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ABSTRACT
Graphs are used in several applications to represent similarities

between instances. For text data, we can represent texts by different

features such as bag-of-words, static embeddings (Word2vec, GloVe,

etc.), and contextual embeddings (BERT, RoBERTa, etc.), leading to

multiple similarities (or graphs) based on each representation. The

proposal posits that incorporating the local invariance within every

graph and the consistency across different graphs leads to a consen-

sus clustering that improves the document clustering. This problem

is complex and challenged with the sparsity and the noisy data in-

cluded in each graph. To this end, we rely on the modularity metric,

which effectively evaluates graph clustering in such circumstances.

Therefore, we present a novel approach for text clustering based

on both a sparse tensor representation and graph modularity. This

leads to cluster texts (nodes) while capturing information arising

from the different graphs. We iteratively maximize a Tensor-based

Graph Modularity criterion. Extensive experiments on benchmark

text clustering datasets are performed, showing that the proposed al-

gorithm referred to as Tensor Graph Modularity –TGM– outperforms

other baseline methods in terms of clustering task. The source code

is available at https://github.com/TGMclustering/TGMclustering.
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• Unsupervised learning; • Clustering → Tensor data; • NLP →
Word embedding; • Graph theory;
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Figure 1: BOW drawbacks for similar text fragments topic.
Green for word co-occurrence, Red for named entities, and
Yellow for semantic meaning.

1 INTRODUCTION
Text clustering is an unsupervised learning task that aims at group-

ing a set of texts based on some extracted features (words, entities,

embedding, etc.) into classes (or clusters). It relies on explicit or im-

plicit similarity/dissimilarity measures for evaluating the similarity

between texts. It is an essential task for many applications such

as document retrieval, sentiment analysis, Spam e-mail detection,

etc. The Bag-Of-Words (BOW) is a popular model for text repre-

sentation [18, 27], where the word occurrences describe the text.

Then some specific clustering algorithms, such as Kmeans [19] or
SphericalKmeans [10], are applied using the BOW representation

to group text into classes [1, 16]. The BOW representation could

achieve excellent clustering results, especially when the clusters’

topics are quite different. However, BOW does not record the text’s

sequence information or rich contextual information. In figure 1,

the example exposes the limits of the BOW representation. The

two text fragments belong to the same topic, but the occurrence of

common words based on the BOW representation is very low (only

one-word ’research’). To tackle these issues, several works made

use of another way of representing text, which is the word em-

bedding representations derived from a Language Model (LM) like

Word2vec [20] and GloVe [23]. Unlike BOW, the dense representa-

tions provided by word embeddings have a better ability to capture

the sense of words and sentences. Some authors use these repre-

sentations to improve text clustering [13, 14, 29] and they show

that the clustering benefits from the two representations, BOW,

and word embeddings, and from the mutual information that arises

from each representation. More recently, sophisticated language

models like the famous Bidirectional Encoder Representations from

Transformers (BERT) achieved state-of-the-art results on a wide

range of NLP (Natural Language Processing) tasks, including ques-

tion answering and text generation [11]. In contrast to the previous

word embedding techniques, which provide one unique vector for

each word of the vocabulary, the word representations delivered

https://github.com/TGMclustering/TGMclustering
https://doi.org/10.1145/3477495.3531834
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by transformers depend on the context of the given word. They are

therefore referred to as contextual word embeddings.

Few works related to Transformer embeddings and entity em-

beddings are devoted to the purpose of text-clustering [5, 21]. In

[31], several text representations (CBOW, BERT, ELMo, etc.) are

compared by performing popular clustering algorithms such as

Kmeans, SpectralClustering. The authors showed that the best-

performing representation depends on the dataset, and it is impos-

sible to choose the best representation in the unsupervised context.

Therefore it is essential to develop new algorithms to leverage

several text representations.

A suitable way of combining the different available represen-

tations consists in using them as part of a 3-way tensor model

representation [25] or 3-way similarity tensor [7]. To achieve the

latter for a given dataset, we first compute different representation

matrices (using BOW, static and contextual embeddings, and en-

tity linking). Then, we compute from each data representation a

similarity matrix viewed as the adjacency matrix of a graph that

connects the documents (nodes). Finally, the similarity matrices are

structured as a 3-way tensor (cf. figure 2).

This paper proposes a general, practical, and parameter-free

method to learn a consensus clustering from multiple similarity

graphs via tensor-based graph modularity. The advantage of the

proposed approach is taking into account the graphs’ properties

through the modularity measure. The proposed approach, referred

to as Tensor Graph Modularity (TGM), optimizes a modularity cri-

terion from multiple similarity matrices organized in a three-way

data (cf. figure 2). We summarize our main contributions in this

work as follows:

• We propose a tensor representation that encloses different

text similarities in the same data structure.

• We develop a novel algorithm TGM for clustering of multiple

graphs based on tensor representation and graph modularity.

• We show that improvements can be achieved by using TGM
compared to more commonly used clustering and tensor

decomposition approaches.

Figure 2: Goal of Tensor-based Graph Modularity (TGM) clus-
tering for text data.

2 MODULARITY MEASURE
Modularity is a measure that is commonly used to evaluate the

quality of graph clustering. This measure has received considerable

attention in several areas since the fundamental work presented in

[22] quantifies the edge density of a graph relative to the expected

edge density of a random graph [26]. The modularity takes values

between -0.5 and 1 [9]. An optimal graph clustering maximizing

the modularity measure can be used for document clustering [2].

Given an undirected graph 𝐺 = (𝑉 ,𝐸) where 𝑉 is the set of

vertices (or nodes) and 𝐸 the set of edges between nodes. Let X ∈
R𝑛×𝑛 be a binary-symmetric adjacency matrix with (𝑖 , 𝑗 ) as entry.

The entry 𝑥𝑖 𝑗 = 1 if there is a link between the nodes 𝑖 and 𝑗 , and 0

otherwise. The modularity measure𝑄(X,Z) for the partition matrix

(or one-hot encoding of the label vector) Z ∈ R𝑛×𝑔 of the graph 𝐺

represented by the adjacency matrix X is defined as follows:

𝑄(X,Z) =
1

2|𝐸|

𝑛∑︁
𝑖 ,𝑗=1

(𝑥𝑖 𝑗 −
𝑥𝑖 .𝑥.𝑗

2|𝐸|
)

𝑔∑︁
𝑘=1

𝑧𝑖𝑘𝑧 𝑗𝑘 (1)

where 𝑔 is the number of clusters, 𝑛 the number of nodes, 2|𝐸| =∑
𝑖 𝑗 𝑥𝑖 𝑗 = 𝑥.. is the number of edges, 𝑥𝑖 . =

∑
𝑗 𝑥𝑖 𝑗 , and 𝑥.𝑗 =

∑
𝑖 𝑥𝑖 𝑗

the degree of the node 𝑖 . The expected probability of edges𝑚𝑖 𝑗 =
𝑥𝑖 .𝑥.𝑗
2|𝐸|

can be represented by the matrix M. We can rewrite the mod-

ularity expression as: 𝑄(X,Z) = 1

𝑥..

∑𝑛
𝑖 ,𝑗=1

∑𝑔

𝑘=1
(𝑥𝑖 𝑗 −𝑚𝑖 𝑗 )𝑧𝑖𝑘𝑧 𝑗𝑘 .

3 TENSOR-BASED GRAPH MODULARITY
We represent the different similarity matrices using a three-way

tensor. A three-way tensor or third-order tensor has three dimen-

sions and is accessed by way of three indices. Notice that scalars are

represented by lowercase letters e.g., 𝑥 , and vectors are expressed

by a bold lowercase letter e.g., x. The matrices are denoted by bold

capital letters e.g., X. And finally, tensors are indicated by bold cap-

ital Euler letters e.g. X. The element (𝑖 , 𝑗 ) of a matrix is expressed

by 𝑥𝑖 𝑗 , and 𝑥
𝑏
𝑖 𝑗
represents the element (𝑖 , 𝑗 ,𝑏) of a tensor.

Given a three-way tensor X, each slice 𝑏 represents a graph 𝐺𝑏

via an adjacency matrix X𝑏
. The value 𝑥𝑏

𝑖 .
=

∑
𝑗 𝑥

𝑏
𝑖 𝑗
represents the

degree of node 𝑖 with regard to the graph 𝐺𝑏 , and 𝑥𝑏
..
=

∑
𝑖 𝑗 𝑥

𝑏
𝑖 𝑗
.

Hereafter, we propose to tackle the tensor clustering problem by

maximizing a modularity-based criterion. More specifically, we aim

at maximizing the following criterion:

Q(X,Z) =
𝑣∑︁

𝑏=1

1

𝑥𝑏
..

𝑛∑︁
𝑖 ,𝑗=1

𝑔∑︁
𝑘=1

(𝑥𝑏𝑖 𝑗 −
𝑥𝑏
𝑖 .
𝑥𝑏
.𝑗

𝑥𝑏
..

)𝑧𝑖𝑘𝑧 𝑗𝑘 . (2)

which be written as

Q(X,Z) =
𝑣∑︁

𝑏=1

1

𝑥𝑏
..

𝑛∑︁
𝑖=1

𝑔∑︁
𝑘=1

𝑧𝑖𝑘

𝑛∑︁
𝑗=1

(𝑥𝑏𝑖 𝑗 −
𝑥𝑏
𝑖 .
𝑥𝑏
.𝑗

𝑥𝑏
..

)𝑧 𝑗𝑘 (3)

Taking 𝑥𝑏
𝑘 .
=

∑
𝑖 𝑧𝑖𝑘𝑥

𝑏
𝑖 .
=

∑
𝑗 𝑧 𝑗𝑘𝑥

𝑏
.𝑗
= 𝑥𝑏

.𝑘
and 𝑥𝑏

𝑖𝑘
=

∑
𝑗 𝑥

𝑏
𝑖 𝑗
𝑧 𝑗𝑘 leads

to

Q(X,Z) =
𝑣∑︁

𝑏=1

1

𝑥𝑏
..

Trace[(X𝑏Z −M𝑏Z)Z⊤] (4)

where M𝑏
= (𝑚𝑏

𝑖 𝑗
) =

𝑥𝑏
𝑖 .
𝑥𝑏
.𝑗

2|𝐸𝑏 |
. Using (3), the goal is to maximize

the modularity through all graphs. The optimal hard clustering

partition is given as follows. At iteration (𝑡 + 1) we have

𝑧
(𝑡+1)

𝑖𝑘
=

{
1 if 𝑘 = argmax

1≤𝑘≤𝑔

∑𝑣
𝑏=1

1

𝑥𝑏
..

∑𝑛
𝑖=1

∑𝑔

𝑘=1
(𝑥𝑏
𝑖𝑘

−
𝑥𝑏
𝑖 .
𝑥𝑏
.𝑘

𝑥𝑏
..

)𝑧
(𝑡 )

𝑖𝑘

0 otherwise.

(5)



The proposed approach deals to propose the Tensor Graph Mod-

ularity algorithm TGM presented in Algorithm 1. The convergence

is achieved when the difference between iteration (𝑡 ) and iteration

(𝑡 + 1) is smaller than 𝜖 .

Algorithm 1: TGM
Input: X, 𝑔.

Initialization: Z(0) randomly at 𝑡 = 0

repeat
(1) Compute Q(X,Z(𝑡 ))
(2) Compute Z(𝑡+1) maximizing Q(X,Z(𝑡 )) using (5)
(3) Compute Q(X,Z(𝑡+1))

until Convergence Q(X,Z(𝑡+1)) − Q(X,Z(𝑡 )) < 𝜖 ;
return Z, Q(X,Z)

4 EXPERIMENTS
In our experiments, we used benchmark datasets for text clustering

with the available true partitions. We evaluate all algorithms using

metrics that compare the obtained clustering partitions and the

true partitions. Three datasets are used to assess the performance

of the different clustering techniques. DBLP1 is proposed in [6],

classic3 by Cornell University and we also used an extract of size

8,000 of the AG-news
1
dataset. The number of samples, clusters,

and features’ dimensions are given for each dataset in Table 1.

Table 1: Description of datasets.

Documents Clusters

Features

BOW Entity GloVe BERT SRoBERTa

Datasets

DBLP1 1,949 3 1,585 1,210

300 1,024 768classic3 3,891 3 8,555 5,341

AG-news 8,000 4 7,873 5,538

4.1 Experimental settings
In order to evaluate the partitions provided by each clustering, we

rely on two well known metrics dedicated to clustering evaluation:

Normalized Mutual Information (NMI) [28] All the clustering al-

gorithms are run 30 times with different initializations, and their

average scores are compared. In our experiments, we use three rep-

resentations for each dataset, depending on the algorithm intended

to be run. Here, we detail the three data representations that we

exploit:

Feature-based representations. In order to use and evaluate standard

clustering algorithms on the three datasets, we represent each doc-

ument by a vector of fixed size, determined by the method that is

used to compute the document representations. Given a dataset of 𝑛

documents, we compute 𝑣 = 5 different data matrices E𝑏 , 𝑏 = 1, . . . 𝑣 ,

each one of size 𝑛 ×𝑚𝑏 , where𝑚𝑏 is the number of features of the

representation and is given in Table 1. The feature-based represen-

tations are:

The obtained representations are represented by E𝑏 ,𝑏 = 1, . . . , 𝑣 ,

as shown in Figure 2, and are given as input for two standard

clustering algorithms, namely Kmeans or SKmeans. In addition, we

consider an AE learning a low-dimension representation of size 15

on which a Kmeans is applied.

1
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

Pair-wise similarity representations. Another way of representing

a dataset of 𝑛 samples consists in assigning a pairwise similarity

measure 𝑥𝑏
𝑖 𝑗
to each pair (𝑖 , 𝑗 ) of document samples as part of the

X𝑏
similarity matrix of size 𝑛 ×𝑛, as shown in figure 2. To compute

the matrix X𝑏
, we use the corresponding representation E𝑏 of the

documents, that is described in the previous section. e𝑏
𝑖
and e𝑏

𝑗

are the 𝑖th and 𝑗th row of E𝑏 respectively. In the case of the BOW

and Entity representations, the similarity is computed by the dot

product e𝑏
𝑖
· e𝑏

𝑗
which represents the number of words or entities in

common in documents 𝑖 and 𝑗 . For the representations obtained by

embedding models (GloVe, BERT, SRoBERTa), we use a binarized

cosine similarity measure, computed as: 𝑥𝑏
𝑖 𝑗

= 1 if

e𝑏
𝑖
· e𝑏

𝑗

∥e𝑏
𝑖
∥ ∥e𝑏

𝑗
∥ ≥ 𝑝 and

0 otherwise, where 𝑝 is the percentile that depends on the sparsity

we expect the similarity matrix to have. For the dense embedding

representations, we use the percentile that leads to a sparsity of

97%. The obtained representations X𝑏
,𝑏 = 1, . . . , 𝑣 of size 𝑛 × 𝑛 are

used as input for three graph clustering algorithms ITCC [12, 15],
CoclustMod2 [2, 24] and SPLBM [3, 4].

Tensor representations. The information provided by each of the 𝑣

representations of documents is intrinsically different, we posit that

each brings some information that are not necessarily present in the

others (cf. the example in Figure 1). In order to harness all the useful

information brought by each representation, we simply reorganize

the similarity matrices X𝑏
,𝑏 = 1, . . . , 𝑣 described in the previous

section as part of a tensor X of size 𝑛 × 𝑛 × 𝑣 . This tensor is used

as input to tensor-based clustering techniques which are PARAFAC
[17], TUCKER [30], TSPLBM3 [6–8] and our proposed algorithm TGM.

4.2 Clustering results
Figure 3 reports the performance obtained by 12 combinations of

slices where 𝑣 ∈ {2, 3, 4, 5} using TGM. We first observe that the

configuration BOW-SRoBERTa is the best performing 2-slices con-

figuration, achieving competitive NMI scores. Then, adding the

BERT and Entity slices improves the performance for all datasets.

Finally, adding the GloVe slice lead us to 𝑣 = 5 and further im-

proves the results for 4 datasets out of 6. This shows that TGM is

capable to harness the useful knowledge provided by the different

representations; it overcomes the possible noise induced by some

representations.

The numerical results (NMI)
4
obtained by each clustering algo-

rithm on the three datasets are depicted in Table 2, where TGMALL
stands for the TGM algorithm applied to a tensor containing all of

the five slices (BOW, BERT, SRoBERTa, GloVe and Entity). We first

observe that the best scores are achieved by TGM in the majority of

cases. The scores obtained by TGM are still competitive. Also, the

(max-min) values on unique representation indicate that none of

the five ways of representing the documents are robust enough

when used individually as input to any of the clustering or graph

clustering algorithms, in comparison to TGM. This also supports

the idea that each of the five representations brings some valuable

2
https://coclust.readthedocs.io/en/v0.2.1/

3
https://tensorclus.readthedocs.io/en/latest/

4
We provide results of TGM using other clustering metrics such as accuracy, purity, and
ARI. The GPU version of TGM for larger datasets is also provided.

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://coclust.readthedocs.io/en/v0.2.1/
https://tensorclus.readthedocs.io/en/latest/


Figure 3: Comparison of TGM results for different combina-
tions of similarity slices.

information, potentially not available in the others. Also, it is im-

portant to note that, being in an the unsupervised setting where

labels are not supposed to be available, it is impossible to know

in advance which slice is more likely to perform best in practice.

Furthermore, among the tensor-based clustering algorithms, TGM is

the one that seems to combine the different representations in the

most effective way, directly followed by TSPLBM [6].

Table 2: Evaluation of documents clustering in terms of NMI.
The bold blue values represent the best performances and
the bold ones the second best performances.

Data Evaluation

Metrics NMI

Max-Min

Algorithms BOW BERT SRoBERTa GloVe Entity

D
B
L
P
1

Clustering

Kmeans 0.20 ± 0.00 0.28 ± 0.00 0.25 ± 0.00 0.08 ± 0.00 0.01 ± 0.00 0.27

SKmeans 0.25 ± 0.04 0.18 ± 0.17 0.37 ± 0.06 0.28 ± 0.03 0.13 ± 0.04 0.24

AE 0.16 ± 0.07 0.16 ± 0.05 0.15 ± 0.02 0.32 ± 0.03 0.09 ± 0.05 0.23

Graph

ITCC 0.33 ± 0.08 0.35 ± 0.07 0.34 ± 0.05 0.10 ± 0.02 0.20 ± 0.03 0.25

CoclustMod 0.32 ± 0.06 0.36 ± 0.11 0.35 ± 0.06 0.13 ± 0.03 0.18 ± 0.04 0.23

(Similarity) SPLBM 0.32 ± 0.09 0.32 ± 0.11 0.33 ± 0.06 0.06 ± 0.03 0.20 ± 0.05 0.13

Tensor

PARAFAC 0.09 ± 0.05

TUCKER 0.08 ± 0.00

TSPLBM 0.50 ± 0.10
TGMALL 0.53 ± 0.09

C
l
a
s
s
i
c
3

Clustering

Kmeans 0.63 ± 0.00 0.85 ± 0.00 0.33 ± 0.00 0.88 ± 0.00 0.62 ± 0.00 0.55

SKmeans 0.84 ± 0.12 0.84 ± 0.08 0.73 ± 0.12 0.86 ± 0.08 0.82 ± 0.00 0.13

AE 0.24 ± 0.09 0.87 ± 0.01 0.20 ± 0.03 0.88 ± 0.02 0.66 ± 0.06 0.68

Graph

ITCC 0.88 ± 0.00 0.45 ± 0.10 0.59 ± 0.12 0.45 ± 0.08 0.81 ± 0.00 0.43

CoclustMod 0.84 ± 0.09 0.38 ± 0.09 0.47 ± 0.06 0.46 ± 0.03 0.81 ± 0.00 0.46

(Similarity) SPLBM 0.36 ± 0.30 0.53 ± 0.08 0.65 ± 0.10 0.43 ± 0.05 0.38 ± 0.25 0.29

Tensor

PARAFAC 0.30 ± 0.17

TUCKER 0.44 ± 0.00

TSPLBM 0.89 ± 0.07
TGMALL 0.91 ± 0.10

A
G
-
n
e
w
s

Clustering

K − means 0.04 ± 0.00 0.45 ± 0.00 0.29 ± 0.00 0.53 ± 0.00 0.02 ± 0.00 0.51

SKmeans 0.12 ± 0.03 0.46 ± 0.11 0.51 ± 0.01 0.53 ± 0.00 0.07 ± 0.02 0.46

AE 0.30 ± 0.04 0.5 ± 0.03 0.29 ± 0.03 0.54 ± 0.01 0.20 ± 0.04 0.34

Graph

ITCC 0.13 ± 0.03 0.37 ± 0.09 0.52 ± 0.06 0.39 ± 0.04 0.07 ± 0.02 0.32

CoclustMod 0.11 ± 0.03 0.33 ± 0.10 0.48 ± 0.07 0.43 ± 0.05 0.07 ± 0.02 0.41

(Similarity) SPLBM 0.06 ± 0.02 0.34 ± 0.10 0.44 ± 0.06 0.33 ± 0.06 0.08 ± 0.03 0.38

Tensor

PARAFAC 0.07 ± 0.03

TUCKER 0.05 ± 0.00

TSPLBM 0.51 ± 0.06

TGMALL 0.55 ± 0.05
1
AE, PARAFAC and TUCKER followed by Kmeans.

Figure 4 shows the evolution of the TGM’s final objective function
Q (normalized to a [0, 1] interval) along with the NMI external

measure of the partitions. First, we observe that the worst values

of Q coincide with the lowest NMI scores. Then, we can notice

an increasing tendency of the NMI that approximately fits the

evolution of Q for most of the datasets, which is confirmed by a

high correlation coefficient. This indicates that, in the absence of

labeled supervision, the modularity optimized by TGM is an effective

unsupervised indicator that can be used to select a run that is likely

to have a good performance.

Figure 4: Evolution of the objective function of TGMALL and
NMIs for the 10 top runs. (Correlation) between the objective
function and the NMI values.

In order to further improve model selection, we perform a con-

sensus clustering approach [28]. For this purpose, we use the Clus-

ter_Ensembles
5
implementation that is based on graph partitioning

and aims to find a consensual partition from several input cluster-

ings. In Table 3, we compare between the average NMIw/o (without)

consensus (corresponding to the TGMALL values presented in Table

2) and the NMI obtained by the consensual partition provided by

the ensemble (combining the 30 runs into a single partition). We

can see that for all datasets there is an improvement in terms of

NMI, particularly significant for DBLP1 and AG-news.

Table 3: Evaluation of TGMALL; ↑ % denotes the percentage of
improvement in terms of NMI.

Datasets

without

Consensus

with

Consensus

↑ %

DBLP1 0.53 0.60 13.21

Classic3 0.91 0.95 4.40

AG–news 0.55 0.60 9.09

5 ASSESSING THE NUMBER OF CLUSTERS
Assessing the number of clusters still remains a challenge whatever

the chosen approach. In our proposal, to deal with this problem

we conducted a series of experiments with the number of clusters

varying from 2 to 10. In Figure 5, we show the relationship between

the number of clusters and the corresponding value of the mod-

ularity measure for the 3 datasets. The red lines indicate the real

number of clusters for each data set. We can see that even though

the maximum value of modularity does not always correspond to

the real number of clusters, in many cases it is close the true value,

especially if we look at the largest difference between values of

modularity (e.g., DBLP1, Classic3). Therefore the moduarity can

5
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serve as an additional point of information when choosing the

number of clusters.

Figure 5: Estimation of the number of clusters according the
objective function.

6 CONCLUSION
It is now well established that different representations are required

to capture the syntactic and semantic meaning of several NLP tasks,

including text clustering. In this paper we proposed the Tensor
Graph Modularity –TGM– algorithm, which harnesses this idea by

iteratively maximizing a GraphModularity criterion. TGM relies on a
tensor representation that allows us to combine several representa-

tions and take advantage of the different similarity aspects, namely

syntactic and semantic. We evaluated our method through in-depth

experiments with three document datasets and compare the results

with three categories of clustering baselines: classical clustering,

graph clustering, and tensor clustering. Then We showed how im-

prove performance of TGM by providing a consensual partition from

several input clusterings. Finally, we addressed the issue of the

number of clusters which is often unknown and showed that the

modularity can be harnesses for this task.

A potential future work might be to introduce a schema for

different representations. This would allow to evaluate the impact

of each type of representation on the clustering performance.
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