these

works achieve impressive mono-cpu retrieval numbers for tradi-

tional sparse retrieval models [26], making it simple to improve

the scalability of the system (one just needs to add more cpus).

This differs vastly from the context of dense retrieval, where multi-

threaded (and sometimes even GPU [16]) seems to be the norm.

Second, integrating a sparse ranker into an existing system may be

less costly compared to the integration of a dense retrieval system.

Note that even if the dense systems use a lot more compute (multi-

cpu core + GPU vs mono-cpu core), the average latency
1
from exact

search of dense models on gpu (e.g TAS-B has retrieval+inference

of 64 ms for 34.3 MRR@10) [16] tend to be equivalent than the

one of sparse models on mono-cpu (e.g unicoil-T5 has retrieval +

inference 36 ms + 45 = 81ms for 35.2 MRR@10) [27]. We include a

short comparison on the appendix, but will focus on sparse retrieval

for the rest of this work.

In this work, we focus on the SPLADE model
2
as it was shown to

be a state-of-the-art sparse retrieval model [10]. Regarding latency,

the model was actually optimized for multi-thread retrieval and no

numbers were given, until a recent study [27] reported that SPLADE

was not well suited to mono-cpu retrieval environment. In this

paper we aim at reducing this gap in performance, and thus focus

on reducing mono-thread retrieval of SPLADE models under the

PISA [31] and ANSERINI [51] frameworks. Our main contribution

is the proposal of 4 adaptations to the SPLADE model, namely:

1
Considering the MSMARCO dataset of 8.8M passages and the systems used in the

respective papers

2
We include in the appendix a discussion on how these improvements may be included

in other sparse models
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i) separation of query and document encoders, ii) change the query

regularization to L1, iii) a FLOPS-regularized PLM, and iv) the use of

a smaller PLM for query encoding. In order to showcase the utility

of our adaptations, we focus on three main research questions:

• RQ1: How does the performance (efficiency and effective-

ness) of SPLADE evolve as we introduce each subsequent

adaptation?

• RQ2: How do these new SPLADE models compare to the

state of the art in terms of in-domain sparse retrieval?

• RQ3: How do these new SPLADE models compare to the

state of the art in terms of out-of-domain sparse retrieval?

2 PREVIOUS WORKS
Measuring efficiency of PLM-based retrieval systems: Com-

paring efficiency metrics between methods is a complicated task.

While benchmarking effectiveness is easy because all methods fo-

cus on solving the same task, and thus we can find “one” metric

that is comparable between all methods, evaluating efficiency is

naturally a trade-off (how much impact does it have on the effec-

tiveness metric). Efficiency depends on which type of system it

is focused on (multi-thread or mono-thread per query retrieval)

and also depends heavily on the machine used to perform the mea-

sures [15]. For example, efficient sparse retrieval is a domain in

itself, with a rich diversity of methods [4, 8, 9, 22, 24, 30, 32, 46]

that have been proposed in order to improve their retrieval times.

Note that the “best method” depends on various factors [22, 27]

and there is no one method that is better than all the others. In this

work, our focus is to propose adaptations to the SPLADE model

and not to the retrieval process itself, thus we avoid these open

questions by using the document-at-a-time retrieval setup from

previous works [26, 27] in order to perform our study. However,

we believe that jointly improving the PLM-based model and the

retrieval process should lead to even more improved performance.

PLM-based dense retrieval: Recently, IR tasks have been taken

by an avalanche of PLM-based dense retrievers [12, 16, 25, 39, 49].

However, due to their dense nature, efficiency studies have been

mostly confined on multi-cpu or even GPU-based systems [16]

and will therefore not be considered here as they are not compa-

rable. For instance, [16] reports “quick” methods that have less

than 70ms in multi-cpu/GPU systems, while we consider models

with less than 10ms on mono-cpu settings. Furthermore, when

we consider dense retrieval models, they either have increased la-

tency/space constraints (for example ColBERTv2 [42], even with

the more efficient PLAID approach [41]) or have been shown to

have lower performances on out-of-domain retrieval [44]. Note that

there seems to be a new solution for the latter, which calls for a

large-batch contrastive pre/middle-training of the models, which

seems to aliviate (but not completely correct) this problem as seen

in Contriever [19] and LaPraDoR [50].

PLM-based sparse retrieval:Another way to perform retrieval

using PLMs is to use a lexical (sparse) base [1, 6, 10, 11, 13, 29, 37,

52]. These systems take advantage of the PLMs to perform doc-

ument and (sometimes) query expansion while also doing term-

reweighting. Among the previously cited sparsemodels, SPLADE [10]

has shown the best performance in out-of-domain tasks. However,

it was originally presented with the same multi-cpu techniques

than the dense models, which leads actually to large latencies on

mono-cpu conditions [27]. We thus use SPLADE as the basis for

this work, where we aim to improve its efficiency on mono-cpu

retrieval. In the following, we do a quick summary on SPLADE.

SPLADE: It uses the BERT [7] token space to predict term im-

portance (|𝑉 | ≈ 30𝑘). These term importances are based on the

logits of the Masked Language Model (MLM). Let 𝑑 a document and

𝑞 a query, and let𝑤𝑖 𝑗 be the logit for 𝑖th token in 𝑑 for the proba-

bility of term 𝑗 . In other words, weight 𝑤𝑖 𝑗 is how important the

PLM considered the term 𝑗 of the token space to the input token 𝑖 .

SPLADE then takes the importance for each token in the document

sequence and max pools them, to generate a vector in the BERT

vocabulary space. SPLADE models are then optimized via distilla-

tion. These models jointly optimize: i) distance between teacher

and student scores, and ii) minimize the expected mean FLOPS of

the retrieval system. This joint optimization can be described as:

L = L𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 + 𝜆𝑞L𝑞

FLOPS + 𝜆𝑑L𝑑
FLOPS (1)

where LFLOPS is the sparse FLOPS regularization from [38] and

L𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 is a distillation loss between the scores of a teacher

and a student (in this work we use KL Divergence [14, 23] as the

loss and a cross-ranker [35] as teacher). Note that there are two

distinct regularization weights, so that one can put more sparsity

pressure in either queries or documents, but always considering

the amount of FLOPS.

SPLADE-doc: In [10] the authors also propose to consider a

document-only version of SPLADE, i.e without query encoder. In

this case, there is no query expansion, only tokenization is done,

with all query terms having the same importance.

3 METHODS
Analyzing the setup from themulti-cpu retrieval used in SPLADEv2 [10]

and the mono-cpu in [27], we derive that the main source of im-

provement is the reduction of SPLADE query sizes
3
, instead of

focusing solely on the FLOPS measure. The reason is that in mono-

threaded systems, there aremany techniques that allow for reducing

the amount of effective FLOPS computed per query, but query size

is then a major bottleneck. To get faster and more effective SPLADE

models, we propose the following improvements: i) Searching for

appropriate hyperparameters, ii) Improving data used for training,

iii) Separating document and query encoders, iv) Changing query

regularization to L1, v) Middle training of a PLM with a FLOPS

regularization, and vi) Smaller PLM query encoder.

Of those adaptations, i) and ii) are just used in order to find better

baselines. On the other hand, iii), iv), v) and vi) are novel contribu-

tions. Note that, we consider each adaptation sequentially, so that

for example vi) is the system with all the proposed adaptations.

3.1 Baselines
i) Searching for appropriate hyperparameters: First of all,

we checked if we could get more efficient networks with SPLADE

as we change some training hyperparameters. Notably, we change

the distillation loss from MarginMSE [17] to the more classical KL

Divergence [14, 23] loss as in our studies it was more stable. Then,

3
amount of tokens at the SPLADE output
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we also search for a set of (𝜆𝑞, 𝜆𝑑 ) in order to have controlled query

and document sizes. At the end of that experiment, we chose to

keep a set of three configuration: Small, Medium, Large, where (S)
is the sparsest configuration, (M) has the same query sparsity as

S, but larger documents and (L) has larger queries than S and the

same document sparsity as M.

ii) Improving data used for training: The second improve-

ment comes from changing the data and model used for distillation.

The goal is to improve the effectiveness of the networks chosen

on the previous experiment, while avoiding increasing the cost

of inference. To do so, we move from the more traditional set of

distillation data from [17] to a newer one available from hugginface

4
. The main difference is while the first one uses negatives from

BM25, the latter uses negatives coming from various sources (dense

models) and a more powerful teacher (trained with distillation).

3.2 Efficient SPLADE Models
With better baselines for SPLADE, let us introduce some changes

to the overall model in order to improve its efficiency:

iii) Separating document andquery encoders: While search-

ing for proper baselines, we noticed that it was hard to achieve

smaller queries, as even very large differences in 𝜆𝑑 and 𝜆𝑞 did

not produce smaller queries. This is because the encoder for both

documents and queries is the same and there is nothing to differ-

entiate between them. Therefore we propose to have two distinct

encoders for queries and documents, thus relieving the model to

find an optimal trade-off for document and queries with a single

model.

iv) L1 Regularization for Queries: A second change is to re-

consider the FLOPS measure. While it make sense for document

representation, it may not be the best measure accounting for la-

tency of retrieval system. This is why we propose to change the

regularization type of our query encoder to a simple L1 loss rather

than the FLOPs on the query vectors.

v) PLM Middle Training with FLOPS regularization: Re-
cently there has been a surge [12, 18] in what we call “middle-

training” of PLMs for IR. The idea is that before fine-tuning on

a dataset, one should refine a pre-trained model on the data and

task that it will perform, with the most known example being Co-

Condenser [12] for dense networks, that performs two steps of

middle training: i) condensing information into the CLS with MLM

ii) training jointly an unsupervised contrastive and MLM losses [7].

In this work, we investigate if performing a middle-training step,

where we use an MLM task with a FLOPS regularization on the

MLM logits, improves the final fine-tuned SPLADE model.

vi) Smaller PLM query encoder: An important factor when

computing the latency of PLM-based models is the latency of the

query encoder. This could be indeed very costly considering that we

are on the mono-threaded, no-GPU configuration. In the SPLADEv2

paper [10] the authors propose to use a scheme without any query

encoder (called SPLADE-doc). In this work, we evaluate two meth-

ods: i) remove the stopwords of the queries and retrain SPLADE-doc

4
in https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives

model to further improve this method (we note by
†
the systems

that remove the stop words of queries), and ii) use a very efficient

PLM on the query encoder, namely BERT-tiny [3]
5
.

4 EXPERIMENTAL SETTING AND RESULTS
We trained and evaluated our models on the MS MARCO passage

ranking dataset [2] in the full ranking setting. The dataset contains

approximately 8.8M passages, and hundreds of thousands training

queries with shallow annotation (≈ 1.1 relevant passages per query

in average). The development set contains 6980 queries with similar

labels. We also consider the full BEIR benchmark [44] (18 datasets)

which judges the zero-shot performance of IR models over diverse

set of tasks and domains.

Measuring efficiency: In order to compute our efficiency num-

bers, all experiments are performed in the same machine, with an

Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz CPU and sufficient

RAM memory to preload indexes, models and queries on memory

before starting the experiment. Experiments are performed using

Anserini and PISA
6
for retrieval (following instructions obtained

by contacting the authors of [27]) and PyTorch for document/query

encoding. All efficiency experiments with PyTorch use the bench-

marking tool from the transformers library [48].

The latency of query encoder PLMs was measured using a se-

quence length of 8 for average latency and 32 for 99 percentile

latency. Latency is computed as a simple addition of query en-

coding and retrieval time. The DistilBERT query encoder has an

average latency of 45.3ms and a 99 percentile latency of 57.6ms,

while the BERT-tiny [3] query encoder has an average latency of

0.7ms and a 99 percentile latency of 1.1ms.

SPLADE Training: We use DistilBERT-base as the starting

point for most models, safe for the improvements v) and vi), which
use a middle-trained DistilBERT and middle-trained BERT-tiny.

SPLADE Models are trained for 250k steps with the ADAM opti-

mizer, using a learning rate of 2𝑒−5 with linear scheduling and a

warmup of 6000 steps, and a batch size of 128. We keep the last

step as our final checkpoint. For the SPLADE-doc approach, we

follow [10] and perform a reduced training of only 50k steps. We

consider a maximum length of 256 for input sequences. In order

to mitigate the contribution of the regularizer at the early stages

of training, we follow [38] and use a scheduler for 𝜆, quadratically

increasing 𝜆 at each training iteration, until a given step (50k for

SPLADE and 10k for SPLADE-doc), from which it remains con-

stant. Middle-training is performed using default MLM parameters

from [47], with an added FLOPS regularization [38] of 𝜆 = 0.001.

Concerning (𝜆𝑞, 𝜆𝑑 ), models i), ii), iii) use the same hyperparame-

ters: S= (0.1, 5𝑒 − 3), M= (0.1, 5𝑒 − 4), and L= (0.01, 5𝑒 − 4), while
models iv), v) and vi) use S=(5𝑒 − 3, 5𝑒 − 3), M= (5𝑒 − 4, 5𝑒 − 4),
L= (5𝑒 − 4, 5𝑒 − 4).

RQ1: How does the performance (efficiency and effective-
ness) of SPLADE evolve as we introduce each subsequent
adaptation? First we verify the relevance of adding each subse-

quent adaptation. Note that each “level” [i), ii), iii)...] represents

5
Another possibility would be to perform quantization and/or compression of the

PLM, but we leave exploring this to future work

6
In the main paper we report PISA and leave Anserini for the appendix.

https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives
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its change and all the others that came before. We represent

the efficiency and effectiveness of the systems in Figure 1, using

pytorch for PLM inference and PISA for mono-cpu retrieval. For

each model we have three points, representing each combination of

𝜆𝑑 , 𝜆𝑞 that we introduced in the previous section. SPLADEv2-distil

is not shown on the Figure because it made it hard to read, with a

reported latency of 265 [27] and a total latency measured on our

system of 691 ms.

0 20 40 60 80 100 120

0.35

0.36

0.37

0.38

0.39

0.4

Latency (PISA) in ms

M
R
R
@
1
0

i) + ii) - Baseline

iii) - Separate encoders

iv) - L1 Regularization

v) - PLM with FLOPS

vi) - BERT-tiny

vi) - Splade-doc

vi) - Splade-doc
†

Latency DistilBERT

Latency BERT-tiny

SoTA - ColBERTv2 [42]

Figure 1: Latency comparison between all proposed im-
provements. †: queries without stop words.

First, we see that just using a stronger baseline allows us to

decrease the latency in PISA by almost 10 times (same in Anserini)

of the latency of SPLADEv2-distil, while keeping similar or even

improved performance on MS MARCO. This is expected, because

themodel used for comparison in [27] was not optimized for latency.

We see also that all models trained are close to the single-stage

state-of-the-art retrieval performance of ColBERTv2 [42](at most a

10% reduction in MRR@10 performance).

Second, we see that improvements iii) through v) each success-

fully improve latency, while keeping similar effectiveness on MS

MARCO. Note however, that each one seems to bring diminishing

gains, because they are heavily impacted by the inference latency of

DistilBERT, especially on PISA, for example, sparsest v) has a gain

of 1.2ms compared to sparsest iv), which represents an approximate

20% reduction retrieval time (PISA), but an overall reduction of

just 2% (PISA+Pytorch) . In order to mitigate this, we introduce vi)

which aims at speeding up the query encoder.

With vi) we note a trade-off, that at the cost of a slight effective-

ness loss (≈1.0 MRR@10 on MS MARCO), we are able to greatly

reduce the latency of the sparsest SPLADE models we test (≈10 fold
PISA, ≈2 fold Anserini). For the query-encoder choice, BERT-tiny

had a slight advantage over SPLADE-doc, showing the importance

of a query-encoder, even if it is a very small one.

RQ2: How do these new SPLADE models compare to the
state of the art in terms of in-domain sparse retrieval? In

the previous question, we verified that the proposed improvements

made sense in the context of SPLADE, but what does that mean

against other methods in sparse retrieval? To answer this question

we compare a subset of our systems {v) and vi)} to the baselines

used in [27], namely: i) BM25, ii) DocT5 [36], iii) DeepImpact [29],

and iv) uniCOIL-Tilde [53]. All methods are evaluated on our ma-

chine and DistilBERT latency is added to uniCOIL-Tilde. Results

are displayed in Figure 2.
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v) - PLM with FLOPS

vi) - BERT-tiny

vi) - Splade-doc
†

BM25
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†
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DeepImpact [29]

uniCOIL-Tilde [53]

Latency distilbert

Latency BERT-tiny

SoTA - ColBERTv2 [42]

Figure 2: Latency comparison between the proposed adapta-
tions and sparse methods. †: queries without stop words.

We can see that compared to the non-BM25 techniques we can

achieve systems that are both more efficient and have better effec-

tiveness for in-domain sparse retrieval
7
. Finally, compared to BM25

we achieve similar efficiency, with a 2x gain on effectiveness.

RQ3: How do these new SPLADE models compare to the
state of the art in terms of out-of-domain sparse retrieval?
In the previous sections we showed the efficiency and effective-

ness of the proposed adaptations of SPLADE in-domain, i.e. on MS

MARCO. However, one of the main advantages of the SPLADEv2-

distil model was in out-of-domain retrieval, notably on the BEIR

benchmark (at the time of submission SoTA on the online bench-

mark). We now study the effect of our improvements, with MS

MARCO MRR@10 and BEIR mean nDCG@10 results shown in

Table 1
8
.

Table 1: Results on out-of-domain data and MS MARCO ef-
ficiency. Results for MSMARCO are given as MRR@10 on
the 6980 dev set queries and nDCG@10 over the TREC-
19 [5] queries, while BEIR results are the average nDCG@10.
BEIR* is the combination of BM25 and the row’smethod. BT:
BERT-tiny query encoder. †: queries without stop-words. §:
Differs from [10] as we consider the 18 beir datasets.

Method Latency MSMARCO TREC19 BEIR BEIR
★

Baselines

BM25
† 4 19.7 50.6 43.0 -

DocT5 [36] 11 27.6 64.2 44.1 -

SPLADEv2-distil [10] 691 36.8 72.9 47.0§ 49.3

Proposed models

VI) BT-SPLADE-S 7 35.8 67.2 39.2 45.9

VI) BT-SPLADE-M 13 37.6 69.4 42.1 47.1

VI) BT-SPLADE-L 32 38.0 70.3 44.5 48.0

7
Note that some of the improvements proposed here could be applied to these systems,

check the appendix for a discussion

8
A detailed per dataset result table is available in the Appendix.
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Unfortunately, the gains in efficiency and in-domain effective-

ness seem to come at a cost of reducing the performance of the

models outside of the MS MARCO domain. While it is still has de-

cent effectiveness compared to BM25 (which is not the case for most

dense models), it still loses a lot of performance when compared

to SPLADEv2-distil. Investigating the performances per dataset

we noticed some sharp losses on some datasets, especially on the

QUORA dataset (where nDCG@10 falls from 0.84 on SPLADEv2-

distil to 0.46 on BT-SPLADE-S), which is expected as it uses queries

(questions) as both documents and queries.

One way to mitigate this overall loss of effectiveness is by merg-

ing the document scores of the proposed models with the ones

obtained by BM25. This comes at a cost, either adding the latency

of BM25 (4ms) or by duplicating the computing cost but keeping the

latency of the slowest model. We use a simple score combination

inspired by [25], where documents not present in the top-100 of

a model are assigned its smallest score and then normalizing the

scores based on the maximum and minimum document scores of

the method. Finally we simply sum the scores of the two meth-

ods, assigning equal weight to both. We represent the ensemble

as column BEIR* on the table. We see that it allows us to slightly

outperform SPLADEv2-distil by itself, while running under 40 ms

of latency on a single cpu-core. On the more efficient models, com-

bining our method with BM25 allows us to outperform DocT5 on

BEIR on similar latency (11ms).

Finally, we also note that SPLADEv2-distil combined with BM25

is able to outperform methods that came after it [33, 34, 50] and

had claimed the “state-of-the-art”. In other words, it is, as far as we

are aware, the best result available on BEIR (49.3 mean on all 18

datasets).

5 CONCLUSION
In this paper we investigated the efficiency of SPLADE models and

proposed small adaptations that led to more efficient systems. We

demonstrated that the proposed adaptations improved both the

efficiency and effectiveness of SPLADE for in-domain performance

and that the small degradatation on out-of-domain performance

can be mitigated by combining with traditional sparse retrieval

techniques. We also note that some of these adaptations could be

applied to other systems, but that comparison is left as future work.

In summary, to our knowledge, we propose the first neural models

that achieve similar mono-cpu latency and multi-cpu throughput as
traditional BM25, while having similar performance than state-of-

the-art first-stage neural rankers on in-domain data (MS MARCO)

and comparable performance on the (BEIR) benchmark to both

BM25 and to most dense first-stage neural rankers.
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A ON THE USE OF MONO-CPU AVERAGE
LATENCY AS A METRIC AND EXCLUSION
OF DENSE COMPARISONS

Throughout the paper we used mono-cpu average latency as the

defacto-metric and excluded dense models from the comparison.

We do benchmarking in this way to make comparisons as fair as

possible, as it allows us to control as many variables as possible. In

the following we give our reasoning for those decisions, which are

up for discussion and are not necessarily the best ones
9
.

In this work we follow [27] for the benchmarking protocol. In

their work they also use mono-cpu average latency as the main

metric for efficiency and this decision seems reasonable to us. For

a search system there will always be a balance of amount of com-

putation available vs amount of incoming requests, and focusing in

“atomic” performance allows for easier scalability later (increasing

QPS is easy by just increasing the amount of computation avail-

able). It also makes it simple to compare with numbers previously

reported in the literature. In the following we will also report QPS

using 128 cpus (i.e. we treat 128 queries in parallel) and show the

relative power of this implementation in a more realistic scenario.

However, even those two metrics still obfuscate possible problems

with long tail queries and index size/maximum concurrent memory

requirements.

Moreover, including densemodels would only increase the amount

of comparison problems. Notably the trade-offs are different (less

of a problem with long tail queries, increased index size/memory

requirements) and an implementation problem arises (can we say

that X representation is faster or is just an advantage of Y implemen-

tation being faster?). We develop more on this types of problems in

the next section.

9
Note to the reader: I would be glad to discuss this further

carlos.lassance@naverlabs.com
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B COMPARISON AGAINST DENSE MODELS
In the main paper we compare mostly against sparse models and

only report the effectiveness of a SoTA dense multi-representation

model (ColBERTv2 [42]). We do so because we do not feel there

is a proper way to compare both methods (for example all our la-

tency numbers use PISA for retrieval and Pytorch for inference,

which is impossible in the case of dense models). For complete-

ness in this section we investigate a comparison between a SoTA

mono-representation dense model (CoCondenser [12] available at

https://huggingface.co/Luyu/co-condenser-marco-retriever) and

the models studied in this work.

In order to study different settings that make different trade-

offs we define three: i) Measuring latency under mono-cpu using

one query at a time, ii) Measuring QPS (queries per second) under

multi-threaded-cpu using batched queries, and iii) Measuring QPS

(queries per second) multi-threaded-cpu disregarding inference

time with batched queries. The dense model uses the FAISS [21]

framework, where we either do brute-force or perform ANN us-

ing HNSW [28] and IVF [43] indexes, without any quantization
10
.

While we don’t feel that any of the three settings are fully fair to

both approaches (they fail to acknowledge index size, maximum

RAM and ANN use for sparse retrieval [27, 45]), we feel that over-

all they represent some of the different scenarios that one would

consider for deploying such systems.

Also note that the dense model already starts at a disavantage

due to the fact that it uses a larger encoder (BERT, around two

times the computational cost of distilBERT) and that as far as we are

aware there are no SoTA dense implementations using BERT-tiny. In

order to consider a distilBERT version of CoCondenser we assume

a perfect quantization of the BERT model into distilBERT and a

scenario where inference is disregarded, which are not realistic, but

give an idea of the best possible numbers are if we had "perfect"

inference. Results are depicted in Figures 3, 4, and 5.
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Figure 3: Latency comparison between the proposed adap-
tations and dense methods with ANN. Results are better up
and to the left. xaxis in 𝑙𝑜𝑔2 scale. CC: CoCondenser. DB Co-
Condenser is an ideal quantization of CoCondenser from
BERT to distilBERT.

10
We tested with product quantization and the efficiency-effectiveness trade-off was

worse than without. As we do not show index size on the figures we preferred to only

deal with non quantized models in order to reduce the number of parameters to tune
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Figure 4: QPS comparison between the proposed adaptations
and dense methods with ANN, considering inference time.
Results are better up and to the right. xaxis in 𝑙𝑜𝑔4 scale. DB-
CoCondenser omitted as differencewithCoCondenser is too
small. CC: CoCodenser
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Figure 5: QPS comparison between the proposed adaptations
and dense methods with ANN, disregarding inference time.
Results are better up and to the right. xaxis in 𝑙𝑜𝑔4 scale. CC:
CoCondenser.

In mono-cpu latency the brute force dense approach takes too

long compared to all others (more than 200 ms), so we do not depict

it on the image. We thus have to compare our sparse retrieval meth-

ods with ANN-based dense retrieval
11
. We were actually surprised

that HNSW allows dense models to be very close to the efficient

SPLADE models (if we consider perfect quantization from BERT to

distilBERT), however, HNSW comes with a drawback of increased

index size: in our case 256 bytes extra per passage or around 2GB

for MSMARCO
12
. If we consider methods that do not increase in-

dex size by much (such as IVF) the difference is still pretty large
13
.

Under multiple cpu threads we still see an advantage for the models

presented in this work, even when compared to BERT-based CoCo-

denser (Fig 4) or even if we disregard inference time (Fig 5. These

results further show the interest of studying sparse representations

(equal/better efficiency-effectiveness trade-off with smaller index).

11
We could also apply ANN to sparse retrieval [27, 45], but we leave this as future

work

12
The entire SPLADE pisa index takes around 1GB for S, 2GB for M and 4GB for L

13
Unquantized dense indexes are around 25GB for fp32 and 12GB for fp16

https://huggingface.co/Luyu/co-condenser-marco-retriever
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Table 2: Detailed BEIR results using 100 times the nDCG@10 for each dataset. BT: BERT-tiny query encoder and BT-S/M/L is
the VI) BT-SPLADE-S/M/L model. †: model uses queries without stop-words. Bold represents best in row.

Dataset

Baselines Proposed

BM25
†

BM25 DocT5 SPLADEv2-distil SPLADEv2-distil+BM25
†

BT-S BT-M BT-L BT-S + BM25
†

BT-M + BM25
†

BT-L + BM25
†

arguana 42.25 41.42 46.90 47.91 48.71 45.47 46.58 47.29 47.28 49.16 50.12
bioasq 47.67 46.46 43.10 50.80 55.22 41.17 45.20 47.13 50.69 53.09 53.72

climate-fever 21.32 21.29 20.10 23.53 26.59 17.09 18.00 18.89 22.81 23.34 23.58

cqadupstack 28.53 29.87 32.50 35.01 34.49 28.22 30.52 33.01 31.35 32.53 33.70

dbpedia-entity 32.26 31.28 33.10 43.50 41.01 35.38 38.91 40.54 37.99 39.35 40.09

fever 74.35 75.31 71.40 78.62 82.44 69.88 72.14 74.87 79.13 79.29 80.04

fiqa 24.30 23.61 29.10 33.61 32.45 28.78 30.07 31.77 30.89 31.15 31.80

hotpotqa 60.13 60.28 58.00 68.44 70.02 56.59 61.31 66.61 63.80 66.34 68.44

nfcorpus 32.67 32.55 32.80 33.43 34.07 31.52 32.43 33.10 33.16 33.50 33.70

nq 32.87 32.86 39.90 52.08 48.20 47.35 49.69 51.48 46.25 47.24 48.33

quora 74.71 78.86 80.20 83.76 84.99 46.29 62.24 72.34 68.45 74.86 78.54

robust04 41.91 40.84 43.70 46.75 49.52 33.73 37.07 40.66 44.02 45.64 46.60

scidocs 15.83 15.81 16.20 15.79 16.92 14.56 14.56 15.25 16.43 16.47 16.80

scifact 66.28 66.47 67.50 69.25 71.58 63.94 65.77 67.43 68.66 69.59 70.45

signal1m 32.69 33.05 30.70 26.56 33.31 24.50 27.21 28.28 31.56 33.47 33.51
trec-covid 71.23 65.59 71.30 71.04 76.89 59.91 64.38 66.06 73.67 75.64 75.63

trec-news 40.33 39.77 42.00 39.18 45.46 35.43 34.80 38.65 43.30 43.03 43.96

webis-touche2020 35.40 36.73 34.70 27.18 35.85 26.54 26.42 27.03 33.53 34.89 35.39

Average 43.04 42.89 44.07 47.02 49.32 39.24 42.07 44.47 45.85 47.14 48.02

Best on 0 1 0 4 11 0 0 0 0 0 2

C DETAILED BEIR RESULTS
For completeness, we now present the BEIR results, dataset per

dataset, in Table 2. We can see that SPLADEv2-distil actually dom-

inates all other approaches in the amount of datasets that it is

the best on (4 by itself and 11 alongside BM25) and that BM25 by

itself is only the best in webis-touche2020. The combination of

VI)BT-SPLADE-M and L with BM25 present more balanced results,

having less datasets that they outperform the others compared

with SPLADEv2-distil, however they have a similar/better average

effectiveness for less than 5% the cost of running SPLADEv2-distil.

D LATENCY RESULTS USING ANSERINI
In the main paper we presented results using PISA, which can be

seen as a best case scenario for sparse representations. A more real

life scenario is to consider Anserini, which is based on Lucene and

is more production ready []. In Figure 6 and Figure 7 we show the

effectiveness and efficiency of each sucessive improvement and

then compare with the other state of the art sparse representation

solutions. However, Anserini brings forward two new questions 1)

the latency of DistilBERT is not as much of a drawback, making

the distance between VI) and V) models less important; 2) If we

re-compare with dense models the conclusions would be different,

which was one of the reasons we preferred to avoid making direct

comparisons with dense in the first place, as the conclusion depends

on the implementation of the retrieval system (the same could hap-

pen if instead of using FAISS [20] we used other implementations

for dense retrieval).

E IMPROVEMENTS ON OTHER SPARSE
MODELS

In this paper we perform benchmarking against other sparse models

as they are found in the literature. This leads to a comparison that

is not necessarily fair, as the same improvements that we make for
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Figure 6: Latency comparison between all proposed im-
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SPLADE could be applied for them. We note that our main objective

was to compare these improvements on the SPLADE model itself

and then re-position it compared to BM25, which cannot make use

of these improvements.

While such a benchmarking methodology is a common place

in the literature (distillation was initially only applied to dense

models [17], query clustering for better in-batch negatives has only

been applied to one specific model [16] and many other examples),

we would like to at least acknowledge the other models and discuss

where these modifications could apply:

E.1 DeepImpact
DeepImpact [29] is a method for generating sparse representations

using the docT5 [36] expansion as a base. There is no query en-

coder and words are stored in the same way as traditional indexes,

i.e. BERT tokenization is not applied. Considering that informa-

tion, and the fact that the model is not trained with distillation,

improvement i), ii) could be easily applied to this model (changing

the hyperparameters/initial networks and using distillation/better

training data). Using better PLM models (Implictly in V) could

also help DeepImpact, but we are not sure what is the best way

(Contriever [19], CoCondenser [12], MLM+Flops?). Most of the

improvements do not apply as there’s no sparsity regularization

(expansion comes from docT5) and no query encoder.

E.2 uniCOIL
uniCOIL [53] is another method that generates sparse represen-

tations, using either docT5 [36] or TILDEv2 [53] to generate the

document expansion, controlled by a fixed parameter. Note that

query expansion is not performed, but words are still stored using

BERT tokenization, which means that it has to be applied during

query inference. As it is the case for DeepImpact, uniCOIL could

benefit from improvements i) and ii). As it is the case for DeepIm-

pact, better PLMs should help, but a better study would have to be

done to define in which way. Finally the other improvements do

not apply, as it does not have a query encoder and does not use

sparsity regularization.
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