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ABSTRACT
Recent years have witnessed the great accuracy performance of

graph-based Collaborative Filtering (CF) models for recommender

systems. By taking the user-item interaction behavior as a graph,

these graph-based CF models borrow the success of Graph Neural

Networks (GNN), and iteratively perform neighborhood aggrega-

tion to propagate the collaborative signals. While conventional CF

models are known for facing the challenges of the popularity bias

that favors popular items, one may wonder “Whether the existing
graph-based CF models alleviate or exacerbate popularity bias of rec-
ommender systems?” To answer this question, we first investigate

the two-fold performances w.r.t. accuracy and novelty for existing

graph-based CFmethods. The empirical results show that symmetric
neighborhood aggregation adopted by most existing graph-based CF
models exacerbate the popularity bias and this phenomenon becomes
more serious as the depth of graph propagation increases. Further,
we theoretically analyze the cause of popularity bias for graph-

based CF. Then, we propose a simple yet effective plugin, namely

𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚, to achieve an accuracy-novelty trade-off by control-

ling the normalization strength in the neighborhood aggregation

process. Meanwhile, 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 can be smoothly applied to the ex-

isting graph-based CF backbones without additional computation.

Finally, experimental results on three benchmark datasets show

that our proposed method can improve novelty without sacrificing

accuracy under various graph-based CF backbones.

CCS CONCEPTS
• Information systems→ Novelty in information retrieval.

KEYWORDS
Collaborative Filtering, Graph Neural Networks, Accuracy-Novelty

Trade-off, Popularity Bias
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1 INTRODUCTION
Collaborative Filtering (CF) based recommendation assumes a user

is more likely to be interested in items that are enjoyed by other

users, and has been widely studied in both academia and industry

due to its easy-to-collect data and relatively high recommenda-

tion performance [27]. Among all models for CF, Matrix Factor-

ization (MF) learns user and item embeddings by projecting both

users and items into a low latent space for user preference predic-

tion [20, 28, 35]. Recently, with the huge success of Graph Neural

Networks (GNN) for modeling graph-structured data [24, 39, 48],

researchers argued that user-item behavior data can be naturally

formed as a user-item bipartite graph structure. Researchers pro-

posed to borrow the ideas of GNN into CF, and various graph-based

CF models have been proposed. These graph-based CF iteratively

performs Neighborhood Aggregation (NA) to capture the higher-

order collaborative signals by stackingmultiple graph convolutional

layers [24]. Therefore, these graph-based CF models can naturally

inherit the core idea of CF, and alleviate the data sparsity issue via

higher-order graph structure [5, 19, 41, 46]. It is now generally ac-

cepted that these graph-based CF models achieve State-Of-The-Art

(SOTA) recommendation accuracy.

As recommender systems provide personalized suggestions to

increase user satisfaction and platform prosperity, optimizing the

recommendation accuracy is obviously not the single goal. Among

all recommendation metrics, the novelty of the recommendation

list has also received substantial attention [23, 47, 53]. A novel rec-

ommended item is one that is previously unpopular and is probably

unknown to users. Therefore, novelty is commonly negatively cor-

related with an item’s popularity [11]. In other words, the less an

item is noticed by other users, the more novel it is. However, it is

well known that traditional CF methods often unintentionally face
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the challenge of the novelty recommendation [1, 9, 47]. This is due

to the unbalanced long-tail distribution of the observed user-item

interaction records, and most CF optimization algorithms would

amplify the unbalanced item popularity distribution by focusing

on the observed ratings. Therefore, CF algorithms would enlarge

popular bias in the data, making the recommendation list more

unbalanced by suggesting popular items. Prior works have also

shown that popularity bias can be problematic since it impedes the

system diversity, leading to monotonous recommendations [8, 18].

The general consensus among researchers of the reason for the

popularity bias is due to the imbalanced user-item interaction data,

and the amplification effect of CF algorithms. First, the long-tail

distribution of item popularity is a common observed phenome-

non from user-item behavior data [1, 50]. Second, most CF algo-

rithms, especially the popular MF-based algorithms, such as the

point-wise based rating loss function [21] and the pair-wise implicit

feedback based loss function [35], would emphasize on optimizing

the observed user interaction records compared to the novel ones.

Therefore, instead of recommending novel items that rarely appear

in the observed user-item training data, the accuracy-based CF

algorithms would amplify the popularity bias and make “safe” rec-

ommendations that cater to popular items. To improve the novelty

performance of recommendation, various novelty enhanced models

have been proposed , such as re-sampling [33], re-weighting [37],

regularization [1] and re-ranking [54]. In general, most of them can

be viewed as rebalancing strategies that propel the models to focus

more on optimization of long-tail items. Likewise, researchers have

recently started investigating the beyond-accuracy performance of

graph-based CF [22, 38, 43, 44, 51]. Most of these models focused

on diversity metrics, and used heuristics to select neighbors in the

NA process to enhance recommendation diversity. However, they

do not focus on novelty and the proposed heuristics need to be

carefully designed without any theoretical guarantee. Besides, some

causality based popularity debiasing models are also proposed to

eliminate the impact of item popularity on user interest [6, 42, 52].

Due to the SOTA recommendation accuracy of graph-based CF

algorithms, in this paper, we attempt to investigate novelty perfor-

mance under graph-based CF backbones. A preliminary question is

: “Whether the existing graph-based CF models alleviate or exacer-
bate popularity bias of recommender systems?” Some may think that

graph-based CF would alleviate popularity bias as the NA process

would explore more neighbors to access novel items, while others

argue that it would exacerbate popular bias as popular items are

more likely to be connected in the aggregation process. To answer

this question, we first perform extensive experiments to evaluate

the two-fold performances w.r.t accuracy and novelty of the sev-

eral existing SOTA graph-based CF methods on three benchmark

datasets. The experimental empirical results (See Section 3.2) show

that the existing graph-based models exacerbate the popularity bias

in the recommender system. Further, we find that stacking deep

graph layers would damage accuracy and novelty simultaneously.

Based on the empirical experimental observations, we attempt to

analyze the cause of popularity bias in graph-based CF model. We

theoretically prove that the normalization coefficient of NA layer

plays an important role in controlling the model’s performance of

item popularity. Thus, we propose a simple yet effective plugin, i.e.,

𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚, which is implemented by adjusting the normalization

form of NA functions in the exiting graph-based backbones. This

plugin makes our research easy to reproduce
1
. To summarize, the

main contributions of this paper are listed as follows:

• We study the accuracy-novelty performance of the graph-

based CF and empirically find that the existing models with

the vanilla GNN layer suffer the popularity bias in recom-

mendation, resulting in poor novelty performance.

• We theoretically analyze the cause of popularity bias for

graph-based CF, and propose an effectivemethod, 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚,

which can be plugged into existing graph-based backbones

and flexibly control the accuracy-novelty trade-off.

• Extensive experiments have validated the effectiveness and

generality of our proposed method in terms of promoting

novelty without sacrificing accuracy compared to a wide

range of baselines under various graph-based backbones.

2 RELATEDWORK
Multi-perspective Evaluation of the Recommender Systems.
In the early days, accuracy is commonly used to evaluate the quality

of recommender systems [45]. In addition to accuracy, diversity

and novelty have also been extensively studied since one single

metric cannot comprehensively evaluate the performances of rec-

ommendations [11, 18]. Diversity and novelty are two related but

different beyond-accuracy metrics [40]. The common categories for

measuring diversity is intra-user [49] and inter-user level [4]. Intra-

user level evaluates the dissimilarity of all item pairs in the user’s

recommendation list, while inter-user level considers the aggregate

diversity of recommendations across all users. Novelty reflects the

properties that the recommended items are unknown to users and is

usually estimated as negatively correlated with popularity [12, 23] .

That is, the more popular the item, the less novel it is to the users.

In this paper, we focus on the novelty recommendation.

Conventional Novelty Recommendation. The Bayesian Per-

sonalized Ranking (BPR) [35] is extensively applied in MF-based

CF by learning pairwise preferences between positive and negative

items. However, it still suffers the popularity bias due to unbalanced

data. Thus, the most widely adopted methods for improving novelty

are to design re-balanced strategies, such as re-sampling [14, 33]

and re-weighting [37, 53]. For example, Lo et al. proposed a person-

alized pairwise novelty weighting mechanism into the loss function

to capture personal preferences for novel items [31]. In addition,

regularization-based methods [25], which inject novelty objectives

into the loss functions, have also been verified by practical ap-

plications. Abdollahpouri et al. introduced a regularization-based

framework that encourages items to span different popularity parti-

tions to improve the long-tail coverage of recommendation lists [1].

Other methods, e.g., re-ranking [2, 10, 54], as a post-processing

step applied to the basic recommendation lists, the main idea is to

reorder the lists by taking into account diversity or novelty metrics.

Popularity Bias and Debiasing. Another line of related re-

search is to eliminate the popularity bias that popular items are

more likely to be recommended to customers than long-tail/niches

ones [3, 7, 13]. Recently, Zhu et al. proposed a new popularity-

opportunity bias from the perspective of both user- and item-side

1
The code and data are available at https://github.com/fuxiAIlab/r-AdjNorm

https://github.com/fuxiAIlab/r-AdjNorm


and theoretically analyzed the influence of item popularity on rank-

ing by MF-based CF [54]. They also proposed two metrics, i.e., PRU

and PRI, to measure this bias. Zheng et al. leveraged a causal graph

to decompose observed user-item interactions into user interest

and conformity [52]. Through disentangling the representations

into these two orthogonal factors, the true interests of users can

be learned to debias the impacts of conformity. Likewise, Wei et al.

performed multi-task learning to capture different effects of each

cause and employed counterfactual reasoning to eliminate the pop-

ularity bias during testing [42]. Although popularity debiasing and

novelty recommendation are correlated in many contexts, they own

different research paradigms and optimization objectives. Novelty

recommendation usually takes data-driven methods to improve the

ability for retrieving novel items, thereby avoiding recommending

popular items too frequently. While popularity debiasing meth-

ods study how to eliminate the item popularity for uncovering

the true user preferences from a causal perspective and they are

usually evaluated in the debiased dataset to eliminate the influence

of popularity with non IID distributed data [6, 42, 52]. Our study is

complementary to theirs as we assume the IID distribution of the

training and test data, and our focus is to alleviate the popularity

bias brought by graph-based CF models for enhancing novelty.

Multi-objective Tasks for GNN-based CF. Beyond pursuing

higher accuracy, there are some studies on improving the multi-

objective performances for the graph-based CF [38, 44]. For ex-

ample, Sun et al. proposed a framework for improving accuracy

and diversity of recommendation by jointly training the model

on the observed graph and sampled subgraphs under the Bayesian

framework [38]. Zheng et al. proposed re-balanced neighbor discov-

ering, category-boosted negative sampling and adversarial learn-

ing to underpin the intra-user diversified recommendation with

GNN [51]. Isufi et al. proposed to learn node representations from

the nearest and furthest neighbor graphs jointly to achieve accuracy-

diversity trade-off [22]. Most recently, SGL is proposed to leverage

self-supervised learning to improve the performance of long-tail

items [43]. However, there are few studies on investigation the

two-fold performances w.r.t accuracy and novelty of the existing

graph-based CF. Our work differs from the above works in that we

investigate the popularity bias caused by deep GNN at a theoretical

level, and accordingly propose an efficient method to improve the

recommendation novelty based solely on user-item interactions.

3 PRELIMINARIES
3.1 MF-based and Graph-based CF Outlines
We begin with a brief review of vanilla MF-based CF and then out-

line the common framework of graph-based CF methods. LetU and

I denote the set of users and items in the recommender systems,

respectively. In this work, we consider the implicit recommenda-

tion since implicit feedbacks are the most common datasets. Let

O+ = {𝑦𝑢𝑖 |𝑢 ∈ U, 𝑖 ∈ I} denote the interaction records observed

between the users and the items, where 𝑦𝑢𝑖 = 1 means that the

user 𝑢 has interacted with item 𝑖 . Most existing CF methods treat

user-item interactions O+
as matrix form, i.e., B ∈ R |U |×|I |

, where

|U| and |I | are the quantity of users and items and each entry

𝑦𝑢𝑖 = (B)𝑢,𝑖 is a binary number, indicating whether the user 𝑢 has

interacted with the item 𝑖 . The user-item interaction matrix B is

usually highly sparse and biased because observed interactions are

scarce compared to the unobserved user-item pairs and popular

items account for the majority of interactions.

Both MF-based and graph-based CF aim to learn user and item

representations from the interaction dataO+
. Let E ∈ R( |U |+|V |)×𝑑

denote the embedding matrix of users and items, where E[1: |U |]
is the user sub-matrix and E[ |U |+1: |U |+|V |] is the item sub-matrix

and 𝑑 is the latent dimension, with 𝑑 ≪ |U|, |I |. The MF-based

CF methods [28, 35] work by approximately decomposing the user-

item interactionmatrixB as the product of user and item embedding

matrices. i.e.,𝑦𝑢𝑖 ≈ E𝑢E⊤𝑖 (denoted as element-wise), where E𝑢 , E𝑖 ∈
R1×𝑑 are the representations of user 𝑢 and item 𝑖 , respectively.

From another perspective, graph-based CF commonly takes user-

item interactions O+
as the user-item bipartite graph G(V,A),

whereV = U ∪ I and A denotes the adjacency matrix of G:

A =

[
0 |U |×|U | B |U |×|I |

(B⊤) |I |×|U | 0 |I |×|I |

]
(1)

where 0 denotes the null matrix. Therefore, implicit recommenda-

tions are naturally translated into link prediction in the user-item

graph. Inspired by the general architecture of GNN, graph-based

CF methods mainly consist of Neighborhood Aggregation (NA) and

Layer Combination (LC), where NA is designed to aggregate the

neighboring representations to update the central nodes of each

layer and LC combines the presentations from incremental NA

layers to obtain the final ones. Despite many NA functions have

been proposed, most of them have the following symmetric forms:

E(𝑙)𝑢 = 𝑓𝑁𝐴 (E(𝑙−1)𝑢 , {E(𝑙−1)
𝑖

|𝑖 ∈ N𝑢 }) , (2)

E(𝑙)
𝑖

= 𝑓𝑁𝐴 (E(𝑙−1)𝑖
, {E(𝑙−1)𝑢 |𝑢 ∈ N𝑖 }) . (3)

where E(𝑙)𝑢 , E(𝑙)
𝑖

∈ R1×𝑑 denote the representations of user 𝑢 and

item 𝑖 at 𝑙-th NA layer. E(0)𝑢 and E(0)
𝑖

are the initial node embed-

dings. N𝑢 = {𝑖 | (B)𝑢𝑖 = 1, 𝑖 ∈ I} and N𝑖 = {𝑢 | (B)𝑢𝑖 = 1, 𝑢 ∈ U}
are the neighboring node set of 𝑢 and 𝑖 , respectively. 𝑓𝑁𝐴 (·) is the
customized NA function, e.g., element-wise mean [5] or weighted

sum [48]. Besides, NGCF [41] is proposed to add affinity propa-

gation to the NA layer. Further, He et al. [19] found that feature

transformation and non-linear activation are redundant in the NA

function and the performance became better after removing them.

After propagating 𝐿 times NA layers, the LC function combines the

node representations of each layer to obtain the final ones:

E = 𝑓𝐿𝐶 (E(0) , E(1) , · · · , E(𝐿) ) (4)

where 𝑓𝐿𝐶 (·) denotes the LC function. For example, GCMC [5]

and PinSage [48] take the last NA layer’s representations as out-

put. Both NGCF [41] and LR-GCCF [16] use concatenation, while

LightGCN [19] and SGL [43] adopt the average pooling.

During the prediction stage of MF-based and graph-based CF, the

preference for unobserved interaction between user 𝑢 and item 𝑖 is

given by 𝑦𝑢𝑖 = E𝑢E⊤𝑖 . Finally, the model parameters are optimized

by the objective functions between the predicted scores and the

ground truth. A common choice is to adopt BPR framework as the

objective function [35], which encourages higher scores for the



Table 1: Recommendation accuracy and novelty of graph-based CF, where ↑means higher is better and ↓ represents the oppo-
site.

Amazon-Movie Amazon-Book Yelp2018

Recall↑ NDCG↑ Nov↑ PRU↓ Recall↑ NDCG↑ Nov↑ PRU↓ Recall↑ NDCG↑ Nov↑ PRU↓

MFBPR [35] 0.0372 0.0241 0.5967 0.1120 0.0247 0.0193 0.6006 0.1581 0.0427 0.0347 0.5337 0.2129

GCMC [5] 0.0482 0.0312 0.5844 0.1537 0.0284 0.0221 0.5990 0.1797 0.0435 0.0353 0.5698 0.0985

NGCF [41] 0.0412 0.0268 0.5974 0.1104 0.0263 0.0203 0.6025 0.1485 0.0459 0.0371 0.5369 0.2074

LR-GCCF [16] 0.0452 0.0291 0.5540 0.2133 0.0261 0.0202 0.5890 0.1840 0.0460 0.0377 0.5219 0.3114

LightGCN [19] 0.0502 0.0323 0.5714 0.1854 0.0293 0.0225 0.5876 0.2118 0.0521 0.0426 0.5366 0.2485

SGL [43] 0.0574 0.0368 0.5950 0.1652 0.0348 0.0268 0.5978 0.1648 0.0604 0.0492 0.5458 0.2311

Table 2: Novelty of LightGCN w.r.t propagation layer 𝐿.

Amazon-Movie Amazon-Book Yelp2018

Nov↑ PRU↓ Nov↑ PRU↓ Nov↑ PRU↓

L=2 0.5701 0.1756 0.5925 0.1839 0.5341 0.2464

L=4 0.5714 0.1854 0.5900 0.2024 0.5366 0.2485

L=8 0.5684 0.2186 0.5783 0.2530 0.5175 0.3399

L=16 0.5425 0.3055 0.5534 0.3328 0.5128 0.3610

L=32 0.5119 0.3867 0.5193 0.4191 0.5071 0.3933

items that users have interacted with than non-observed ones:

𝐿𝐵𝑃𝑅 = −
∑︁

(𝑢,𝑖, 𝑗) ∈𝑇
ln𝜎 (𝑦𝑢𝑖 − 𝑦𝑢 𝑗 ) + 𝜆 | |E| |2𝐹 . (5)

where 𝑇 = {(𝑢, 𝑖, 𝑗) | (𝑖 ∈ N𝑢 ) ∧ ( 𝑗 ∉ N𝑢 )}, 𝜎 (·) is the logistic

sigmoid and 𝜆 controls the 𝐿2 regularization coefficient.

In summary, MF-based CF can be regarded as a special case

of graph-based CF, where the depth of NA layer is 0. The main

difference between them is that graph-based CF aggregates the high-

order interactions in the embedding space, which is also known

as the key for improving the accuracy. However, as the user-item

interactions are unbalanced with a power-law distribution, MF-

based CF suffers the popularity bias since the popular items are

more sufficiently optimized than the novel ones. As for graph-based

CF, on the one hand, NA layer can help users explore more diverse

items. On the other hand, it can also enable the popular items more

frequently reached by users. Therefore, whether graph-based CF

can solve the popularity bias is an open question to be explored.

3.2 Empirical Investigation on Accuracy and
Novelty of Graph-based CF

We first conduct experiments to investigate the two-fold perfor-

mances w.r.t accuracy and novelty of the SOTA graph-based CF

methods. In this work, we follow the commonly accepted protocol

of Top-K recommendation, where K=20
2
. We use widely adopted

Recall@K and NDCG@K to measure accuracy and use Nov@K [53]

and PRU@K [54] (see Section 5.1.1 for details) to measure novelty,

respectively. Nov@K is defined as:

𝑁𝑜𝑣@𝐾 =
1

|U|𝐾
∑︁
𝑢∈U

∑︁
𝑖∈𝐼𝑢 (𝐾)

− 1

𝑙𝑜𝑔2 |U| 𝑙𝑜𝑔2 (
𝑑𝑖

|U| ) . (6)

2
We also experiment with different Top-K values, and the overall trend is the same as

Top-20. Due to the page limit, we only report K=20.

where 𝐼𝑢 (𝐾) denotes the Top-K ranked items for user 𝑢 during

testing and 𝑑𝑖 denotes the number of observed interactions of item

𝑖 in the training set. Recently, researchers proposed to assess the

correlation between the rank positions and popularity of top-ranked

items recommended for users [54], i.e., PRU@K. It is defined as:

𝑃𝑅𝑈@𝐾 = − 1

|U|
∑︁
𝑢∈U

𝑆𝑅𝐶 ({𝑑𝑖 , 𝑟𝑎𝑛𝑘𝑢𝑖 |𝑖 ∈ 𝐼𝑢 (𝐾)}). (7)

where 𝑆𝑅𝐶 (·, ·) calculates Spearman’s rank correlation coefficient

and 𝑟𝑎𝑛𝑘𝑢𝑖 returns the rank position of item 𝑖 for user 𝑢. We care-

fully fine-tine the hyper-parameters to ensure the best performance

for each method
3
. As shown in Table 1, most graph-based recom-

mendationmethods (except for NGCF) can achieve better prediction

accuracy, but they also have lower Nov@20 and higher PRU@20

than MFBPR. By definition, lower Nov@K indicates that the top

ranked items have larger popularity, while higher PRU@K means

that the more popular the items, the higher their ranking positions.

As a whole, the experiments show that most existing graph-based

CF methods tend to recommend popular items to users, leading to

a significant popularity bias. Moreover, many GNN-based methods

are known to suffer accuracy degradation as the GNN layer deepens,

possibly due to the over-smoothing problem [15, 29]. Therefore, we

perform experiments to study the impact of increasing NA layers

on recommendation novelty. We report the results of LightGCN

at different propagation layers 𝐿 in Table 2. It can be found that

as the depth of NA layer increases, the performances of Nov and

PRU deteriorate. It further indicates that LightGCN suffers from the

more serious popularity bias as the NA layer goes deeper. Based on

the above empirical evidences, we draw the following conclusions:

• Existing graph-based CF methods prefer to recommend pop-

ular items than niche ones, suffering the popularity bias.

• As the depth of GNN layer increases, the popularity bias of

graph-based CF becomes more serious.

Although the emerging graph-based CF methods have great advan-

tages in prediction accuracy, the low novelty caused by popularity

bias should not be ignored. Except for the over-smoothing problem,

we empirically find that deep graph-based CF also suffers from the

popularity bias, which is even more serious than shallow models.

This phenomenon is counter-intuitive, since the high-order prop-

agation is good for users to explore unknown interactions with

3
Please note that the datasets, including Amazon-Book and Yelp2018, released by

LightGCN DO NOT contain validation sets. In order to correctly implement early

stopping in the validation set, we re-partition the training datasets so that the ratio of

training set, validation set and test set is about 7:1:2.



items and brings more collaborative signals for optimization, but it

also can exacerbate the imbalance between hot and long-tail items.

4 THE PROPOSED METHOD
Based on the investigations of Section 3.2, we first analyse the

causes of popularity bias in graph-based CF and then propose a

simple yet effective method to increase recommendation novelty.

4.1 Theoretical Analyses
Recall the following theorem for the analysis of over-smoothing

issue in deep GNN [29, 30, 50]:

Theorem 4.1. Given a connected graph G(V, E) with adjacency
matrix A. If each node of G is added self-loop, then

lim

𝑙→+∞
(D̃−𝑟 ÃD̃−(1−𝑟 ) )𝑙𝑖, 𝑗 =

(𝑑𝑖 + 1)1−𝑟 (𝑑 𝑗 + 1)𝑟

2|E | + |V| . (8)

where r ∈ R, Ã = A+I , D̃ = 𝑑𝑖𝑎𝑔(𝑑1+1, ..., 𝑑 |V |+1) and𝑑𝑖 =
∑
𝑗 A𝑖 𝑗 .

We denote D̃−𝑟 ÃD̃−(1−𝑟 )
as 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚, where 𝑟 is the normal-

ization coefficient. Due to SOTA accuracy of LightGCN, we use

𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 as the NA function in Equations (2) and (3). After prop-

agating infinite times, the node embedding matrix is updated to:

H(∞) = (D̃−𝑟 ÃD̃−(1−𝑟 ) )∞H(0) . (9)

where H(𝑙) = [h(𝑙)
1
, h(𝑙)

2
, ..., h(𝑙)|V |]

⊤
and h(𝑙)

1
∈ R𝑑×1. Equation (9)

can be expressed in vector form:

h(∞)
𝑖

=
(𝑑𝑖 + 1)1−𝑟
2|E | + |V| [(𝑑1 + 1)𝑟h(0)

1
+ (𝑑2 + 1)𝑟h(0)

2
+

· · · + (𝑑 |V | + 1)𝑟h(0)|V |] .
(10)

Researchers have demonstrated that inserting self-connections into

the adjacent matrix is equivalent to the LC function with a weighted

sum [19]. During the inference phase, graph-based CF methods

commonly use dot product to find the nearest items for the specific

users. Given node 𝑖’s embedding as Equation (10), the dot product

with node 𝑗 is:

(h(∞)
𝑖

)⊤h(∞)
𝑗

=
[(𝑑𝑖 + 1) (𝑑 𝑗 + 1)]1−𝑟

(2|E | + |V|)2
[(𝑑1 + 1)𝑟h(0)

1
+

· · · + (𝑑 |V | + 1)𝑟h(0)|V |]
2 .

(11)

Since 𝑑𝑖 is a positive integer, Equation (11) has the following cases:

(1) when 𝑟 < 1, if 𝑑 𝑗 > 𝑑𝑘 , then (h(∞)
𝑖

)⊤h(∞)
𝑗

> (h(∞)
𝑖

)⊤h(∞)
𝑘

.

That means node 𝑖 has larger dot product with node 𝑗 than

that with node 𝑘 since the degree of node 𝑗 is larger than 𝑘 .

(2) when 𝑟 = 1, then (h(∞)
𝑖

)⊤h(∞)
𝑗

≡ (h(∞)
𝑖

)⊤h(∞)
𝑘

. That is,

node 𝑖 has equal dot product with node 𝑗 and 𝑘 , respectively,

regardless of the degrees of node 𝑗 and 𝑘 .

(3) when 𝑟 > 1, if 𝑑 𝑗 > 𝑑𝑘 , then (h(∞)
𝑖

)⊤h(∞)
𝑗

< (h(∞)
𝑖

)⊤h(∞)
𝑘

.

It implies that the smaller the node degree, the larger the dot

product. That is the opposite of case (1).

Based on the above analyses, the existing normalization forms of

the adjacent matrix adopted in NA layer can be classified as follows:

0 1
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Figure 1: The trend of preference scores of the ego node 𝑖
with other nodes as 𝑟 increases, where node 𝑗 has larger de-
gree than node 𝑘 . The length of the two-way arrow between
nodes represents the preference score and the shorter the
length, the higher the score. It can be observed that ego node
𝑖 prefers node 𝑗 at first and then turns to node 𝑘 with the in-
crease of 𝑟 .

(1) As the most widely adopted symmetric normalization form,

i.e., D̃− 1

2 ÃD̃− 1

2 [16, 19, 41, 43], tends to prioritize the nodes

that have large degrees, probably leading to the bias towards

popular items in the recommender systems. Under this case,

𝑟 = 0.5 in Equation (9) and it is denoted as 0.5-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚.

(2) For right normalization ÃD̃−1
, i.e., 0-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 , it shows a

similar trend with case (1), but is more serious because it

have a lower 𝑟 value. As a transition matrix for random walk

in graph, it is widely used for calculating the personalized

PageRank [26, 34].

(3) D̃−1Ã , i.e., 1-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚, shows no bias towards node degree

since 𝑟 = 1. Wu et al. [46] adopted the left normalization for

social recommendation. This form has also been tested and

found to be sometimes better than symmetric one [19].

(4) D̃−𝑟 ÃD̃−(1−𝑟 )
gives priority to recommend the low-degree

nodes (a.k.a., long-tail nodes) when 𝑟 > 1. A similar form

is introduced [17], but we do not limit the range of 𝑟 and

further find out different properties for different intervals.

To sum up, we can control the preference scores (measured by dot

product) of the testing node pairs under graph-based CF by simply

tuning the normalization coefficient 𝑟 . Based on the theoretical

analysis, we illustrate the preference scores of the ego node on

candidate nodes with different degrees in Figure 1. It can be found

that ego node 𝑖 has a larger preference score for high-degree node

𝑗 when 𝑟 < 1. But the score of ego node 𝑖 for low-degree node 𝑘

has smaller decay rates than that of high-degree one 𝑗 with the

increase of 𝑟 value. When 𝑟 reaches the turning point, i.e., 𝑟 = 1,

ego node 𝑖 has equal scores with node 𝑗 and 𝑘 . Finally, the score for

node 𝑘 becomes larger than 𝑗 when 𝑟 > 1, showing a preference for

low-degree nodes. We will conduct experiments to confirm these

findings in the next section.

4.2 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 for Graph-based CF backbones
As shown above, 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 can be easily plugged into the existing

GNN-based CF backbones without any additional computation.

We take LR-GCCF [16] and LightGCN [19] as two representative

backbones, since both of them are graph-based CF models that are



specifically designed for the user-item bipartite graph structure,

and have shown SOTA performances. Besides, both of them are

simplifications for the GNN-based CF with different functions in

the NA and LC layers, respectively. This property can help test the

generality of our proposed plugin.

For LR-GCCF, it applies a symmetric normalized adjacent matrix

with self-connections in the NA layer. Thus, the vector form of

𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 plugin for LR-GCCF is:

E(𝑙)𝑢 =
1

|N𝑢 |
E(𝑙−1)𝑢 +

∑︁
𝑖∈N𝑢

1

|N𝑢 |𝑟 |N𝑖 |1−𝑟
E(𝑙−1)
𝑖

, (12)

E(𝑙)
𝑖

=
1

|N𝑖 |
E(𝑙−1)
𝑖

+
∑︁
𝑢∈N𝑖

1

|N𝑖 |𝑟 |N𝑢 |1−𝑟
E(𝑙−1)𝑢 . (13)

The value of 𝑟 controls the normalization strengths of the ego node

and its neighborhood in the NA layer. We can obtain various NA

functions by tuning 𝑟 , e.g., the original propagation matrix of LR-

GCCF is a special case of 𝑟 = 0.5. Combining Equations (12) and (13),

the matrix form of the 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 plugin at 𝑙-th NA layer is:

E(𝑙) = D̃−𝑟 ÃD̃−(1−𝑟 )E(𝑙−1) ,with Ã =

[
I B
B⊤ I

]
. (14)

where D̃ is a diagonal degree matrix with 𝐷̃𝑖𝑖 =
∑
𝑗 Ã𝑖 𝑗 ; E(𝑙) ∈

R( |U |+|I |)×𝑑
is the embedding matrix for all users and items at

𝑙-th NA layer. After propagating NA layer 𝐿 times, high-order inter-

actions between users and items are captured to represent the users’

interests. Then, similar to the LC of LR-GCCF, the representations

of each layer are concatenated to obtain the final ones:

E = E(0) | |E(1) | |...| |E(𝐿) . (15)

where | | denotes concatenation.
For LightGCN, it applies a symmetric normalized adjacent matrix

without self-connections as the NA function. Therefore, the vector

form of 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 plugin for LightGCN backbone is:

E(𝑙)𝑢 =
∑︁
𝑖∈N𝑢

1

|N𝑢 |𝑟 |N𝑖 |1−𝑟
E(𝑙−1)
𝑖

, (16)

E(𝑙)
𝑖

=
∑︁
𝑢∈N𝑖

1

|N𝑖 |𝑟 |N𝑢 |1−𝑟
E(𝑙−1)𝑢 . (17)

Likewise, the original propagation matrix of LightGCN is a special

case of 𝑟 = 0.5. It should be noted that 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 of LightGCN

doesn’t include self-connections, which is different from that of

LR-GCCF, for keeping consistent with the original backbone. We

will empirically evaluate the simplification in the experimental part.

The matrix form of 𝑙-th NA layer is:

E(𝑙) = D−𝑟AD−(1−𝑟 )E(𝑙−1) ,with A =

[
0 B
B⊤ 0

]
. (18)

where D is a diagonal degree matrix with 𝐷𝑖𝑖 =
∑
𝑗 A𝑖 𝑗 . Then, simi-

lar to the LC function of LightGCN, the high-order representations

of each NA layer are averaged to obtain the final ones for prediction:

E =
1

𝐿 + 1

(E(0) + E(1) + ... + E(𝐿) ) . (19)

Note that we keep the LC function unchanged for each backbone to

highlight the influences of 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 in the NA layer. Intuitively,

the combination coefficients in LC should be carefully modeled as

the depth of NA layer increases because deep GNNmodels are more

Table 3: Statistics of the datasets.

Datasets #Users #Items #Interactions Sparsity

Amazon-Movie 40,928 51,509 1,163,413 0.0552%

Amazon-Book 52,643 91,599 2,984,108 0.0619%

Yelp2018 31,668 38,048 1,561,406 0.130%

prone to suffer over-smoothing and popularity bias than shallow

GNN. In the paper, we focus on studying the influence of NA layer

and leave the exploration of the mechanism for LC as future work.

4.3 Model Training
After obtaining the combined representations for all users and items,

we predict the preference of user𝑢 for item 𝑖 as:𝑦𝑢𝑖 = (E𝑢 )E⊤𝑖 . Then
we adopt the BPR framework to optimize the model parameters. In

the practical experiments, the original BPR loss will lead to NAN

errors, so the loss function is changed to the following safer form:

𝐿𝐵𝑃𝑅 =
1

|𝑇 |
∑︁

(𝑢,𝑖, 𝑗) ∈𝑇
𝑠𝑜 𝑓 𝑡𝑝𝑙𝑢𝑠 (−𝑦𝑢𝑖 + 𝑦𝑢 𝑗 ) + 𝜆 | |E| |2𝐹 . (20)

where 𝑠𝑜 𝑓 𝑡𝑝𝑙𝑢𝑠 (·)=𝑙𝑜𝑔(1+𝑒𝑥𝑝 (·)) and𝑇 is the same as Equation (5).

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Datasets and Metrics. In order to be consistent with previous

researches [19, 41, 43], we conduct experiments in three benchmark

datasets, including Amazon-Movie [32], Amazon-Book [32] and

Yelp2018 [41]. For Amazon-Movie
4
, we filter out the users and items

with less than 10 interactions. For Amazon-Book and Yelp2018, we

use the released data by LightGCN
5
. The statistics of the datasets

are shown in Table 3 and all the datasets are highly sparse. As

mentioned in Section 3.2, we redivide the datasets into training,

validation and test set with a ratio of nearly 7:1:2.

In this work, we aim to investigate the two-fold performances

of the graph-based CF methods. Therefore, we adopt four widely

used metrics to measure the accuracy and novelty, respectively. To

measure accuracy, we use Recall@K and NDCG@Kwhere K=20. To

measure novelty, Zhou et al. [53] used Surprisal/Novelty to measure

the ability to recommend novel items. Surprisal/Novelty is a widely

usedmetric for recommender systems [40]. Since its range is greater

than 1, we normalize it as Equation (6). By definition, the less

popular items are, the higher Nov will be. We also use the recently

proposed PRU@K [54] as a supplement. PRU@K measures the

correlation between the items’ rank positions and their popularity.

The lower the PRU, the less bias toward popularity.

5.1.2 Baselines. To demonstrate the effectiveness of our proposed

method, we compare it with the following methods:

• Negative Sampling (NS) [33]. The BPR loss as Equation (5)

uniformly samples negative user-item interactions, which

will cause negative samples to be less popular than positive

ones. Thus, we apply NS to the BPR loss. To be specific, the

4
https://jmcauley.ucsd.edu/data/amazon

5
https://github.com/kuandeng/LightGCN

https://jmcauley.ucsd.edu/data/amazon
https://github.com/kuandeng/LightGCN


Table 4: Overall performances w.r.t accuracy and novelty of competing methods under the backbone of LR-GCCF.

Amazon-Movie Amazon-Book Yelp2018

Recall↑ NDCG↑ Nov↑ PRU↓ Recall↑ NDCG↑ Nov↑ PRU↓ Recall↑ NDCG↑ Nov↑ PRU↓

MFBPR 0.0372 0.0241 0.5967 0.1120 0.0247 0.0193 0.6006 0.1581 0.0427 0.0347 0.5337 0.2129

LR-GCCF 0.0452 0.0291 0.5540 0.2133 0.0261 0.0202 0.5890 0.1840 0.0460 0.0377 0.5219 0.3114

LR-GCCF+NS 0.0445 0.0289 0.5815 0.2153 0.0249 0.0196 0.6273 0.1771 0.0435 0.0362 0.5450 0.2880

LR-GCCF+PPNW 0.0427 0.0277 0.5961 0.1571 0.0256 0.0201 0.6021 0.1715 0.0440 0.0365 0.5505 0.2225

LR-GCCF+Reg 0.0390 0.0243 0.5694 0.0938 0.0234 0.0184 0.5976 0.1427 0.0437 0.0356 0.5378 0.2084

LR-GCCF+PC 0.0445 0.0284 0.5701 0.1157 0.0261 0.0203 0.5912 0.1455 0.0446 0.0356 0.5361 0.1851

LR-GCCF+MACR 0.0437 0.0280 0.5888 0.1923 0.0252 0.0194 0.6021 0.2487 0.0407 0.0325 0.5716 0.2064

LR-GCCF+DegDrop 0.0441 0.0282 0.5675 0.1764 0.0257 0.0200 0.5897 0.1849 0.0454 0.0377 0.5314 0.2673

LR-GCCF
1−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 0.0463 0.0300 0.5838 0.1444 0.0271 0.0210 0.6108 0.1545 0.0452 0.0370 0.5374 0.2286

LR-GCCF
0−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 0.0390 0.0246 0.5334 0.2638 0.0242 0.0188 0.5551 0.2894 0.0449 0.0361 0.5123 0.3524

LR-GCCF𝑟−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 0.0444 0.0287 0.6042 0.1163 0.0269 0.0205 0.6171 0.1460 0.0444 0.0359 0.5596 0.1478

%Improv.
+

-0.22% 1.06% 5.98% -0.52% 3.07% 0.99% 4.38% 0.34% -0.45% 0.84% 3.98% 20.15%

𝑝-𝑣𝑎𝑙𝑢𝑒 0.333 0.0608 1.39e-3
*

0.430 0.0351
*

0.211 4.92e-4
*

0.487 0.334 0.102 1.47e-3
*

1.79e-2
*

+
The improvements are calculated between LR-GCCF𝑟−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 and LR-GCCF+PC, as LR-GCCF+PC reaches the best accuracy and novelty trade-off of all baselines.

*
It denotes that the corresponding improvement has passed the significant test at the significance level of 0.05.

possibility of negative item 𝑗 being sampled is 𝑝 ( 𝑗) ∝ 𝑑𝛼
𝑗
,

where we tune 𝛼 in [0, 0.25, 0.5, 0.75, 1].
• PPNW [31]. PPNW considers personalized novelty weight-

ing in the BPR loss. We use suggested values of hyper-

parameters by the authors and tune 𝛾 in [1, 1.5, ..., 5] with a

step size of 0.5, since 𝛾 controls the strengths of novelty.

• Reg [54]. This is a regularization method that can effectively

penalize high PRU value. Thus, we tune the regularization

coefficient 𝛾 in [1, 10, 102, ..., 105].
• PC [54]. This is a post-processing approach that directly

modifies the predicted scores by compensating for item pop-

ularity. We tune the trade-off 𝛼 in [10−4, 10−3, ..., 10−1, 1].
• MACR [42]. Different from the above methods, MACR is a

recently proposedmethod based on counterfactual reasoning

for eliminating the popularity bias. We use the default values

released by the authors’ codes
6
and tune 𝑐 in [10, 20, ..., 50].

• DegDrop. Inspired by DropEdge [36], we also propose a

graph-based baseline, namely DegDrop, which is more likely

to aggregate the low-degree nodes in the NA layer. To be

specific, the possibility of an edge (𝑢, 𝑖) being dropped is

proportional to 𝛼 ∗ 𝑑−1
𝑖

and 𝛼 in tuned in [0.1, 0.2, ..., 0.9].
In summary, the baselines cover a broad range of the methods for

achieving accuracy and novelty trade-off, such as re-sampling, re-

weighting, regularization, re-ranking, causality and so on. Note

that many of the above baselines are designed for MF-based CF,

they are model-agnostic and applicable to graph-based CF.

5.1.3 Hyper-parameter Settings. For all the experimental meth-

ods, we adopt BPR loss and set the negative sampling rate to 1.

Following the settings of LightGCN, we use xavier initializer to

initialize the model parameters and apply the Adam optimizer with

a learning rate of 0.001. The embedding size is fixed as 64. To avoid

over-fitting, 𝐿2 normalization is searched in {10−5, 10−4, .., 10−1}.
Moreover, we adopt the same early stopping strategy as LightGCN

and set the maximum epoch to 1,000 and the training process will

6
https://github.com/weitianxin/MACR

be terminated if Recall@20 on the validation dataset does not in-

crease for 5 evaluation times. That means our goal is to examine

the performance of novelty when accuracy is at its best. For all

hyper-parameters of the baselines, we use the values suggested by

the corresponding papers with carefully fine-tuning on the new

datasets. For 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚, we retain the parameters of backbones

and tune 𝑟 in [0.5, 0.55, ..., 1.5] with a 0.05 step-size.

5.2 Overall Performance Comparison
We conduct detailed experiments for comparison with benchmark

methods under the backbones of LR-GCCF and LightGCN, which

are denoted as LR-GCCF𝑟−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 and LightGCN𝑟−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 re-

spectively. Since most existing baselines are seeking for a trade-off

performance between accuracy and novelty, we fine-tune the hyper-

parameters of each competing method to reach the novelty level

of MFBPR and then observe the decline in accuracy. We report the

results in Table 4 and Table 5, where all the results are the average

values of 5 repeated runs. The main observations are as follows:

• Most benchmark methods, including re-sampling (i.e. NS), re-

weighting (i.e. PPNW), regularization (i.e. Reg), re-ranking

(i.e. PC) andDegDrop, can improveNov@20 or reduce PRU@20

compared to the original backbones, but at the expense of sac-

rificing accuracy. In the experiments, we find that all of these

methods will lead to a decrease in accuracy when improving

novelty, showing a trade-off between them. We also find that

while Nov@20 and PRU@20 are correlated, it doesn’t mean

that both indicators can be improved simultaneously. For

example, LightGCN+Reg can significantly improve PRU@20,

but it results in a decrease in Nov@20 referring to Table 5.

While NS and PPNW perform better than Reg on Nov@20

because they directly penalize item popularity in the loss

function, while Reg aims to penalize the correlation between

the predicted scores of positive user-item pairs and item pop-

ularity. In addition to the conventional data-driven methods,

we also conduct experiments with the counterfactual rea-

soning framework (i.e., MACR). We find that MACR doesn’t

https://github.com/weitianxin/MACR


Table 5: Overall performances w.r.t accuracy and novelty of competing methods under the backbone of LightGCN.

Amazon-Movie Amazon-Book Yelp2018

Recall↑ NDCG↑ Nov↑ PRU↓ Recall↑ NDCG↑ Nov↑ PRU↓ Recall↑ NDCG↑ Nov↑ PRU↓

MFBPR 0.0372 0.0241 0.5967 0.1120 0.0247 0.0193 0.6006 0.1581 0.0427 0.0347 0.5337 0.2129

LightGCN 0.0502 0.0323 0.5714 0.1854 0.0293 0.0225 0.5876 0.2118 0.0521 0.0426 0.5366 0.2485

LightGCN+NS 0.0496 0.0323 0.6067 0.1755 0.0283 0.0219 0.6093 0.1705 0.0499 0.0404 0.5593 0.2088

LightGCN+PPNW 0.0493 0.0320 0.5946 0.1540 0.0284 0.0219 0.6063 0.1641 0.0503 0.0410 0.5492 0.2388

LightGCN+Reg 0.0465 0.0273 0.5490 0.1344 0.0276 0.0210 0.5823 0.1837 0.0488 0.0392 0.5324 0.1899

LightGCN+PC 0.0507 0.0324 0.5765 0.1404 0.0289 0.0221 0.5951 0.1491 0.0515 0.0414 0.5362 0.2314

LightGCN+MACR 0.0503 0.0318 0.5499 0.2877 0.0232 0.0183 0.4940 0.4151 0.0502 0.0408 0.5373 0.2701

LightGCN+DegDrop 0.0492 0.0320 0.5737 0.1734 0.0291 0.0224 0.5908 0.1966 0.0516 0.0424 0.5406 0.2273

LightGCN
1−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 0.0512 0.0330 0.5910 0.1423 0.0299 0.0230 0.6013 0.1741 0.0516 0.0419 0.5438 0.2313

LightGCN
0−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 0.0421 0.0264 0.5368 0.2694 0.0256 0.0196 0.5557 0.3216 0.0517 0.0416 0.5103 0.3972

LightGCN𝑟−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 0.0504 0.0327 0.5959 0.1349 0.0296 0.0228 0.6136 0.1529 0.0514 0.0416 0.5559 0.1876

%Improv.
+

-0.59% 0.93% 3.37% 3.92% 2.42% 3.17% 3.11% -2.55% -0.19% 0.48% 3.67% 18.93%

𝑝-𝑣𝑎𝑙𝑢𝑒 0.289 0.0932 1.50e-5
*

0.0129
*

6.78e-3
*

4.29e-4
*

1.09e-5
*

0.0190
*

0.272 0.172 1.09e-4
*

7.50e-3
*

+
The improvements are calculated between LightGCN𝑟−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 and LightGCN+PC.

perform well in our evaluation protocol after fine-tuning

the hyper-parameters. The reason may be that our test set is

not debiased data, while MACR is evaluated to be effective

on the debiased test set. As for DegDrop, it can achieve a

trade-off performance, but we also find that it is not flexible

enough to adjust the two-fold performances. That is, adjust-

ing the dropout ratio 𝛼 doesn’t observe a significant change

in novelty. Overall, PC performs best among the baselines

and can maintain accuracy while improving novelty.

• Moreover, we find that 1-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 shows superior perfor-

mances w.r.t accuracy and novelty than 0-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 in both

LR-GCCF and LightGCN. Especially, 1-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 always has

higher Nov@20 and lower PRU@20 than 0-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 in all

datasets. We also note that the testing novelty of the back-

bones (0.5-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚) lies between the above two plugins.

The results confirm the analysis in Section 4.1 that 𝑟 controls

the preference for nodes with different degrees, albeit the

depth of NA layer doesn’t reach infinity in practice.

• Further, we fine-tune the normalization coefficient 𝑟 to make

the original backbones reach the same level of novelty as

MFBPR. From Table 4 and Table 5, 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 can signifi-

cantly improve novelty without sacrificing accuracy com-

pared to the original backbones. Meanwhile, it outperforms

the above baselines in terms of a good accuracy and novelty

trade-off. The improvement and 𝑝-𝑣𝑎𝑙𝑢𝑒 are calculated with

the strongest baseline, i.e., PC. It shows that 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚’s

improvements in novelty are statistically significant, while

in most cases there is no significant difference in their ac-

curacy. We also find that the improvements of 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚

for LightGCN are more outstanding than that of LR-GCCF,

manifesting that self-connection is not a prerequisite.

• Last but not least, the performances of different backbones

w.r.t LR-GCCF and LightGCN verify the generality of 𝑟 -

𝐴𝑑 𝑗𝑁𝑜𝑟𝑚. Note that it doesn’t require any additional com-

putation, only the normalized form of the adjacency ma-

trix needs to be adjusted during the pre-processing. Thus,

it provides an efficient and effective way for graph-based

CF, especially one using degree normalization, to explore a

trade-off between accuracy and novelty.

5.3 Study of Hyper-parameters
In the section, we investigate the impacts of different hyper-parameters,

including normalization coefficient 𝑟 and the depth of propagation

layer 𝐿. We choose LightGCN as the backbone because of its better

recommendation accuracy performance compared to LR-GCCF.

Effect of Normalization Coefficient 𝑟 . As analyzed in Section 4.1, 𝑟

plays an important role in controlling the bias towards node degree.

Therefore, we adjust 𝑟 to study the influences on the accuracy and

novelty and report the results in Figure 2. The performances of

original backbone are emphasized by black vertical lines. We can

find that both Recall and NDCG rise first then fall as 𝑟 increases

from -0.5 to 1.5 with step 0.25. On the contrary, Nov and PRU show

a continuous upward and downward trend, respectively, except

for very few data points. As for LightGCN, the two-fold perfor-

mances w.r.t accuracy and novelty both are in the middle. When

𝑟 > 1, both Nov and PRU change rapidly, indicating a significant im-

provement in the novelty. The phenomenon is consistent with the

analysis in Section 4.1 that the preference of deep GNN-based CF

for low-degree nodes is enhanced as the normalization coefficient 𝑟

increases, which is reflected in an increase of Nov and a decrease in

PRU. The experiment demonstrates that the proposed 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚

plugin can fine tuning the accuracy and novelty of LightGCN in an

efficient and effective way. In general, we can change the novelty

performance by setting different 𝑟 values. However, too large or too

small values will cause the model to favor popular or long-tail items

too much and have negative effects on the model accuracy. Hence,

adjusting 𝑟 in a proper range can achieve a win-win situation where

both accuracy and novelty are improved. According to empirical

results, we suggest to tune 𝑟 in the range of 0.5∼1.25 carefully to

achieve a good accuracy and novelty trade-off.



Table 6: Comparisons of trade-off performances between SGL and SGL𝑟−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 under different hyper-parameters.

Amazon-Movie Amazon-Book Yelp2018

Recall↑ NDCG↑ Nov↑ PRU↓ Recall↑ NDCG↑ Nov↑ PRU↓ Recall↑ NDCG↑ Nov↑ PRU↓

SGL (acc. opt.) 0.0574 0.0368 0.5950 0.1652 0.0348 0.0268 0.5978 0.1648 0.0604 0.0492 0.5458 0.2311

SGL (nov. opt.) 0.0538 0.0358 0.6004 0.1308 0.0336 0.0263 0.6001 0.1444 0.0572 0.0475 0.5625 0.1698

SGL
1−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 0.0543 0.0357 0.6975 0.0695 0.0340 0.0262 0.6861 0.0601 0.0557 0.0454 0.5910 0.1473

SGL
0.75−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 0.0572 0.0372 0.6300 0.1265 0.0348 0.0268 0.6361 0.1232 0.0594 0.0484 0.5706 0.1714

SGL
0.25−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 0.0536 0.0341 0.5495 0.2586 0.0320 0.0247 0.5588 0.2355 0.0593 0.0485 0.5233 0.2986

SGL
0−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 0.0471 0.0294 0.5057 0.3340 0.0256 0.0203 0.5063 0.3554 0.0557 0.0453 0.4820 0.3906
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Figure 2: Model performances w.r.t normalization coeffi-
cient 𝑟 on three datasets. The black and green vertical lines
represent the original backbone and the fine-tuned one in
Table 5.
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Figure 3: The accuracy and novelty performances of
LightGCN𝑟−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 w.r.t varying propagation layer 𝐿.

Effect of Propagation Layer 𝐿. In Section 3.2, we have observed

that novelty metrics of LightGCN drop as the number of propa-

gation layer increases. In this section, we conduct experiments

with different variants of 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 to study the effects of prop-

agation layer 𝐿 on both accuracy and novelty. As a special case,

𝐿 = 0 denotes the performances of MFBPR. As can be seen from

the Figure 3, the NDCG of all variants of 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 first increases

and then decreases with the increase of 𝐿. But 1-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 and

0-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 have poor performances in NDCG when 𝐿 > 8 com-

pared to LightGCN. At the same time, PRU shows an upward trend

(Please note that the lower the PRU, the better the novelty). To be

specific, 1-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 performs best in terms of PRU, followed by

0.75-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 and LightGCN (i.e, 0.5-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚), and 0-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚

performs the worst. In addition, the PRU value of 1-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 is

closest to MFBPR and increases at a slower rate as L increases.

Among them, 0.75-𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 can significantly improve the novelty

of the LightGCN backbone without sacrificing accuracy. We omit

the Recall and Nov due to space limitation, while they show the

same results. As a whole, we can achieve a good accuracy and nov-

elty trade-off of graph-based CF simply by applying 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚.

5.4 Performance on Self-supervised Graph
Learning (SGL) Backbone

In previous experiments, we have verified the effectiveness of 𝑟 -

𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 based on the backbones of LR-GCCF and LightGCN,

respectively. In this part, we study the effect of our proposed plugin

for a SOTA Self-supervised Graph Learning (SGL) model [43]. SGL

is composed of two losses with a balance parameter: a classical

supervised BPR loss from skewed user-item interaction, and an

auxiliary self-supervised loss by randomly enforcing user (item)

representation learning via self-discrimination. Specifically, the

self-supervised loss could alleviate the popularity bias as it ran-

domly selects nodes in the user-item graph, and can make long-tail

recommendation if we put more weights on the self-supervised

loss. To investigate that whether our proposed 𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 works

on SGL backbone, we first fine-tune the balance parameter of SGL

to achieve the optimal accuracy and optimal novelty, denoted as

SGL (acc. opt.) and SGL (nov. opt.), respectively. Then, we put our

proposed plugin into SGL and adjust the values of normalization co-

efficient 𝑟 to observe the performances. As is shown in Table 6, SGL

shows better accuracy and novelty compared to other graph-based

backbones, which is due to the enhancement of the self-supervised

loss. The accuracy of SGL degrades when its novelty is tuned to

be optimal. Second, SGL
0.75−𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 shows better accuracy and

novelty at the same time compared to SGL (nov. opt.), indicating

that our proposed method can further achieve a good accuracy-

novelty trade-off based on SGL and is more effective than simply

tuning the balance parameter of SGL. Last but not least, the trends

between 𝑟 and novelty performances on the SGL backbone are the

same as theoretical analysis. This study shows that the proposed

𝑟 -𝐴𝑑 𝑗𝑁𝑜𝑟𝑚 can be also flexibly integrated into SGL backbone.



6 CONCLUSIONS
In this work, we studied the accuracy and novelty performances of

graph-based CF methods. We empirically found that most existing

graph-based CF methods tend to exacerbate the popularity bias. In

particular, we theoretically analyzed the cause for this phenomenon

and proposed an effective method by adjusting the normalization

strengths in the NA process adopted by the current graph-based CF

models. We conducted extensive experiments on three benchmark

datasets to demonstrate the effectiveness of our proposed method

regarding novelty improvement without sacrificing accuracy under

various graph-based CF backbones.
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