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ABSTRACT
Learning individual-level treatment effect is a fundamental problem

in causal inference and has received increasing attention in many

areas, especially in the user growth area which concerns many

internet companies. Recently, disentangled representation learn-

ing methods that decompose covariates into three latent factors,

including instrumental, confounding and adjustment factors, have

witnessed great success in treatment effect estimation. However,

it remains an open problem how to learn the underlying disentan-

gled factors precisely. Specifically, previous methods fail to obtain

independent disentangled factors, which is a necessary condition

for identifying treatment effect. In this paper, we propose Disen-

tangled Representations for Counterfactual Regression via Mutual

Information Minimization (MIM-DRCFR), which uses a multi-task

learning framework to share information when learning the la-

tent factors and incorporates MI minimization learning criteria to

ensure the independence of these factors. Extensive experiments

including public benchmarks and real-world industrial user growth

datasets demonstrate that our method performs much better than

state-of-the-art methods.
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1 INTRODUCTION
Estimating treatment effect is one of the most important topics

in many domains, such as policy making [1, 20], medicine pre-

diction [23], advertisement [4, 11, 24], recommendation [25, 29]

and user growth [9]. It often needs to answer counterfactual prob-

lems [21] like “Would this patient have low blood sugar had she
received a medication?” or “Would the customer buy the product had
he got a 70% discount?”. Specifically, in the user growth area, compa-

nies may take many activities such as sending coupons and pushing

messages to increase user acquisition or retention, where the coun-

terfactual problem becomes “Would the user act more actively on
the platform had he received the coupon or message?”.

One golden standard approach to learn causal effect is to perform

Randomized Controlled Trial [21], where the treatment is randomly

assigned to individuals. However, this is often expensive, unethical

or even infeasible, thus we usually focus on estimating treatment

effect from observational data. In the observational study, the treat-

ment often depends on some attributes of the individual 𝑥 , which

causes the problem of selection bias [16] (i.e., 𝑝 (𝑡 |𝑥) ≠ 𝑝 (𝑡)). Tak-
ing the medicine scenario for example, the economic status affects

both the medications and the patient’s recovery rate. And it is vi-

tal to find all such confounding variables (i.e., affecting both the

treatment and outcome) and control them to make precise predic-

tions. This means unconfoundedness assumption often needs to be

satisfied in the observational study to make the treatment effect

identifiable [21].

Even though we already have all confounders in our variables,

we still face a difficult problem of identifying them and further

balancing them with the backdoor criterion [21]. Existing methods

achieve balancing either by propensity score weighting methods [2]

or representation learning methods which reduce the discrepancy

between the treated and control group (e.g., BNN [17] and CFR-

net [23]) while ignoring identification of other latent factors. Re-

cently, disentangled representation learning methods, D2
VD [19],

DR-CFR [14] and TEDVAE [28] have been proposed to learn dis-

entangled factors {Γ, Υ,Δ}, respectively representing factor that
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affects only the treatment, only the outcome, and both the treat-

ment and the outcome (aka instrumental, adjustment and con-

founding factors). Although disentangled representation learning

methods greatly help achieve exact identification of the latent fac-

tors, the above methods still face the following limitations: D2
VD

only decomposes features into two factors {Υ,Δ}, DR-CFR cannot

effectively distinguish the difference between the Δ and {Γ, Υ} and
TEDVAE uses the generative model which might greatly increase

model training complexity. Besides, these methods cannot obtain

independent disentangled representations, which is a neces-

sary condition for identifying treatment effect. To solve the problem

of independence of disentangled representations, we propose to use

MI minimization [5, 6] method, which has obtained increasing at-

tention in domain adaptation [10] and style transfer [18] recently. It

is typically utilized as a learning criterion in loss function to ensure

the independence between variables. Specifically, [6] proposes a MI

upper bound called Contrastive Log-Ratio Upper Bound (CLUB) to

deal with the MI minimization task and various experiments have

demonstrated the effectiveness of this method.

In this paper, we propose an easy-handling and well-identifying

model to deal with the problems of disentanglement in treatment

effect estimation. We incorporate the multi-task learning frame-

work such as shared-bottom structure and MI minimization criteria

to learn the disentangled factors. And our main contributions are:

• We propose a multi-task learning structure represented by

the disentangled representation layer to share information

across these latent factors, instead of three independent rep-

resentation networks which is commonly used by previous

work.

• We introduce the MI minimization method into causal in-

ference to learn the latent factors, which uses CLUB as MI

upper bound to obtain ideally independent disentangled rep-

resentations.

• We carry out extensive experiments on both public bench-

marks and industrial datasets of user growth (e.g., message

pushing and coupon sending), which demonstrate the supe-

riority of our method.

2 THE PROPOSED METHOD
In this section, we introduce our model architecture as shown in

Figure 1. We first present the basic definition and assumption in

2.1. Then, we explain the multi-task disentangled representations

learning framework in 2.2. Last, we illustrate MI minimization

regularizer for causal inference in 2.3.

2.1 Preliminary
We first present some notations in our context. Given the observa-

tional datasetD = {(𝑥𝑖 , 𝑡𝑖 , 𝑦𝑡𝑖𝑖 (𝑥𝑖 , 𝑡𝑖 ))}𝑛𝑖=1, where 𝑛 is the number of

data samples, 𝑥𝑖 ∈ X is the input features referring individual con-

text information, 𝑦
𝑡𝑖
𝑖
(𝑥𝑖 , 𝑡𝑖 ) ∈ Y is observed factual outcome and

counterfactual outcome 𝑦
1−𝑡𝑖
𝑖

(𝑥𝑖 , 𝑡𝑖 ) is missing here, 𝑡𝑖 ∈ T refers

to potential interventions (e.g., for binary treatment 𝑡 ∈ {0, 1}).
Mathematically, we define our goal in this paper is to learn a func-

tion F : X × T → Y to predict the potential outcomes and then

Figure 1: The proposed model architecture of MIM-DRCFR
in our industrial datasets. The input variable contains users’
profile, behavior and context features. The disentangled rep-
resentation layer consists of a shared-bottom structure and
three factor-specific layers and then outputs three latent fac-
tors {Γ,Δ, Υ}. The top of the figure shows multi-task objec-
tives, including treatment prediction, outcome prediction,
IPM constraint and the MI minimization regularizer.

estimate the individual treatment effect (ITE)1 and the average treat-
ment effect (ATE):

Definition 1. The individual treatment effect is formulated as:

𝜏𝑖 = 𝑦1𝑖 (𝑥𝑖 , 𝑡𝑖 ) − 𝑦0𝑖 (𝑥𝑖 , 𝑡𝑖 ) (1)

Definition 2. The average treatment effect is formulated as:

𝐴𝑇𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

𝜏𝑖 (2)

The following fundamental assumptions [22] need to be satisfied

in individual treatment effect estimation:

Assumption 1. (SUTVA) The Stable Unit Treatment Value As-
sumption requires that the response of a unit depends only on the
treatment to which he himself was assigned and not affected by others.

Assumption 2. (Unconfoundedness) The treatment assignment
mechanism is independent of the potential outcome when conditioning
on the observed variables, Formally: 𝑌0, 𝑌1 ⊥⊥ 𝑡 | 𝑥 .

Assumption 3. (Positivity) Each unit has a non-zero probability
to be assigned to each treatment when given the observed contexts,
i.e., 0 < 𝑃 (𝑡 = 1|𝑥) < 1.

2.2 Multi-task Disentangled Representation
Learning

Without loss of generality, we assume the dataset D is generated

from three underlying factors {Γ,Δ, Υ} [14]. In our user growth

scene, 𝑥𝑖 consists of user’s profiles, behavior and context features.

𝑡𝑖 can be sending coupon or pushing message to user. 𝑦𝑖 can be

user’s login rate or click-through rate. Then we aim to encode

1
The individual treatment effect (ITE), aka conditional average treatment effect (CATE).



the input features 𝑥𝑖 into three separate embedding parts through

disentangled representation layer (𝐷𝑅𝐿), which is formulated as:

Γ,Δ, Υ = 𝐷𝑅𝐿(𝑥), (3)

where 𝑥 ⊆ R1×𝑑 and Γ,Δ, Υ ⊆ R1×𝑑 , 𝑑 refers to feature dim.

DR-CFR directly uses three separate representation networks to

learn these factors, while our experiments show that this method

cannot effectively distinguish the difference between the Δ and

{Γ, Υ}. Inspired by multi-task learning, we use a shared-bottom

structure to learn the feature embedding from input variables and

then use three factor-specific layers to decode the embedding into

latent factors {Γ,Δ, Υ} (aka SFD layer
2
). Then we learn the latent

factors by following tasks:

Task1. Predict the treatment from Ω = concat(Γ,Δ) and define
the loss Ltreat = L[𝑡𝑖 , 𝜋 (Ω(𝑥𝑖 ))]. 𝜋 is a classifier. Minimizing the

loss Ltreat ensures that the information of treatment is captured in

the union of Γ and Δ.
Task2. Predict the outcome from Φ = concat(Υ,Δ) and de-

fine the loss L
pred

= L[𝑦𝑖 , ℎ𝑡𝑖 (Φ(𝑥𝑖 ))]. ℎ𝑡𝑖 is regression network

for each treatment arm. We ensure the information of outcome is

captured in the union of Υ and Δ by minimizing L
pred

.

Task3.Restrict discrepancy distance and define the loss asL
disc

=

IPM

(
{Υ(𝑥𝑖 )}𝑖:𝑡𝑖=0 , {Υ(𝑥𝑖 )}𝑖:𝑡𝑖=1

)
. We ensure the latent factor Υ is

irrelevant to treatment by minimizing L
disc

.

We expect that all confounding factors are captured in Δ when

we can completely distinguish Δ from {Υ, Γ} by the following multi-

objective function:

Lmain = L
pred

+ 𝛼 · Ltreat + 𝛽 · L
disc

(4)

where 𝛼 and 𝛽 are weights for each task, and we use Wasserstein
distance as our integral probability metric in this paper.

2.3 MI Minimization Regularizer
To obtain independent disentangled factors, we propose tominimize

the MI among the three factors to ensure independence. MI is a

fundamental measure of the dependence between two random

variables. Mathematically, the definition of MI between variables 𝑥

and 𝑦 is:

I(𝑥,𝑦) = E𝑝 (𝑥,𝑦)
[
log

𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦)

]
(5)

Following [6], we introduce using CLUB as MI upper bound to

accomplish MI minimization among latent factors, and CLUB is de-

fined as Iclub (𝑥,𝑦) = E𝑝 (𝑥,𝑦) [log 𝑝 (𝑦 |𝑥)]−E𝑝 (𝑥)E𝑝 (𝑦) [log 𝑝 (𝑦 |𝑥)]
when the conditional distribution 𝑝 (𝑦 |𝑥) is known. Unfortunately,
the conditional relations between variables are unavailable in our

task, and therefore we use a variational distribution 𝑞𝜃 (𝑦 |𝑥) to
approximate 𝑝 (𝑦 |𝑥) and further extend the CLUB estimator into

vCLUB, which is defined as Ivclub (𝑥,𝑦) = E𝑝 (𝑥,𝑦) [log𝑞𝜃 (𝑦 |𝑥)] −
E𝑝 (𝑥)E𝑝 (𝑦) [log𝑞𝜃 (𝑦 |𝑥)]. Ivclub (𝑥,𝑦) remains a MI upper bound

when we have good variational approximation 𝑞𝜃 (𝑦 |𝑥).
Then we use the following MI minimization regularizer to obtain

independent disentangled representations for ITE estimation:

Lclub = Ivclub (Γ,Δ) + Ivclub (Δ, Υ) + Ivclub (Υ, Γ) (6)

2
named from Shared-bottom and Factor-specific Disentangled representation layer.

We summarize the total objective function LMIM-DRCFR as:

LMIM-DRCFR = L
pred

+𝛼 ·Ltreat+𝛽 ·Ldisc
+𝛾 ·Lclub+𝜆 ·Lreg (7)

where Lreg is used to penalize the model complexity and 𝛼 , 𝛽 , 𝛾

and 𝜆 are weights for these objectives.

Besides, inspired by the orthogonal regularizer in D2
VD [19],

we introduce a criterion calledRepresentation LayerOrthogonality
(RLO), which is an intuitive method to obtain disjoint factors:

Lrlo = 𝑊̄𝑇
Γ · 𝑊̄Δ + 𝑊̄𝑇

Δ · 𝑊̄Υ + 𝑊̄𝑇
Υ · 𝑊̄Γ (8)

where𝑊 ⊆ R𝑑×𝑑 refers to products of the 𝐷𝑅𝐿, then we calcu-

late average of𝑊 (𝑊̄ ⊆ R𝑑×1) to represent the contribution of

input variables on disentangled factors. By minimizing Lrlo, we

expect each dimension of 𝑥 is only embedded in one of {Γ,Δ, Υ}.
LRLO-DRCFR is obtained by replacing Lclub with Lrlo.

3 EXPERIMENT
3.1 Benchmark Evaluation
A fundamental problem in causal inference is that we cannot ob-

serve factual outcome and counterfactual outcome simultaneously.

One common used solution is to synthesize datasets where the

outcomes of all possible treatments are available or synthesize

outcomes from real-world covariates.

IHDPBenchmark. Similar to [13, 23, 28], we use a semi-synthetic

dataset based on IHDP as our benchmark which was first intro-

duced by [15]. The covariates come from a randomized experiment

studying the effects of home visits by specialist on future cognitive

test scores. The selection bias was introduced by removing a biased

subset of the treated population and it comprises 747 instances

(139 treated, 608 control) with 25 covariates measuring different

attributes of children and their mothers. The simulated outcomes

are implemented as both setting “A” and setting “B” in the NPCI

package and follow linear and nonlinear relationship respectively.

Performance Metrics. Given a synthetic dataset that includes

both factual and counterfactual outcomes, we evaluate treatment

effect estimation methods through two performance measures. The

individual-based metric is 𝜖PEHE = 1
𝑛

∑𝑛
𝑖=1 (𝜏𝑖 − 𝜏𝑖 )2, where 𝜏𝑖 =

𝑦1
𝑖
−𝑦0

𝑖
is the predicted individual treatment effect and 𝜏𝑖 = 𝑦1

𝑖
−𝑦0

𝑖
is

the actual effect. The population-based measure is 𝜖ATE = |ATE −�ATE|. ATE = 1
𝑛

∑𝑛
𝑖=1 (𝑦1𝑖 − 𝑦0

𝑖
) and �ATE is calculated from the

estimated outcomes.

BaselinesMethods. We compare performances of the following

methods which can be divided into: Baseline models: TARNET [23],

CFR-WASS [23], CFR-MMD [23], CFR-ISW [13]. Disentangled
models: DR-CFR [14], TEDVAE [28],MIM-DRCFR (our method)

and its variant RLO-DRCFR.
Ablation Study. We also conduct an ablation study to examine

the contributions of different components in MIM-DRCFR.

In Table 1, we report the average results of the

√
𝜖PEHE and

𝜖ATE metrics on IHDP-A and IHDP-B benchmarks (100 realizations

with 63/27/10 proportion of train/validation/test splits). Results

show that MIM-DRCFR achieves the best performance against the

compared methods and its variants, which demonstrates that MIM-

DRCFR is currently the most effective disentangled method in ITE

estimation. The bottom part of Table 1 summarizes results of the

ablation study, which demonstrate that all MIM-DRCFR variants



Table 1: Results of different treatment effect estimation
methods on IHDP Benchmark and ablation study of MIM-
DRCFR

Dataset IHDP-A IHDP-B

Method

√
𝜖PEHE 𝜖ATE

√
𝜖PEHE 𝜖ATE

TARNET 0.95 (0.38) 0.27 (0.13) 3.15 (0.22) 0.42 (0.17)

CFR-MMD 0.75 (0.34) 0.30 (0.12) 2.58 (0.18) 0.35 (0.16)

CFR-WASS 0.74 (0.35) 0.29 (0.12) 2.51 (0.18) 0.34 (0.16)

CFR-ISW 0.69 (0.30) 0.23 (0.09) 2.55 (0.16) 0.40 (0.13)

DR-CFR 0.64 (0.25) 0.20 (0.08) 2.33 (0.15) 0.37 (0.10)

TEDVAE 0.58 (0.22) 0.15 (0.08) 2.24 (0.13) 0.31 (0.09)

RLO-DRCFR 0.54 (0.16) 0.14 (0.05) 2.16 (0.11) 0.31 (0.06)

MIM-DRCFR 0.38 (0.09) 0.09 (0.01) 2.08 (0.09) 0.25 (0.04)

w/o SFD 0.53 (0.20) 0.14 (0.05) 2.28 (0.13) 0.34 (0.08)

w/o MIM 0.50 (0.21) 0.13 (0.05) 2.29 (0.12) 0.32 (0.09)

w/o Both 0.63 (0.25) 0.19 (0.07) 2.31 (0.15) 0.37 (0.10)

1
The bolded values mean the best performance and the metric represented

in the form of “mean (standard deviation)” and the result is statistically

significant based on the Welch’s 𝑡 -test with 𝛼 = 0.05.
2 w/o SFD means using three separate representation layers instead of SFD

layer. w/o Both means w/o MIM+SFD.

with some components removed witness clear performance drops

when comparing to the full model on the

√
𝜖PEHE metric, indicating

that each of the designed components contributes to the success of

MIM-DRCFR.

3.2 Real-world dataset Offline Evaluation
In real-world scenarios we often face the following budget con-

strained problem “How to maximize global value of the population
𝜔 when we can only intervene on a subgroup 𝜆 of the population 𝜔
due to the budget limit”, which can be formulated as:

max
∑︁
𝑖∈𝜆

𝑦1𝑖 (𝑥𝑖 , 𝑡𝑖 = 1) +
∑︁
𝑖∈𝛿

𝑦0𝑖 (𝑥𝑖 , 𝑡𝑖 = 0)

𝑠 .𝑡 .
∑︁
𝑖∈𝜆
I[𝑡𝑖 = 1] ≤ 𝐵,

(9)

where 𝜆 (resp., 𝛿) refers to treatment (resp., control) subgroup,

𝜔 = 𝜆 ∪ 𝛿 and 𝜆 ∩ 𝛿 = ∅. I denotes the indicator function and B

refers to the budget (e.g., total number of treated users). We prove

that this problem equals finding an optimal subgroup 𝜆∗ that has
higher non-negative uplift value (i.e., individual treatment effect 𝜏)

than that of 𝛿 . Mathematically:

𝜆∗ =
{
𝑥𝑖 | ∀𝑥 𝑗 ∈ 𝛿, 𝜏𝑖 ⩾ 𝜏 𝑗 , 𝜏𝑖 ⩾ 0

}
𝑎𝑛𝑑 |𝜆∗ | ⩽ 𝐵 (10)

We can easily obtain 𝜆∗ through greedy approximation algo-

rithm [7] based on uplift value. Thus, we convert this budget con-

strained problem into ITE estimation problem, which has gained

lots of interest in recent years under the name of uplift modelling.
The problem consists in targeting treatment to the individuals for

whom it would be the most beneficial. For instance, in marketing,

one would aim to target advertisement budget to users that would

be most likely to be persuadable to purchase [3].

Message pushingDataset.A real-world industrial dataset with

10 million samples that was collected from a current online policy.

Table 2: Offline AUUC on the two real-world datasets

Method Coupon sending Message pushing

TARNET 1.09 0.56

DR-CFR 1.22 0.68

RLO-DRCFR 1.41 0.73

MIM-DRCFR 1.55 0.80
1
We normalize the𝐴𝑈𝑈𝐶 value by dividing the𝐴𝑈𝑈𝐶𝜋 (1) .

The covariates contain users’ profile, behavior and context features,

treatment is defined as “If pushing the message to user” and the out-

come is whether user log onto apps that day. In order to satisfy the

unconfoundedness assumption, we introduce sufficient confounders

(e.g, user activity features) based on our prior knowledge.

Coupon sending Dataset. This is similar to above with the

message pushing action simply replaced by sending coupons.

Performance Metrics. As we cannot obtain factual and coun-

terfactual outcomes simultaneously in the real-world datasets, we

use Area Under the Uplift Curve (AUUC) [8, 12, 26] as our offline

metric:

𝐴𝑈𝑈𝐶𝜋 (𝑘) = (
𝑅𝑇=1𝜋 (𝑘)
𝑁𝑇=1
𝜋 (𝑘)

−
𝑅𝑇=0𝜋 (𝑘)
𝑁𝑇=0
𝜋 (𝑘)

) (𝑁𝑇=1
𝜋 (𝑘) +𝑁𝑇=0

𝜋 (𝑘)), (11)

where 𝜋 (𝑘) denotes the first k proportions of population sorted

in descending order of uplift value and 𝑘 ∈ [0, 1]. 𝑅𝑇=1𝜋 (𝑘) (resp.,
𝑅𝑇=0𝜋 (𝑘)) are the positive outcomes (i.e., login outcome in our indus-

trial datasets) in the treatment (resp., control) group and 𝑁𝑇=1
𝜋 (𝑘)

(resp., 𝑁𝑇=0
𝜋 (𝑘)) are the number of subjects in the treatment (resp.,

control) group from 𝜋 (𝑘). The total AUUC is then obtained by

cumulative summation [8]:

𝐴𝑈𝑈𝐶 =

∫ 1

0
𝐴𝑈𝑈𝐶𝜋 (𝜌)𝑑𝜌 ≈

1∑︁
𝑘=0

𝐴𝑈𝑈𝐶𝜋 (𝑘)𝑑𝑘 (12)

Table 2 and Figure 2 illustrate the offline AUUC and uplift curve,

which demonstrates that MIM-DRCFR performs better than other

methods on the real-world industrial datasets.

Figure 2: Uplift curve of the Messing pushing dataset. x-axis
refers to the proportion 𝑘 of the test dataset, y-axis denotes
the normalized 𝐴𝑈𝑈𝐶𝜋 (𝑘) value by dividing the 𝐴𝑈𝑈𝐶𝜋 (1).

3.3 Online A/B test
We design an online A/B test to further evaluate the performance

through calculating the daily login users (DLU) of the population



𝜔 after pushing message to the estimated optimal subgroup 𝜆∗.

𝐷𝐿𝑈 (𝜔) = 𝐿𝑇=1 (𝜆∗) + 𝐿𝑇=0 (𝜔 − 𝜆∗), (13)

where 𝐿𝑇=1 (𝜆∗) (resp., 𝐿𝑇=0 (𝜔 − 𝜆∗)) refers to the number of login

users of the treatment (resp., control) group and 𝜆∗ is selected based
on the estimated uplift value of different models. In our online

datasets, for each experiment group, 𝜔 contains 1 million users and

these users are randomly sampled from the entire population who

have logged onto our platform in the last 7 days. Finally we choose

60% of them to push messages.

Table 3 illustrates the online DLU result of different models

during 5 days’ experiment period. The average DLU result of MIM-

DRCFR increased by 6.1% compared with current online policy,

which is greater than that of DR-CFR and RLO-DRCFR. This again

demonstrates the improvement of MIM-DRCFR on ITE estimation.

Table 3: Comparison of DLU of Message Pushing

Method T T+1 T+2 T+3 T+4 Avg

DR-CFR +2.1% +1.5% +1.2% +0.4% +0.8% +1.2%

RLO-DRCFR +4.4% +4.8% +5.0% +3.5% +2.9% +4.1%

MIM-DRCFR +6.6% +8.5% +6.3% +5.8% +3.4% +6.1%

4 CONCLUSION
In this paper, we focus on disentangled representation learning

for ITE estimation and propose a disentangled framework called

MIM-DRCFR, which incorporates multi-task learning for the sake

of information sharing during the disentangling process and MI

minimization for obtaining better independence of the latent factors.

Both public benchmarks and real-world industrial datasets demon-

strate its superiority over state-of-the-art methods. For future work,

we would like to explore more efficient disentangling framework

like generative models and extend our method to multi-treatment

scenarios.
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