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ABSTRACT
Machine reading comprehension has aroused wide concerns, since
it explores the potential of model for text understanding. To further
equip the machine with the reasoning capability, the challenging
task of logical reasoning is proposed. Previous works on logical
reasoning have proposed some strategies to extract the logical units
from different aspects. However, there still remains a challenge to
model the long distance dependency among the logical units. Also,
it is demanding to uncover the logical structures of the text and
further fuse the discrete logic to the continuous text embedding.
To tackle the above issues, we propose an end-to-end model Logi-
former which utilizes a two-branch graph transformer network
for logical reasoning of text. Firstly, we introduce different extrac-
tion strategies to split the text into two sets of logical units, and
construct the logical graph and the syntax graph respectively. The
logical graph models the causal relations for the logical branch
while the syntax graph captures the co-occurrence relations for the
syntax branch. Secondly, to model the long distance dependency,
the node sequence from each graph is fed into the fully connected
graph transformer structures. The two adjacent matrices are viewed
as the attention biases for the graph transformer layers, which map
the discrete logical structures to the continuous text embedding
space. Thirdly, a dynamic gate mechanism and a question-aware
self-attention module are introduced before the answer prediction
to update the features. The reasoning process provides the inter-
pretability by employing the logical units, which are consistent
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with human cognition. The experimental results show the superi-
ority of our model, which outperforms the state-of-the-art single
model on two logical reasoning benchmarks. 1
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1 INTRODUCTION
Machine reading comprehension [10, 18, 39] has been one of the ma-
jor focuses in the field of Natural Language Processing (NLP) [4, 9]
in recent years. A large number of models have achieved competi-
tive performances in some famous datasets, such as SQuAD[23, 24],
RACE[14]. However, these models [7, 27, 36] lack the capability of
logical reasoning. To facilitate the machine for human intelligence,
the task of logical reasoning MRC [17, 37] was proposed previously.
Similar to the traditional MRC, the task of logical reasoning also
requires the models to predict the answers depending on the given
text inputs. Figure 1 illustrates an logical reasoning example from
ReClor dataset [37]. The inputs include the context, question and a
set of options. One of the unique characteristics of the text is the
rich logical structures. As illustrated in Figure 1, the logical struc-
ture of the context can be uncovered in a certain way. We define
the split short sentences as logical units (e.g., U1-U6). The logical
units contain the independent and complete semantics, which are
1The code is public in https://github.com/xufangzhi/Logiformer.
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Figure 1: An example of the logical reasoning task and some
detailed illustrations.

not kept in the token-level text features. The understanding of the
text requires the global semantics of each logical unit, as well as
the interactions among them based on some logical relations (e.g.,
causal and co-occurrence). Therefore, the main challenges for the
task of logical reasoning can be summarized as the following two
aspects.

Firstly, it remains a challenge to model the long distance depen-
dency [11] of the extracted logical units. Some previous methods,
such as DAGN [12], have proposed to split the text into discourse
nodes [32] and constructed a sequential chain graph for reason-
ing. However, it neglects the natural long-distance dependency
among logical units. For example in Figure 1, the first and the last
sentences share the same subject (Paula) and predicate (visit the
dentist), though they are distant in the graph space. The chain struc-
ture limits the information update. In a word, the simple graph
structure built for the logical text would fail to provide the efficient
one-hop interaction [25]. Pretrain-based transformer structures
[30] have the natural advantage of modeling the long text and
show excellent performance on the popular tasks. To enhance the
logical perception ability of the language models, previous works
have attempted to employ additional segment embedding at the
beginning. However, it is still limited to the token-level interactions,
which sacrifices the global semantics of logical units. Take the first
sentence of the context in Figure 1 as an instance, two extracted
units of Paula will visit the dentist tomorrow morning(U1) and Bill
goes golfing in the morning(U2) express the causal relations within
this sentence. The token-aware models would stress more on the
text semantics and fail to capture such logical information.

Secondly, it is intractable to bridge the gap between the discrete
logical structures and the continuous text embedding space. Take a
closer observation of the logical units in Figure 1, the units are not
completely separated. In this work, we pay much attention to the
two explicit relationships (causal and co-occurrence). We summarize
them into the logical branch and syntax branch respectively. From
the logical branch, connectives (e.g., if, unless, Therefore) play a
significant role in covering the logical relations. For example in

Figure 1, the logical units U1 and U2 are connected with the con-
nective if while U3 and U4 share the connective unless. From the
syntax branch, the logical units are not independent but have some
repeating occurrences. For example, the units of Bill goes golfing in
the morning and Bill will not go golfing belong to the co-occurrence
information, which have strong correlations. Thus, these syntac-
tic relationships help make the corresponding logical units closer
in structure. The above connection structures from two branches
are discrete, which is incompatible to the continuous text repre-
sentation. Some early works simply feed the text to the Pretrained
Language Models (PLMs) [5, 33] and rely on the context to learn the
logical semantics. But it includes much noise in the text embedding
and lacks the potential of interpretability. Previously, LReasoner
[31] proposes a method to transform the logical expressions to text
based on the templates and feeds the extended text into PLM. How-
ever, it still embeds the logic in an implicit form and fails to make
up for the weakness of PLMs in logical reasoning. Some works
like FocalReasoner [21] uncovers the logical structure in only one
aspect (e.g., capture the co-occurrence between units). It leads to
the weak capability of the model to capture logical relationships.

In light of the above challenges, we propose a novel model named
Logiformer which is an end-to-end architecture with graph trans-
former for interpretable logical reasoning of text. By employing
the fully connected graph transformer structure to enhance the
direct interactions, we tackle the issue of long distance dependency
among the logical units. To encode the discrete logical structures to
the continuous text embedding space, we apply the attention biases
from both the logical and syntax branches. The whole reasoning is
on the basis of logical units and the built graphs, which are consis-
tent with the human cognition. The explicit relations among units
and the weighted attention maps provide the interpretability for the
logical reasoning. In details, firstly, Logiformer split the text into
logical units and construct the logical graph based on the causal
relations for the logical branch. For the syntactic branch, the split
nodes and a syntax graph are also obtained. Secondly, we feed the
node sequences and two graph topology to the fully connected
graph transformers respectively. The respective adjacent matrices
are viewed as the attention biases to encode the logical structures
to each graph transformer. Thirdly, we combine the updated fea-
tures from two branches with a dynamic gate mechanism. With
the additional token-level embedding, we can map the features to
the same space. By means of the question-aware self-attention, the
final feature can be utilized to predict the answers.

The main contributions are listed as follows:

• A two-branch graph transformer network named Logiformer
is proposed to model the long distance dependency of the
logical units and encode the discrete logical structure to the
continuous text embedding. As far as we know, we are the
first to tackle both issues in the logical reasoning task.
• In light of drawbacks of chain-type text graphs, we take the
fully connected structures into consideration, containing the
awareness of both logic and syntax simultaneously. Two
graphs are constructed based on the extracted logical units
and their topology is utilized as the attention biases.
• The extraction of the logical units and the explicit relations
are consistent with the human cognition. The uncovered



logical structures and the weighted attention maps of the
logical units provide the excellent interpretability for the
logical reasoning process.
• Extensive experiments show that Logiformer outperforms
the state-of-the-art (SOTA) results with single model on
two logical reasoning datasets. Furthermore, ablation studies
prove the effectiveness of each module in our model.

2 RELATEDWORK
In this section, we will introduce the current researches on MRC
and logical reasoning.
2.1 Machine Reading Comprehension
Recent years have witnessed the rapid growth of MRC[18], where
themodel is required to infer the answers based on the given context
and a question. A variety of datasets have been proposed to check
the performances of MRC models. Among them, SQuAD[23, 24] fo-
cuses on the span extractions on the factual questions. HotpotQA[34]
and OpenBookQA[20] require the multi-hop reasoning capability
of the models. A couple of multiple choice datasets like RACE[14]
cover the examinations for middle or high school students. Some
representativemodels achieve great success on these datasets. Retro-
Reader [41] applies a two-state strategy to solve the questions. But
it mainly investigates the overall interactions of the context and
question, which fails to deal with the complex logic within the
text. SG-Net [40] integrates the syntax information into the self-
attention module to improve the performance, but it does not show
the potential on tackling the logical information. Generally speak-
ing, the datasets mentioned above rely much on the token-level
matching, which can be well tackled with large-scale pretraining
models like BERT[6] and GPT-3[2]. To make the models closer to
the human intelligence, it is necessary to introduce more challeng-
ing tasks requiring logical reasoning. Previously, the task of Natural
Language Inference(NLI)[1, 28] is proposed to motivate the models
to infer the relations(i.e., Contradiction, Entailment and Neutral) be-
tween two sentences. Nevertheless, it is limited by the fixed inputs
and outputs and fails to extend the task to more complex settings.

2.2 Logical Reasoning
To improve the reasoning ability of the models, several datasets on
multiple choice have been proposed previously. ReClor[37], which
is extracted from standardized graduate admission examinations
and law school admission test, has aroused wide concerns. For
better evaluation, it separates the biased examples into EASY set
and the challenging ones into HARD set. LogiQA [17] is also one
of the representatives, which also aims to improve the logical rea-
soning capability. It is sourced from expert-written questions and
covers multiple types of deductive reasoning. Experiments show
that previous SOTA models on traditional MRC perform bad on
the two datasets. Under such circumstances, some of the recent
works attempt to enhance logical reasoning from different per-
spectives. DAGN[12] proposes a reasoning network based on the
discourse units extracted from the text. But it simply forms a chain-
type discourse network and weakens the relations between two
distant units. FocalReasoner [21] stresses that fact units in the form
of subject-verb-object are significant for logical reasoning. It con-
structs a supergraph on top of the fact units and updates the node

Table 1: The set of logical units from the example context
(split by connectives and punctuations).

Symbol Logical Units
𝑈1 Paula will visit the dentist tomorrow morning
𝑈2 Bill goes golfing in the morning
𝑈3 Bill will not go golfing
𝑈4 Damien agrees to go golfing too
𝑈5 Damien has decided not to go golfing

features relying on Graph Neural Network. However, it ignores the
relation connectives from the text and lacked the logical modeling.
LReasoner [31] focuses on capturing symbolic logic from the text
and puts forward a context extension framework based on logi-
cal equivalence laws. However, it relies heavily on the language
models for token-level embedding and neglects the sentence-level
interactions.

3 METHODOLOGY
This section will introduce the proposed end-to-end model Logi-
former. The architecture of Logiformer is shown in Figure 2. The
left part of the model is an example of the logical reasoning task.
The understanding of text will be divided into two branches: logi-
cal branch (upper) and syntactic branch (lower). This architecture
mainly includes the following three parts: a) graph construction
from the text; b) logical-aware and syntax-aware graph transform-
ers for feature updates; c) the decoder including a dynamic gate
mechanism and a question-aware self-attention module.

3.1 Task Formulation
Given a dataset D for logical reasoning, which consists of 𝑁 exam-
ples totally. The inference of the 𝑖𝑡ℎ question can be formulated as
follows:

𝑎 = argmax
𝑎𝑖,𝑗 ∈𝐴𝑖

𝑝
(
𝑎𝑖, 𝑗 | 𝑐𝑖 , 𝑞𝑖 , 𝐴𝑖 ;𝜃

)
, (1)

where 𝑐𝑖 , 𝑞𝑖 , 𝐴𝑖 represent the context, question sentence and candi-
date set respectively. The number of options in𝐴𝑖 is 𝑛, 𝑗 ∈ [0, 𝑛−1]
and 𝑎𝑖, 𝑗 ∈ 𝐴𝑖 represents the 𝑗𝑡ℎ option. 𝑎 denotes the predicted
option. 𝜃 denotes the trainable parameters.

Since the current methods mainly focus on the token-level rep-
resentation of the text with the help of PLMs, they will naturally
ignore some global semantics for each sentence or phrase. To cap-
ture the global feature within each sentence, we first obtain the
text fragments, which are split by connectives or punctuations. We
define the text fragment that reflect the complete semantic of an
event or argument as the logical unit with the symbol𝑈 . Take the
context in Figure 2 as an instance, we split the text by both connec-
tives and punctuations and obtain a set of logical units shown in
Table 1.

Considering that there exist explicit causal relations between
units, we further introduce the conditional connective ‘→’. And in
some cases, it is required to reverse logical units for the negation
expression, we also employ the operation ‘¬’. Combining the logical
units and causal connections in the form of conjunction, we can
derive the logical expression of the text:

(𝑈2 → 𝑈1) ∧ (𝑈4 → ¬𝑈3) ∧ ¬𝑈5 . (2)



Figure 2: The architecture of Logiformer. The left part is an input example of the dataset. The graph construction modules
(a1,a2) split the text into logical units and build two graphs from two branches respectively. The graph transformer structures
(b1,b2) update the text features combined with the logical and syntactic relations. Finally, the decoder module (c) is utilized to
conduct the feature fusion and predict the answers.

Obviously, there exist two key components in the logical expres-
sion: i) logical units 𝑈𝑘 ; ii) logical connectives, i.e.,→ and ¬. The
former one focuses on the syntactic information, while the latter
one is more related to logical structure of the context.

3.2 Graph Construction
Given the 𝑖𝑡ℎ inputs, Logiformer first concatenates the context
𝑐𝑖 with each option 𝑎𝑖, 𝑗 respectively to form the input sequences.
According to the previous analysis, Logiformerwill tackle the inputs
from two branches (i.e., logical branch and syntax branch) and build
two graphs (i.e., logic graph and syntax graph) respectively.

3.2.1 Logical Graph. For the logical branch, Logiformer mainly
concentrates on the causal relations. Considering that the causal
relation often appears with explicit logical words such as if, unless,
because, we can leverage the explicit logical words as the basis
of split. Therefore, we include 100 commonly used logical words
according to PDTB 2.0 [22].

Combining the explicit logical words and punctuations, we can
separate the text sequence into logical units. Each unit serves as
a node for future updates. Especially, we pick out the nodes pairs
connected by the explicit causal relation words and name them
as 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑜𝑑𝑒 (orange nodes) and 𝑟𝑒𝑠𝑢𝑙𝑡 𝑛𝑜𝑑𝑒 (blue nodes).
Meanwhile, we classify the common nodes which do not contain
causal relations into 𝑟𝑒𝑠𝑢𝑙𝑡 𝑛𝑜𝑑𝑒 (blue nodes). Thus, we obtain the
node set from the perspective of logic.

According to the extracted causal node pairs, we can create
directed connection from each condition node 𝑝 to result node 𝑞.

This kind of connection is reflected in the adjacent matrix M𝑐𝑎𝑠 ∈
R𝐾𝑐𝑎𝑠×𝐾𝑐𝑎𝑠 of the logical graph asM𝑐𝑎𝑠 [𝑝 − 1, 𝑞 − 1] = 1.

Also, to avoid the semantic reverse brought by the negation,
we mark the nodes with the explicit negation words (e.g., not, no).
The node 𝑘 with negation semantics are expressed in the adjacent
matrix asM𝑐𝑎𝑠 [𝑘 − 1, 𝑘 − 1] = −1.

Therefore, the logical graph has the perception of the causal
relations and negations. And the obtained adjacent matrix M𝑐𝑎𝑠 ∈
R𝐾𝑐𝑎𝑠×𝐾𝑐𝑎𝑠 of the logical graph is asymmetric.
3.2.2 Syntax Graph. The main purpose of the syntactic under-
standing is to capture the inner relations between the logical units
𝑈𝑘 . Noticing that some logical units share the common words or
phrases in Figure 2, e.g., Bill, Damien and go golfing. It illustrates
that the text has a strong characteristics of co-occurrence. Also, co-
occurrence usually exists between two complete sentences. There-
fore, we consider to split the text sequence only by punctuations
and obtain a set of sentence nodes with no original connection. It is
required to extract the co-occurrence between the sentence nodes.
As each node consists of its related tokens, we propose a simple
strategy to capture the co-occurrence, shown in Algorithm 1.

Assume the total number of the nodes to be 𝐾𝑜𝑐𝑐 . The input for
the algorithm is the sentence node𝑈𝑘 , corpus𝐶𝑠 containing redun-
dant stop words and hyper-parameter 𝛿 . The output is an adjacent
matrix M𝑜𝑐𝑐 ∈ R𝐾𝑜𝑐𝑐×𝐾𝑜𝑐𝑐 , which reflects the co-occurrence rela-
tions between nodes. As for any two nodes, we transform them into
two token sets 𝑆𝑒𝑡𝑘and 𝑆𝑒𝑡 𝑗 separately, without order and duplicate
elements (Line 3 & Line 5 in Algorithm 1). We define 𝑙𝑒𝑛(𝑆𝑒𝑡) to be
the number of tokens in a set. Further, let the token overlap ratio



Algorithm 1: Co-occurrence Extraction
Input: Sentence Nodes𝑈𝑘 (𝑘 ∈ {1, 2, ..., 𝐾𝑜𝑐𝑐 }),

hyper-parameter 𝛿 , stop words corpus 𝐶𝑠
Output: Co-occurrence Matrix M𝑜𝑐𝑐

1 Initialize co-occurrence matrixM𝑜𝑐𝑐 ∈ R𝐾𝑜𝑐𝑐×𝐾𝑜𝑐𝑐 to zero.
2 for 𝑘 = 1, 2, ..., 𝐾𝑜𝑐𝑐 do
3 Include all the tokens of𝑈𝑘 into 𝑆𝑒𝑡𝑘 . Meanwhile,

exclude stop words from 𝑆𝑒𝑡𝑘 based on 𝐶𝑠
4 for 𝑗 = 𝑘 + 1, 𝑘 + 2, ..., 𝐾𝑜𝑐𝑐 do
5 Include all the tokens of𝑈 𝑗 into 𝑆𝑒𝑡 𝑗 and exclude

stop words from 𝑆𝑒𝑡 𝑗 based on 𝐶𝑠
/* Ensure the two sets not empty */

6 if 𝑙𝑒𝑛(𝑆𝑒𝑡𝑘 ) > 0 and 𝑙𝑒𝑛(𝑆𝑒𝑡 𝑗 ) > 0 then
7 𝐵 ←𝑚𝑖𝑛{𝑙𝑒𝑛(𝑆𝑒𝑡𝑘 ), 𝑙𝑒𝑛(𝑆𝑒𝑡 𝑗 )}
8 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ← 𝑙𝑒𝑛(𝑆𝑒𝑡𝑘&𝑆𝑒𝑡 𝑗 )/𝐵
9 if 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 > 𝛿 then
10 M𝑜𝑐𝑐 [𝑘 − 1, 𝑗 − 1] ← 1

11 M𝑜𝑐𝑐 [ 𝑗 − 1, 𝑘 − 1] ← 1

12 end
13 end
14 end
15 end
16 return Co-occurrence MatrixM𝑜𝑐𝑐

of two sets be the co-occurrence metric (Line 7 & Line 8). Thus, we
can determine the co-occurrence relation between𝑈𝑘 and𝑈 𝑗 if the
overlap score exceeds the threshold.

So far, the connections within the sentence nodes have been
explored based on the co-occurrence relations. Thus, the syntax
graph is constructed reflected by the obtained adjacent matrix
M𝑜𝑐𝑐 ∈ R𝐾𝑜𝑐𝑐×𝐾𝑜𝑐𝑐 .

3.3 Graph Transformer
Some previous works [8, 38] point out the drawbacks of graph
neural network, such as the issue of over-smooth [15]. Therefore,
we take the novel architecture of graph transformer [3, 35] into
account. After the extraction of nodes and the construction of two
graphs, we feed them into the logical-aware and syntax-aware
graph transformer structures respectively.

3.3.1 Logical-aware Graph Transformer. The simple illustra-
tion of the logical-aware graph transformer is shown in Figure 3.
First of all, it is necessary to get the original feature embedding
for each node. Given the concatenated input sequence of the 𝑖𝑡ℎ
question:

Input(𝑐𝑖 , 𝑎𝑖, 𝑗 ) = [𝐶𝐿𝑆]𝑐𝑖 [𝑆𝐸𝑃]𝑎𝑖, 𝑗 [𝑆𝐸𝑃], (3)

we employ the RoBERTa model [19] as the encoder for the token-
level features. For the token sequence {𝑡 (𝑘)1 , 𝑡

(𝑘)
2 , ..., 𝑡

(𝑘)
𝑇
} with the

length 𝑇 of each node𝑈𝑘 , the obtained token embedding is repre-
sented as {v(𝑘)𝑡1 , v

(𝑘)
𝑡2
, ..., v

(𝑘)
𝑡𝑇
}. We take the average embedding of

𝑇 tokens as the original feature for node𝑈𝑘 :

v𝑘 =
1

𝑀

𝑀∑︁
𝑖=1

v
(𝑘)
𝑖

. (4)

To keep the original order information of nodes in the text,
positional embedding is added to the node representation.

Vi = Vo + 𝑃𝑜𝑠𝐸𝑚𝑏𝑒𝑑 (Vo), (5)
where Vo = [v1; v2; ...; v𝐾𝑐𝑎𝑠

], Vo ∈ R𝐾𝑐𝑎𝑠×𝑑 , 𝑑 is the dimension
of the hidden state, and 𝐾𝑐𝑎𝑠 is the number of nodes. 𝑃𝑜𝑠𝐸𝑚𝑏𝑒𝑑 (·)
provides a d-dimensional embedding for each node in the input
sequence.

We feed the node representationVi into the logical-aware graph
transformer. Firstly, Vi is projected to three matrices 𝑄 , 𝐾 and 𝑉
of the self-attention module:

𝑄 = Vi ·WQ,

𝐾 = Vi ·WK,

𝑉 = Vi ·WV,

(6)

where WQ,WK,WV ∈ R𝑑×𝑑𝑘 are projection matrices, and the
obtained matrices𝑄,𝐾,𝑉 ∈ R𝐾𝑐𝑎𝑠×𝑑𝑘 . Then, we compute the atten-
tion based on the query, key and value matrices.

𝐴 =
𝑄𝐾T√︁
𝑑𝑘

,

𝐴𝑡𝑡 (𝑄,𝐾,𝑉 ) = softmax(𝐴) ·𝑉 ,
(7)

where 𝐴 ∈ R𝐾𝑐𝑎𝑠×𝐾𝑐𝑎𝑠 is a weight matrix for node pairs. From the
equations, the transformer structure provides a fully connected set-
ting to all nodes, which ignores the inner causal relations. Therefore,
Logiformer employs the obtained topology information M𝑐𝑎𝑠 ∈
R𝐾𝑐𝑎𝑠×𝐾𝑐𝑎𝑠 of the logical graph as an attention bias. The represen-
tation of the weight matrix 𝐴 is adjusted as follows:

𝐴
′
=
𝑄𝐾T√︁
𝑑𝑘

+M𝑐𝑎𝑠 . (8)

To improve the robustness and capability of the attention mod-
ule, we apply the multi-head attention mechanism with the head
number 𝐻 :

𝐴𝑡𝑡𝑀𝐻 (𝑄,𝐾,𝑉 ) = [𝐻𝑒𝑎𝑑1; ...;𝐻𝑒𝑎𝑑𝐻 ] ·WH, (9)
whereWH ∈ R(𝐻∗𝑑𝑘 )×𝑑𝑘 is the linear projection matrix, 𝐻𝑒𝑎𝑑𝑖 =
𝐴𝑡𝑡𝑖 (𝑄,𝐾,𝑉 ), the input query, key and value matrices are obtained
by the linear projections of WQ

i
,WK

i ,W
V
i ∈ R

𝑑×𝑑𝑘 respectively.
For simplicity, we assume 𝑑 = 𝑑𝑘 and omit the bias term of the
linear projection.

Repeating the multi-head attention for 𝐿 layers, we take out the
hidden states of the last two layers. To enhance the robustness of
the model, we make a fusion of them as the updated node features:

V𝑐𝑎𝑠 = V
(𝐿−1)
𝑐𝑎𝑠 +V(𝐿)𝑐𝑎𝑠 , (10)

whereV𝑐𝑎𝑠 ∈ R𝐾𝑐𝑎𝑠×𝑑 , andV(𝐿−1)𝑐𝑎𝑠 ,V
(𝐿)
𝑐𝑎𝑠 ∈ R𝐾𝑐𝑎𝑠×𝑑 represents the

hidden states of the last two layers respectively. Note that there are
lots of ways of feature fusion, we only present the simple addition
for illustration.



Figure 3: The illustration of logical-aware graph trans-
former. The inputs are the node sequence as well as the
topology and the outputs are omitted.

3.3.2 Syntax-aware Graph Transformer. The general idea of
the syntax-aware graph transformer is similar to that of the logical-
aware graph transformer. The initialization of node features are
also obtained by averaging the embedding of each token. And
the positional information is kept to provide the perception of
original text orders. After obtaining the weight matrix from the
self-attentionmodule, we apply the adjacent matrixM𝑜𝑐𝑐 to provide
the attention bias for the weights. The final feature of syntax-branch
node sequence is also obtained through the fusion of last two layers,
represented as V𝑜𝑐𝑐 ∈ R𝐾𝑜𝑐𝑐×𝑑 .

3.4 Decoder
So far, we have obtained the token-level representationV𝑡 ∈ R𝑁×𝑑 ,
syntax branch node representation V𝑜𝑐𝑐 ∈ R𝐾𝑜𝑐𝑐×𝑑 and logical
branch node representation V𝑐𝑎𝑠 ∈ R𝐾𝑐𝑎𝑠×𝑑 . To make comprehen-
sive use of the advantages of the three features, it is required to
ensure dimension consistency. Therefore, we broadcast the feature
of each node to all the tokens it contains. The updated features are
transformed to V𝑡 , V

′
𝑜𝑐𝑐 , V

′
𝑐𝑎𝑠 ∈ R𝑁×𝑑 .

The above three features with the same dimension do not neces-
sarily make equal contributions to the final prediction. It will be
beneficial to automatically assign the importance. Thus, Logiformer
will dynamically generate the fusion weights for V′𝑜𝑐𝑐 and V

′
𝑐𝑎𝑠 .

The gate parameter 𝜆 is expressed as follows:

𝜆 = softmax( [V
′
𝑜𝑐𝑐 ; V

′
𝑐𝑎𝑠 ]W𝑔 + 𝑏𝑔), (11)

where W𝑔 ∈ R2𝑑×1 and 𝑏𝑔 ∈ R𝑁×1 are the weight term and bias
term for the linear projection. V′𝑜𝑐𝑐 and V

′
𝑐𝑎𝑠 are concatenated at

the last dimension. The obtained gate parameter 𝜆 ∈ R𝑁×1 is a
vector. That is to say, each token will be provided with one specific
weight.

Table 2: Detailed Splits of ReClor and LogiQA.

Dataset #Train #Valid #Test #Reason Type
ReClor 4,638 500 1,000 17
LogiQA 7,376 651 651 5

The final feature V can be represented in the following expres-
sion:

V = 𝐿𝑁 (V𝑡 + 𝜆 · V
′
𝑜𝑐𝑐 + (1 − 𝜆) · V

′
𝑐𝑎𝑠 ), (12)

where 𝐿𝑁 (·) denotes the layer normalization operation. Since we
do not employ the global node in the graph transformer, the global
feature will not updated. To this end, Logiformer integrates the
local token-level features and gets the updated global information:

V𝑐𝑙𝑠 = 𝐿𝑁 (V𝑡,𝑐𝑙𝑠 +
1

𝑁 − 1

𝑁−1∑︁
𝑖=1

(V
′
𝑜𝑐𝑐,𝑖 +V

′
𝑐𝑎𝑠,𝑖 )), (13)

whereV𝑡,𝑐𝑙𝑠 is the first token of the original token-level embedding.
V
′
𝑜𝑐𝑐,𝑖

andV′
𝑐𝑎𝑠,𝑖

represent the 𝑖𝑡ℎ token embedding of the syntactic
branch and logical branch feature respectively. We utilize the global
feature V𝑐𝑙𝑠 to replace the first token feature (i.e., [cls] feature) of
V. V can be expressed as the concatenation of V𝑐𝑙𝑠 , V𝑐𝑜𝑛𝑡𝑒𝑥𝑡 and
V𝑜𝑝𝑡𝑖𝑜𝑛 , that is V = [V𝑐𝑙𝑠 ; V𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ; V𝑜𝑝𝑡𝑖𝑜𝑛].

To conduct the reasoning, the feature of the questionV𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 is
also of great significance. Logiformer applies a simple self-attention
module for the global feature V and question V𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 . The up-
dated question embedding is expressed as:

V
′
𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 = softmax(

V𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛V
T

√
𝑑

) · V. (14)

For simplicity, the linear projections for the self-attention are
omitted. At last, we concatenate the V𝑐𝑙𝑠 , V𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , V𝑜𝑝𝑡𝑖𝑜𝑛 and
V
′
𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛

to get the final feature V𝑓 𝑖𝑛𝑎𝑙 ∈ R𝑁×𝑑 :

V𝑓 𝑖𝑛𝑎𝑙 = [V𝑐𝑙𝑠 ; V𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ; V𝑜𝑝𝑡𝑖𝑜𝑛; V
′
𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛] . (15)

For each option in one example, we can get one specific final
feature. They are fed into the feed forward network to obtain the
scores, and we take the highest one as the predicted answer.

4 EXPERIMENTS
In this section, extensive experiments are conducted to compare our
model with SOTA single model methods in both ReClor and LogiQA
datasets. Ablation studies are followed to verify the effectiveness
of the proposed modules.

4.1 Datasets and Baselines
4.1.1 Datasets. In this paper, we conduct the experiments on two
logical reasoning datasets ReClor [37] and LogiQA [17]. ReClor con-
sists of 6,138 examples sourced from some standardized tests, while
LogiQA includes totally 8,678 questions collected from National
Civil Servants Examinations of China. The detailed splits of both
datasets are included in Table 2. It can be concluded that ReClor
is more diverse in the number of logical reasoning types, while
LogiQA contains more examples. Both of them are challenging for
the task of logical reasoning.



Table 3: The tuned hyper-parameters with search scopes.

Name of Parameter Search Scope Best
training batchsize {1,2,4,8} 2
#epoch {9,10,11,12,13} 12
#head in graph transformer {4,5,6,7,8} 5
#layer in graph transformer {4,5,6,7,8} 5
max sequence length {128,256,512} 256
learning rate for RoBERTa {4e-6. 5e-6, 6e-6, 5e-5} 5e-6

4.1.2 Baselines. To prove the superiority of ourmodel, wemainly
employ the following baselines, including the SOTA method of
single model.
• Random: The results are based on the random predictions.
• Human Performance[17, 37]: For ReClor, human perfor-
mance is defined as the average score of different graduate
students in a university on the test split. For LogiQA, the
result is the average score of three post-graduate students
on 500 randomly selected instances from the test split.
• DAGN [12]: It proposed a discourse-aware network, which
took RoBERTa-Large[19] as the token encoder and employed
GNN for the feature update.
• FocalReasoner [21]: It focused on the fact units extracted
from the text and built a supergraph for the reasoning. Sim-
ilar to DAGN, it also leveraged RoBERTa-Large and GNN
[26] for the token embedding and node update respectively.
• LReasoner [31]: It captured the symbolic logic from the text
and further extended them into natural language based on
several logical equivalence laws. For the fair comparison, we
take the results of the single model with RoBERTa encoder
into consideration.

4.2 Implementation Details
All of the experiments are conducted with a single GPU of Tesla
V100. For the fair comparison, the RoBERTa-large model [19] is
utilized as the encoder for text during the experiments and the
hidden size is set to 1024. During the training process, the epoch
number is fixed to 12 and the batchsize is set to 2 for both ReClor
and LogiQA datasets. We take Adam [13] with linearly-decayed
learning rate and warm up and select peak learning rate as 5e-6.
We select the model with best accuracy on the validation split to
conduct the test. The details of important hyper-parameters and
their search scopes are attached in Table 3.

4.3 Comparison Results
Logiformer is evaluated on two logical reasoning datasets. The main
results on the validation split and test split of ReClor dataset are
shown in Table 4. And the results on LogiQA dataset are shown in
Table 5. The test split of ReClor is organized into easy fold and hard
fold, presented as ‘Test-E’ and ‘Test-H’ respectively in the table.

For the fair comparison, we consider the results with single
model and with the encoder of RoBERTa for all the baselines. Com-
pared with the SOTA results on two logical reasoning benchmarks,
our proposed model Logiformer shows excellent improvements.

On the ReClor dataset, we witness the improvements of 2.20%
and 1.10% on the validation and test split over previous SOTAmodel
LReasoner. Since LReasoner does not make the results on Test-E

Table 4: Experimental results on ReClor dataset. The per-
centage signs (%) of accuracy values are omitted. The opti-
mal and sub-optimal results are marked in bold and under-
line respectively (same for the following tables).

Model Valid Test Test-E Test-H
Random 25.00 25.00 25.00 25.00
Human Performance[37] - 63.00 57.10 67.20
BERT-Large [37] 53.80 49.80 72.00 32.30
XLNet-Large[37] 62.00 56.00 75.70 40.50
RoBERTa-Large [37] 62.60 55.60 75.50 40.00
DAGN [12] 65.80 58.30 75.91 44.46
FocalReasoner [21] 66.80 58.90 77.05 44.64
LReasoner [31] 66.20 62.40 - -
Logiformer 68.40 63.50 79.09 51.25

Table 5: Experimental results on LogiQA dataset.

Model Valid Test
Random 25.00 25.00
Human Performance[17] - 86.00
BERT-Large [17] 34.10 31.03
RoBERTa-Large [17] 35.02 35.33
DAGN [12] 36.87 39.32
FocalReasoner [21] 41.01 40.25
Logiformer 42.24 42.55

and Test-H splits public, we omit the comparison. Compared with
FocalReasoner on the validation split, Logiformer shows strong
generalization capability with 1.6% and 4.6% improvements on the
validation and test split. Especially on the Test-H split, 6.61% im-
provement proves our superiority for the more difficult logical
reasoning questions. The most important observation is that Logi-
former is the first single model with RoBERTa encoder to beat the
human performance by 0.50% on the ReClor dataset. Although the
machine still falls behind humans on more challenging questions,
our proposed method is positively narrowing the gaps.

On the LogiQA dataset, Logiformer outperforms the previous
SOTA model Logiformer by 1.13% and 2.30% on the validation
and test split respectively. It proves the excellent generalization
capability of Logiformer. However, we also discover the huge gap
between humans and the machine. In view that the context in
LogiQA dataset is organized in a more structural form, humans are
easier to capture the inner logic. The deep learning based models
are good at capturing the semantic changes and lack the perception
of fixed logic.
4.4 Ablation Studies
Considering that the architecture of Logiformer is mainly divided
into three parts: a) graph construction, b) graph transformer and
c) decoder, the ablation studies are also laid out from these three
aspects. The experimental results are shown in Table 6.

Firstly, in the part of graph construction, we build syntax graph
and logical graph based on the different node extraction strategies.
We ablate the effects of the two graphs in turn. That is to say, we
only consider one of the branches each time. From the results, the
logical graph contributes more to the performance on the ReClor
dataset, which improves 4.80% and 3.60% on the validation and test



Table 6: Ablation Studies. The improvements on the accuracy are marked in red.

Model ReClor LogiQA
Valid Δ Test Δ Test-E Test-H Valid Δ Test Δ

Logiformer 68.40 - 63.50 - 79.09 51.25 42.24 - 42.55 -
a) Graph Construction

w/o syntax graph 66.40 -2.00 61.20 -2.30 77.50 48.39 38.56 -3.68 38.71 -3.84
w/o logical graph 63.60 -4.80 59.90 -3.60 75.00 48.04 38.25 -3.99 37.63 -4.92

b) Graph Transformer
w/o co-occurrence bias 66.80 -1.60 62.80 -0.70 77.05 51.61 41.94 -0.30 42.55 -
w/o causal bias 65.20 -3.20 63.30 -0.20 76.82 52.68 39.94 -2.30 41.47 -1.08
w/o both of attention biases 66.20 -2.20 61.60 -1.90 75.23 50.89 41.63 -0.61 39.94 -2.61

c) Decoder
w/o dynamic gates 67.00 -1.40 61.90 -1.60 76.14 50.71 41.32 -0.92 42.55 -
w/o question-aware attention 66.60 -1.80 60.40 -3.10 76.36 47.86 41.63 -0.61 42.09 -0.46

Table 7: The details of ReClor Test Split on different question types. NA: Necessary Assumption, S:Strengthen, W:Weaken,
I:Implication, CMP:Conclusion/Main Point, MSS:Most Strongly Supported, ER:Explain or Resolve, P:Principle, D:Dispute,
R:Role, IF:Identify a Flaw, O:Others.

Model NA S W I CMP MSS ER P D R IF O
Logiformer 74.56 64.89 55.75 45.65 75.00 66.07 61.90 69.23 70.00 75.00 58.12 60.27

w/o syntax graph 70.18 59.57 55.75 45.65 66.67 57.14 67.86 56.92 56.67 50.00 62.39 57.53
Δ -4.38 -5.32 - - -8.33 -8.93 +5.96 -12.31 -13.33 -25.00 +4.27 -2.74

w/o logical graph 68.42 61.70 51.33 41.30 66.67 51.79 59.52 55.38 43.33 59.38 63.25 65.75
Δ -6.14 -3.19 -4.42 -4.34 -8.33 -14.28 -2.38 -13.85 -26.67 -15.62 +5.13 +5.48

split respectively. The syntax graph also shows 2.00% and 2.30%
improvements on ReClor. As is mentioned above, we are the first
to model the causal relations within the context in the task of
logical reasoning. The effectiveness of logical graph also verifies
our proposed method.

Secondly, we explore the impact of two attention biases on the
model performance. Thus, we ablate the effects of one or both of
attention bias matrices. From the results, co-occurrence bias and
causal bias have different effects on the two splits of ReClor dataset,
where the former one contributes more to the test split and the
latter one is more helpful to the validation split. Meanwhile, positive
effects are witnessed by applying both of the attention biases to the
graph transformer, leading to 1.90% and 2.61% on the test split of
ReClor and LogiQA respectively. Combining the ablation results
for graph construction module, the fully connected structure of the
logical units itself also has a positive role in the model performance.

Thirdly, we focus on the effectiveness of two important parts
in the decoder. For the proposed dynamic gate mechanism, we set
each element of the gate parameter vector 𝜆 ∈ R𝑁×1 to 0.5 to ablate
the effect of gates. The results show that dynamic gate mechanism
contributes 1.6% improvement to the test split of ReClor, but does
not have effects on that of LogiQA. It may result from the charac-
teristics of LogiQA dataset, which require the equal contribution of
syntax and logical information. For the question-aware attention,
we remove the self-attention module and use the original token-
level representation of the question to form the final vector. The
ablation results illustrate that the update of the question feature
contributes a lot to the model performance, especially for the Re-
Clor dataset. Considering that the question types are various on

the ReClor dataset, the awareness of the question sentence is of
great help.

Additionally, we present the detailed results of ReClor test split
on different question types and also list the corresponding ablation
results of two graphs in Figure 7. The majority of the types witness
the significant improvements, especially for Principle, Dispute and
Role. It illustrates that Logiformer has the advantages of inferring
the hidden fact or truth within the context. A few types, such as
Explain or Resolve and Identify a Flaw, show a downward trend. We
blame this issue to the lack of modeling on negation. For example,
the type of Identify a Flaw requires the model to figure out the most
weakness one from the options, which is sentimentally opposite to
the most of the types. The feature distribution obtained from the
current language model is insufficient to clearly distinguish the im-
plicit opposite semantics. Therefore, the modeling of sentimentally
negative questions is worth exploring in the future work.

4.5 Supplementary Analysis
During the experiments, hyper-parameters are utilized in many
places. Limited by the space, we only select one of them to conduct
the analysis, which is the overlap threshold 𝛿 for the extraction
of co-occurrence. The results of different values of 𝛿 are shown in
Figure 4.

Results illustrate that the best performance is achieved when 𝛿
is equal to 0.5. When the hyper-parameter 𝛿 drops, it means that
more co-occurrence pairs will be extracted, leading to much extra
noise. When 𝛿 reaches 0.7, the number of co-occurrence relations
is limited, the performance of the model still maintains at a high
level. It further proves the robustness of Logiformer.



Figure 4: Themodel performances on the ReClor dataset un-
der different 𝛿 .

Figure 5: The model performances on under different num-
bers of logical units.

Also in Logiformer, logical units are important parts. Thus, we
will study the influence of the number of logical units on the ac-
curacy. We conduct the analysis on the validation split of ReClor
dataset. The number of logical units are obtained based on the split
of relation connectives and punctuations. The results are presented
in Figure 5. The green bar represents the accuracy and the yellow
bar is the number of examples. From the statistics, the examples
with 9-12 logical units account for the largest proportion. Most
importantly, the accuracy remains stable for the different number
of logical units. On one hand, it proves the effectiveness of the split
of logical units. On another hand, we attribute the results to the
employment of the graph transformer. Fully connected structure
tackles the issue of long distance dependency, which reduces the
impact of the increase in the number of logical units.

5 CASE STUDY
In Figure 6, we present a successful case on the validation split of
the ReClor dataset to illustrate the logical reasoning process in Logi-
former. The basis of the reasoning process is the two constructed
graphs from the logical branch and the syntax branch. In this case,
Logiformer extracts 11 logical units (named from 𝐴 to 𝐾 ) based on
punctuations and relation connectives for the logical branch. The
split results are consistent with our expectation, and among them
4 pairs of causal units (𝐶 −𝐷 , 𝐸 − 𝐹 , 𝐻 − 𝐼 , 𝐽 −𝐾 ) are detected. For
the syntax branch, the concatenated text is split into 7 sentence
nodes (named from 𝑎 to 𝑔). Among them, 3 logical units (𝑎, 𝑑, 𝑓 )
are detected as the co-occurrence relations. The topology of the

two graphs provides the explicit understanding of the text, which
is a key point to the interpretability of Logiformer. In addition, we
present the attention maps in the final layer of the graph transform-
ers from both branches (blue one for logical branch, orange one
for syntax branch). The data in the attention matrices is mapped
to the range of [0,1] for better illustration. Darker color indicates
the stronger correlations between two logical units. The weighted
attention maps well reflect the relations and provide a boarder view
for interpretability.

Meanwhile, we observe a drawback in this case. he gets married
and his wedding are two similar expressions in semantic, indicating
the similar meanings. However, they have no overlap of words and
are not detected as the co-occurrence relation. This detail is worthy
of studying in the future, which is beneficial to the fine-grained
understanding of the logical text.

6 CONCLUSION AND FUTUREWORK
Wepropose a two-branch graph transformer network for logical rea-
soning of text, which is named as Logiformer. Firstly, we introduce
two different strategies to construct the logical graph and syntax
graph respectively. Especially for the logical graph, we are the first
to model both causal relations and negations in the logical reason-
ing task. Secondly, we feed the extracted node sequences to the
fully connected graph transformer for each graph. The topology of
the graph is utilized to form the attention bias for the self-attention
layers. Thirdly, a dynamic gate mechanism is applied to make a
fusion of the features from two branches. To improve the aware-
ness of different question types, the question feature is updated
based on the self-attention module. Finally, the concatenated text
sequence is passed through the feed forward layer and obtains the
answer prediction. The whole reasoning process provides the inter-
pretability, reflected by logical units with explicit relations and the
visualization of the attention maps.

In the future, we will explore the role of question to further im-
prove the interpretability [29]. Also, we are interested in extending
the logical expressions based on contrastive learning, like [16].
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Figure 6: The illustration of an successful case. The interpretability of Logiformer lies in the logical units in text with explicit
relations and the visualization of the weighted attention maps.
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