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ABSTRACT
Click-Through Rate (CTR) prediction, which aims to estimate the
probability that a user will click an item, is an essential component
of online advertising. Existing methods mainly attempt to mine user
interests from users’ historical behaviours, which contain users’
directly interacted items. Although these methods have made great
progress, they are often limited by the recommender system’s direct
exposure and inactive interactions, and thus fail to mine all poten-
tial user interests. To tackle these problems, we propose Neighbor-
Interaction based CTR prediction (NI-CTR), which considers this
task under a Heterogeneous Information Network (HIN) setting. In
short, Neighbor-Interaction based CTR prediction involves the local
neighborhood of the target user-item pair in the HIN to predict their
linkage. In order to guide the representation learning of the local
neighbourhood, we further consider different kinds of interactions
among the local neighborhood nodes from both explicit and im-
plicit perspective, and propose a novel Graph-Masked Transformer
(GMT) to effectively incorporates these kinds of interactions to
produce highly representative embeddings for the target user-item
pair. Moreover, in order to improve model robustness against neigh-
bour sampling, we enforce a consistency regularization loss over
the neighbourhood embedding. We conduct extensive experiments
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on two real-world datasets with millions of instances and the ex-
perimental results show that our proposed method outperforms
state-of-the-art CTR models significantly. Meanwhile, the compre-
hensive ablation studies verify the effectiveness of every component
of our model. Furthermore, we have deployed this framework on
the WeChat Official Account Platform with billions of users. The
online A/B tests demonstrate an average CTR improvement of 21.9%
against all online baselines.
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1 INTRODUCTION
In many applications such as online advertising and product search,
Click-Through Rate (CTR) is a key indicator in business valuation,
which measures the probability of a user clicking or interacting
with a candidate item. For applications with a large user base, even
a small improvement on CTR can potentially contribute to a large
increase in the overall revenue. However, achieving accurate CTR
prediction remains a great challenge. This is due to the fact that the
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data in CTR prediction problems are usually of large scale and high
sparsity, involving many categorical features of different fields.

Typically, the data of CTR prediction is represented as high-
dimensional and sparse categorical feature groups. To discover
the potential click-through relation between user and item, the
most popular learning paradigm is to firstly use an embedding
layer to transfer the sparse user/item features to a low-dimensional
dense embedding, and then construct the feature fusion & learning
models to encode the user preferences, item characteristic or their
interactions. Typical models include Wide&Deep [2], DeepFM [8],
xDeepFM [18], AFM [34], DeepMCP [21] and so on. However, this
learning paradigm treats the sparse categorical feature equally and
ignores the intrinsic structures among them, e.g., the sequential
order of historical behaviors.

Recently, several studies in user interests modeling [7, 19, 20, 38,
39] emphasize on the sequential structure of user behaviour features.
They model the historical items of users as sequences and exploit
the sequence modeling methods such as LSTM [12], GRU [3] and
multi-head attention [28] to effectively model the user preference.
Typical methods include DIN [39], DIEN [38], DSIN [7], SDM [19]
and DMR [20], etc. Although existing methods for CTR prediction
have achieved significant progress, the above methods only focus
onmining the interaction between the candidate item and the user’s
historical behaviours, which suffers from two limitations: On the
one hand, user behaviours might be sparse for inactive users, which
rise a cold-start problem and impede the quality of representation.
On the other hand, due to the limitation of recommender system’s
exposure, the direct associated items of a user are not exhaustive
enough to reflect all his/her potential interests.

To tackle these limitations, we propose Neighbour-Interaction
based CTR (NI-CTR) prediction , which extends the prediction of
a candidate user-item pair to their local neighbourhoods in a pre-
defined Heterogeneous Information Network (HIN). Specifically,
we construct the HIN based on entities and relations which are
associated with users and target items in the CTR prediction. Take
video recommendation on WeChat Official Account as an example.
In this task, we are interested in the CTR of videos. However, many
additional information, such as users’ click history of articles or
news, the subscribe relation between users and Official Accounts,
and the publish relation between official accounts and contents
(videos/articles) can reflect the users’ clicking preference and con-
tribute important clues for inference. To make use of such rich
side information, we construct the HIN based on these entities
and relations. Afterwards, we leverage graph sampling methods
to retrieve neighbours of both the target user and item in the HIN
and integrate them to construct a merged local neighbourhood. In
order to effectively learn the user-item clicking preference from the
local neighborhood nodes, we consider a wider range of interaction
types between those nodes from the explicit and implicit perspec-
tives, and propose to construct the four kinds of interaction graphs:
1) Induced graph edges in the HIN for modeling natural interac-
tion, 2) Similarity graph for modeling node feature similarities, 3)
Cross neighbourhood graph for capturing the interaction across
user neighbours and item neighbours, and 4) Complete graph for
modeling interaction between any nodes in the neighbourhood.

To better encode the information from those interaction graphs,
we propose a novel Graph-masked Transformer (GMT) architecture

Figure 1: An illustration of the constructed HIN. It contains
four kinds of nodes (OAccount, article, user and video) and
three kinds of edges (click, publish and subscribe).

to encode the neighbourhood, which can flexibly involve structural
priors via a masking mechanism. In this way, the Transformer
network is regularized by the graph priors and capable to learn
more distinctive representations for the neighbourhood. Besides,
in order to reduce the noise introduced by sampling, we enforce a
consistency regularization on the neighbourhood embedding, to
make neighbourhood embeddings of an identical user-item pair
similar. Note that our neighbour interaction method is different
from conventional graph-based methodologies such as HetGNN
[36] or HAN [32], where graph neural network architectures such
as GCN [17] are exploited to compress features of neighbouring
nodes in the graph into single embedding vector before making
a prediction. In our case, both explicit and implicit interactions
amongst neighbours of the user and item are fully captured, which
mitigates the early summarization issue as introduced in [22]. More-
over, the deep architecture of Transformer network enhances the
feature interaction and improves the feature extraction capability.
Furthermore, the heterogeneous graph setting enables the model to
utilize cross-domain information, which can be particularly useful
when direct interactions between users and items of the target
type are scarce, somehow mitigating the Cold-start issue, which is
verified in our experiments. To sum up, our contributions to this
paper can be concluded as follows:

- We propose to exploit the neighbourhood of the target user-
item pair in a HIN to assist the CTR prediction. Four types of
interaction graphs are proposed to describe both explicit and
implicit relations among the neighbours.

- We propose a novel Graph-Masked Transformer (GMT), which
flexibly encodes topological priors into self-attention via a simple
but effective graph masking mechanism.

- We propose a consistency regularization loss over the neigh-
bourhood representation to alleviate the uncertainty of graph
sampling, and thus improve the robustness of the model.

- We evaluate our method on both public and industrial datasets,
demonstrating significant improvements of our methods over
state-of-the-art methods in both CTR prediction and graph mod-
eling. Furthermore, we have deployed our framework in the video
service ofWeChat Official Account Platform, and Online A/B tests
also show that it outperforms existing online baselines by 21.9%.



2 PRELIMINARIES
2.1 CTR Data Modeling
Data in industrial CTR prediction tasks is mostly in a multi-group
categorical form. For example, [gender=Male, visited_categories={Sports},
visited_tag={Football, basketball}], which are normally transformed
into high-dimensional sparse binary features via encoding. For-
mally, given a user or an item , its feature vector can be represented
as [f1, · · · , f𝑘 ], where f𝑖 ∈ R𝑑𝑓𝑖 is the encoding vector in the 𝑖-th
feature group F𝑖 , 𝑘 is the total number of fields. Mathematically,
we adopt the one/multi-hot representation with dimension 𝑑𝑓𝑖 to
encode the categorical feature group, where 𝑑𝑓𝑖 is the number of

unique ids in F𝑖 . f𝑖 [ 𝑗] is the 𝑗-th element of f𝑖 ,
∑𝑑𝑓𝑖

𝑗=1 f𝑖 [ 𝑗] = 𝑝 , with
𝑝 = 1 refers to one-hot encoding and 𝑝 > 1 to multi-hot encoding.
For example, the aforementioned instance with three groups of
features are illustrated as:

[0, 1]︸︷︷︸
gender=Male

[0, . . . , 1, . . . 0]︸            ︷︷            ︸
visited_categories={Sports}

[0, . . . , 1, . . . , 1, . . . 0]︸                    ︷︷                    ︸
visited_tag={Football, basketball}

.

As the categorical features can be extremely high-dimensional and
sparse for CTR prediction task, people usually apply an embed-
ding layer which makes a linear transformation on each feature
group to generate the low-dimensional dense representations, i.e.,
x𝑖 = W𝑖 f𝑖 ,W𝑖 ∈ R𝑑𝑥𝑖 ×𝑑𝑓𝑖 , 𝑑𝑥𝑖 is much smaller than 𝑑𝑓𝑖 . In this
way, we can obtain the corresponding dense feature representation
[x1, · · · , x𝑘 ].

The traditional CTR prediction models concern two types of en-
tities: user and item. In this paper, we consider more than two kinds
of entities and try to model the CTR problem under heterogeneous
graph settings. Assume the node type set is TV , the original feature
vector of node 𝑖 which belongs to type 𝑡 (𝑖) ∈ TV is denoted as:
f𝑡 (𝑖) = [f𝑡 (𝑖)1 , · · · f𝑡 (𝑖)

𝑘𝑡 (𝑖 )
]. The corresponding low-dimensional dense

feature vector is denoted as x𝑡 (𝑖) = [x𝑡 (𝑖)1 , · · · , x𝑡 (𝑖)
𝑘𝑡 (𝑖 )

].1 It’s worth
to note that nodes of different types may share the same feature
groups, e.g., different categories of item (e.g., video, article, product)
might share the same tag scheme. Given two node types 𝑡𝑎 and 𝑡𝑏 ,
we denote 𝑔(𝑡𝑎, 𝑡𝑏 ) as the indices of the shared feature group of 𝑡𝑎
and 𝑡𝑏 node types in 𝑡𝑎 node type.

2.2 Heterogeneous Graph Construction
In this paper, we consider an undirectedHeterogeneous Information
Network G(N , E,TV ,TE ), where N is the node set, E ∈ N × N
is the edge set,TV is the node type set and TE ∈ TV × TV is the
edge type set. N = {U,I,S1, ..,S |TV |−2}, where U is the user set,
I is the item set which we are interested in, S𝑖 is 𝑖-th relevant
entity set. We assume that the edge type is decided by start and
end node for simplicity. Take the WeChat Video Recommendation
Scenario as an example, we construct the HIN based on four types of
nodes: user, video, article and official account (OAccount), and five
types of edges: user-click-video, user-click-article, user-subscribe-
OAccount, OAccount-publish-video and OAccount-publish-article,
as illustrated in Figure 1. Our task can also be considered as to

1For the simplification of notation, the subscript of a vector can either be the node
index or the node type.

predict the linkage between a user node and a candidate video
node.

2.3 Problem Definition
In this section, we formulate the CTR prediction task with necessary
notations. There are a set of 𝑀 users U = {𝑢1, 𝑢2, . . . , 𝑢𝑀 }, a set
of 𝑁 items I = {𝑣1, 𝑣2, . . . , 𝑣𝑁 }. The user-item interactions are
denoted as a matrix Y ∈ R𝑀×𝑁 , where 𝑦𝑢𝑣 = 1 denotes user 𝑢
clicks item 𝑣 before, otherwise 𝑦𝑢𝑣 = 0. Given the task-associated
HIN G(N , E) as described in Section 2.2, we can sample a batch
of neighbouring nodes N𝑢𝑣 ∈ N for each candidate user 𝑢 and
item 𝑣 pair. Each node 𝑟 ∈ N is associated with a feature vector as
described in Section 2.1, so we denote the feature vector sets of the
sampledN𝑢𝑣 as F𝑢𝑣 . Besides, we denote context features (e.g., time,
matching method, matching score) as C. Therefore, one instance
can be represented as:

{F𝑢𝑣,C}. (1)
The goal of NI-CTR prediction is to predict the probability that user
𝑢 will click item 𝑣 based on the neighbourhood and context features.

3 METHODOLOGY
In this section, we describe our framework to solve the NI-CTR
prediction task. Figure 2 shows the overall framework: NI-CTR. It
contains four main components: 1) Neighbour sampling in HIN,
2) Interaction graph construction on sampled nodes, 3) Graph-
masked Transformer which encodes the neighbourhoods, 4) Loss
and Optimization. In the following sections, we will elaborate on
the details of each component.

3.1 Neighbour Sampling in HIN
For each node 𝑟 , there exist some relevant nodes in the pre-defined
graph that may enrich its representation. Considering that the HIN
sampling scenario in large-scale service and each node can be asso-
ciated with rich features. We have the following requirements: 1)
We should sample closest nodes as more as possible, because intu-
itively close nodes (e.g., one-hop neighbours) usually contains most
relevant features/information, 2) We should sample nodes for each
type in a pre-defined budget to limit the computational complex-
ity, 3) We hope to sample nodes which have the most interactions
(edges) with other nodes to maximize topological information. To
balance these requirements, we develop a simple but experimentally
effective algorithm named Greedy Heterogeneous Neighbouring
Sampling (GHNSampling). GHNSampling iteratively samples a list
of nodes for a target node 𝑟 from one hop to further. Let {𝑠𝑘 }

|TV |
𝑘=1

denotes the budget sampling sizes for each node type, C𝑘 denotes
the neighbours of type 𝑘 we have already sampled. GHNSampling
greedily retrieves nodes from 1-hop to further until meeting the
budget. In 𝑙-th hop, we retrieve all the neighbours of nodes in (𝑙−1)-
th hop as B𝑙 , with B𝑙

𝑘
⊂ B𝑙 as retrieved nodes of type 𝑘 . For node

𝑡 ∈ B𝑙 , we calculate the number of nodes it connects in the sampled
node set C as 𝑓𝑡 = |{𝑠 | (𝑠, 𝑡) ∈ E, 𝑠 ∈ C}|. If |B𝑙

𝑘
| > 𝑠𝑘 − |C𝑘 |, we

sample 𝑠𝑘 − |C𝑘 | nodes from B𝑙
𝑘
with the probability proportional

to 𝑓𝑡 . We iteratively run the steps until budges of all node types
are met. This practice aims to retrieve nodes which have the most
interactions with the target node to obtain topological information



Figure 2: Overview of NI-CTR. Given a target user-item pair, we first perform neighbour sampling in the HIN to obtain associ-
ated neighbours. Thenwe retrieve the corresponding entity features and construct interaction graphs based on the neighbours.
After that, we apply a Graph-Masked Transformer to encode both the feature information and topological information. A bi-
nary cross-entropy loss and a consistency regularization loss are combined to optimize the network.

Algorithm 1: GHNSampling
Input: HIN G(V, E,TV ,TE ), sampling size for each type

{𝑠𝑘 }
|TV |
𝑘=1 , Target node 𝑟 ;

Output: Sampled node set C
Initialization: Initialize the node set C as {𝑟 }, C0 = {𝑟 }
for 𝑙 in 1, 2, 3, . . . do

B𝑙 = {}, C𝑙 = {};
retrieve all neighbours of nodes in C (𝑙−1) and add to
buffer B𝑙 ;
B𝑙 = B𝑙 \ C;
Count connection count 𝑓𝑡 for each distinct node 𝑡 in B𝑙 ;
for node type 𝑘 ∈ |TV | do

Get B𝑙
𝑘
⊂ B𝑙 , C𝑘 ⊂ C ;

𝑛𝑘 = min( |B𝑙
𝑘
|, 𝑠𝑘 − |C𝑘 |);

randomly sample 𝑛𝑘 nodes from B𝑙
𝑘
with probability

proportional to 𝑓𝑡 and add to C𝑙 ;
end
C = C ∪ C𝑙 ;
if |C𝑘 | = 𝑠𝑘 for any node type 𝑘 then

Break
end

end
Return: C

as much as possible. The details of GHNSampling are summarized
in Algorithm 1.

3.2 Construction of Local Interaction Graphs
After the neighbour sampling for the target user 𝑢 and candidate
item 𝑣 , we integrate their neighbours to obtain the neighbourhood

of the 𝑢-𝑣 pair, denoted as N𝑢𝑣 (𝑢, 𝑣 ∈ N𝑢𝑣 ). We associate each
node 𝑖 in N𝑢𝑣 with its original feature vector f𝑖 . A direct solution
to represent the sequence of nodes is to apply sophisticated models
such as Transformer [28], which consider the nodes in the neigh-
bourhood as a complete graph, and learning representations based
on the node features. However, to make the representation more
distinctive and informative, in this section, we introduce four types
of interaction graphs, as illustrated in Figure 3. The details of them
are described as follows:

Induced Subgraph G𝐼
𝑢𝑣 : It is straightforward that the edge in-

formation in HIN provides important natural relation information
among the nodes. Therefore, we retrieve all edges from HIN to
generate the induced subgraph G𝐼

𝑢𝑣 .
Similarity Subgraph G𝑆

𝑢𝑣 : In the induced subgraph G𝐼
𝑢𝑣 , only

a subset of the categorical feature group which describes the be-
haviour relations or natural relations between different nodes are
utilized to construct the graph. However, the other feature groups,
such as item tags, which describes the rich latent semantic con-
nections among nodes are ignored. Although these node similarity
relations can be implicitly captured by self-attention mechanism
in Transformer, they will be decayed after the stacking of multi-
ple layers, which might impede the performance. Therefore, we
define the similarity graph G𝑆

𝑢𝑣 by the node feature similarities in
the neighbourhood based on the original features of nodes. We
calculate all pairwise similarity scores as follows:

sim(𝑖, 𝑗) =
f𝑖 [𝑔(𝑡 (𝑖), 𝑡 ( 𝑗))] · f𝑗 [𝑔(𝑡 ( 𝑗), 𝑡 (𝑖))]

∥f𝑖 [𝑔(𝑡 (𝑖), 𝑡 ( 𝑗))] ∥ · ∥f𝑗 [𝑔(𝑡 ( 𝑗), 𝑡 (𝑖))] ∥
, (2)

where 𝑡 (𝑖) and 𝑡 ( 𝑗) is the type of 𝑖- and 𝑗-th nodes. f𝑖 is the original
feature vector of node 𝑖 , 𝑔(𝑡𝑎, 𝑡𝑏 ) is the feature group indices as
mentioned in Section 2.1. Based on the similarity score, we inves-
tigate two approaches to construct the Similarity Graph G𝑆 : (1)



Weighted similarity graph. we can directly construct the adjacent
matrix M𝑆 based on similarity scores, i.e., M𝑆 [𝑖, 𝑗] = sim(𝑖, 𝑗). (2)
𝑘-NN similarity graph. Although S contains weights of similarities,
it can be noisy due to data quality. Therefore, we apply a 𝑘-NN
algorithm on it to retain only strong signals. Namely,MS [𝑖, 𝑗] = 1
if 𝑗-th node is one of the 𝑘-nearest neighbours of 𝑖-th node.

Cross Neighbourhood Subgraph G𝐶
𝑢𝑣 : Although the G𝐼

𝑢𝑣 and
G𝑆
𝑢𝑣 capture the natural relations and similarity relations of nodes

in the neighbourhood. There are more implicit relations we should
consider. Let N𝑢 and N𝑣 denote the neighbours of 𝑢 and 𝑣 respec-
tively, with N𝑢𝑣 = N𝑢 ∪ N𝑣 , we hope to capture all implicit inter-
actions across the two neighbour set, which is inspired by Bidirec-
tional attention flow for machine comprehension [27]. We ensure
N𝑢 ∩ N𝑣 = ∅ by assigning overlapped nodes to the set with more
connected edges. Afterwards, we generate the cross-neighbour
graph G𝐶

𝑢𝑣 = {(𝑠, 𝑡) |𝑠 ∈ N𝑢 , 𝑡 ∈ N𝑣}.
Complete Subgraph G𝑃

𝑢𝑣 : In this graph, we do not impose any
structural prior and give the model the most freedom to learn any
implicit correlations between nodes. The adjacent matrix of this
graph is M𝑃 = 1 |N𝑢𝑣 |× |N𝑢𝑣 | .

3.3 Graph-masked Transformer for
Neighbourhood
Interaction&Representation

After the construction of Local Interaction Graph, the neighbour-
hood of one instance can be represented as follows:

{F𝑢𝑣,G𝐼
𝑢𝑣,G𝑆

𝑢𝑣,G𝐶
𝑢𝑣,G𝑃

𝑢𝑣}. (3)

In order to learn a representation from both the node features and
topological structure. We propose a novel Graph-masked Trans-
former (GMT), which basically consists of a Heterogeneous Node
Feature Transformation layer, stacked Graph-masked Multi-head
Self-attention layers and a readout layer. We will introduce the
details of each module in the following section.

3.3.1 Heterogeneous Node Feature Transformation layer. For node
𝑖 in the neighbourhood N𝑢𝑣 , we have its embedded dense feature
vector x𝑖 as described in Section 2.1. Since nodes of different type
have different feature groups and thus feature space, we use a type-
aware feature transformation layer to embed them into a unified
space:

h𝑖 = Linear𝑡 (𝑖) (x𝑖 ). (4)

where 𝑡 (𝑖) is the node type of 𝑖-th node and Linear𝑡 (·) is a linear
layer of type 𝑡 , with different types of layers have different trainable
parameters.

3.3.2 Graph-masked Multi-head Self-attention. The key difference
between GMT and the original Transformer architecture is in the
Multi-head Self-Attention (MSA) layers. Given input sequence H =

{h1, h2, . . . , h𝑛}, the process of basic Self-attention mechanism can
be defined as follows:

𝑒𝑖 𝑗 =
(Qh𝑖 )⊤ (Kh𝑖 )√

𝑑
, (5)

𝛼𝑖 𝑗 =
exp(𝑒𝑖 𝑗 )∑𝑛

𝑘=1 exp(𝑒𝑖𝑘 )
, (6)

Figure 3: Four types of interaction graphs for neighbour-
hood modeling, which contain natural interactions, feature
similarities, cross-neighbourhood interactions and all pair-
wise interactions.

z𝑖 =
𝑛∑︁
𝑗=1

𝛼𝑖 𝑗 (Vh𝑖 ), (7)

where Q,K,V are trainable parameter matrices, 𝑑 is the dimension
of ℎ𝑖 , 𝑛 = |N𝑢𝑣 | is the number of neighbours. In a MSA layer, we
have 𝐻 attention heads to implicitly attend to information from
different representation subspaces of different nodes. In our model,
we attempt to use a graph-masking mechanism to enforce the heads
explicitly attend to different subspaces with graph priors. Specif-
ically, we modify the calculation of the unnormalized attention
score 𝑒𝑖 𝑗 as follows:

𝑒𝑖 𝑗 = 𝑓𝑚 ( (Qh𝑖 )
⊤ (Kh𝑖 )√
𝑑

,M𝑖 𝑗 ), (8)

where M is the adjacent matrix of the prior graph, and 𝑓𝑚 (·) is the
masking function:

𝑓𝑚 (𝑥, 𝜆) =
{
𝜆𝑥 𝜆 ≠ 0
−∞ 𝜆 = 0.

(9)

This simple yet efficacious way enables the attention calculation
aware of the structural priors. Given the four types of interaction
graphs described in Section 3.2, we group heads into four sets and
apply the graph masking with corresponding adjacent matrix. Now
the output representation of 𝑖-th node h′

𝑖
is computed as follows:

h′𝑖 = FFN(W𝑂Concat(z1
𝑖 , · · · , z

𝐻
𝑖 )), (10)

where W𝑂 is the parameter matrix, FFN(·) is a two-layer feed for-
ward layer with layer normalization [1] and residual connection
[11]. With our Multi-head Graph-masked mechanism, we incorpo-
rate various graph priors into the Transformer architecture, which
significantly extends the model expressivity. After stacking multi-
ple Graph-masked MSA layers, we have the final representation of
nodes in the neighbourhood as: Z = {z1, z2, . . . , z |N𝑢𝑣 |}.

3.3.3 Readout Layer. To obtain a fixed-sized representation vector
of the neighbourhood, we use a readout function:

g𝑢𝑣 = Readout(Z), (11)

in this paper, we simply use a mean pooling function to obtain the
final neighbourhood embedding, i.e., g𝑢𝑣 = 1

|N𝑢𝑣 |
∑

𝑣𝑖 ∈N𝑢𝑣
z𝑖



3.4 Classification and Optimization
In this section, we introduce how to obtain the final prediction
score and how to optimize the whole model. Although we have
obtained neighbourhood embedding of the target 𝑢-𝑣 pair, the fea-
ture information of the two targets: 𝑢 and 𝑣 , despite being most
valuable, might be somehow decayed after multiple layers of inter-
action with neighbours. To highlight the features of the two target
nodes, we concatenate their initial dense embeddings x𝑢 , x𝑣 , with
the neighbourhood embedding g𝑢𝑣 and the context features C. So
the final embedding of the data instance is:

z𝑜 = Concat(g𝑢𝑣, x𝑢 , x𝑣,C) . (12)

We adopt a MLP (Multi-Layer Perceptron) layer 𝑓𝑚𝑙𝑝 with parame-
ter 𝜃 and a Sigmoid function 𝜎 to predict the probability that the
user 𝑢 will click the target item 𝑣 :

𝑦𝑢𝑣 = 𝜎 (𝑓𝑚𝑙𝑝 (z𝑜 , 𝜃 )) (13)

Intuitively, in different training epochs, the neighbours sampled
from the same 𝑢-𝑣 pair can be different, which means the neigh-
bourhood embedding g𝑢𝑣 and the final CTR 𝑦𝑢𝑣 would be different.
Assuming we sample maximum 𝑆 times for each 𝑢-𝑣 pair, so the
classification loss is the binary cross entropy loss on the training
set D:

LBCE =
1
𝑆

∑︁
<𝑢,𝑣>∈D

𝑆∑︁
𝑠=1

(𝑦𝑢𝑣 log𝑦𝑠𝑢𝑣 + (1 − 𝑦𝑢𝑣)log(1 − 𝑦𝑠𝑢𝑣)), (14)

where D is the training set, 𝑦𝑢𝑣 ∈ {0, 1} is the ground-truth label
of the click-through. In order to improve the robustness of models
over sampling randomness, we propose a variant of consistency
regularization [6], which enforces the model to learn similar em-
beddings for the neighbourhoods sampled by the same 𝑢-𝑣 pair. It
can be formulated as:

LCR =
1
𝑆

∑︁
<𝑢,𝑣>∈D

𝑆∑︁
𝑠=1

1
𝑑𝑔

| |ĝ𝑠𝑢𝑣 − ḡ𝑠𝑢𝑣 | | (15)

, where ḡ𝑠𝑢𝑣 = 1
𝑆

∑𝑆
𝑠=1 ĝ

𝑠
𝑢𝑣 , and 𝑑𝑔 is dimension of ĝ𝑠𝑢𝑣 . The overall

loss is obtained as a summation of both losses with coefficient 𝛾 :

L = LBCE + 𝛾LCR (16)
.

3.5 Complexity Analysis
Since scalability is an important issue for CTR prediction in real-
world industrial applications, we analyze the time complexity of
GMT. The self-attention calculation is the main time cost, the com-
putational complexity of which is O(𝑛2 · 𝑑) where 𝑑 is hidden
size of the neural network. In experiments, we found that we can
achieve good performance with 𝑛 = 100. Another time cost is the
calculation of similarity graph, which is O(𝑛2 · 𝑑𝑡 ), where 𝑑𝑡 is the
average dimension of shared node features. Since the node features
are usually very sparse, it can be efficiently calculated via sparse
matrix libraries.

4 EXPERIMENTS
We compare our method with baselines in both offline evaluation
and online service. Results in both settings demonstrate the superi-
ority of our methods.

Table 1: Statistics of the WeChat HIN

Node type Count Fields Featuresa
User 728M 75 147572
OAcc 369K 95 187323
Article 74M 26 148284
Video 846K 23 134758
Edge Type Count Ave Src Deg Ave Dst Deg
user-video 998M 1.35 1167.08
user-article 11.3B 15.53 151.25
user-OAcc 33.9B 46.67 9726.76
OAcc-video 50M 1.43 5.91
OAcc-article 74.7M 21.39 1.0
aHere we do not count in any entity (user/OAcc/article/video) ids, which would be

extremely large.

4.1 Datasets
Since there is no public large-scale CTR dataset that contains rich
heterogeneous graph information, we build a new dataset from
WeChat Video Recommendation System for CTR prediction. In our
system, generally we have four types of nodes: User (U), Video
(V), Article (A) and the content provider named Official Account
(O), and five types of edges: user-click-video, user-click-article,
user-subscribe-OAccount, OAccount-publish-Video and OAccount-
publish-Article. We treat the graph as an undirected heterogeneous
graph. We use the log data from 14 consecutive days to construct
the WeChat HIN, with over 0.8 billion nodes and 46 billion edges.
The detailed statistics are listed in Table 1. The dataset contains
the log data of two successive days (Day_1 and Day_2) with 20
million display/click logs of 17 million users and 0.5 million videos
for each. Logs from Day_1 are for training and logs from Day_2 are
for testing. This dataset is denoted as WC_FULL. Besides, we also
build a smaller dataset, using the logs of the first 12 hours of Day_1
for training, while those of the left 12 hours for testing, with around
10 million logs for each. This dataset is denoted as WC_SMALL.
We would release the anonymized dataset for reproduction in the
near future 2. Meanwhile, we also evaluated our models on Tmall3,
which contains anonymized users’ shopping logs in the past 6
months before and on the "Double 11" day. For each user, their
clicked items are sorted by the interaction timestamp. We use the
logs of a week before the "Double 11" day as the training set, and
the logs on the "Double 11" day as the testing set. For each user, we
randomly sample 10 non-clicked items to replace the target item as
the negative samples.

4.2 Competitors & Metrics
For offline evaluation, we compare our method with four cate-
gories of models: Feature Interaction (FI) models, User Interests
Modeling (UIM) models, Graph Neural Networks (GNN) models,
and Transformer-based models.FI models include DeepFM [8] and
xDeepFM [18]. UIM models include DIN [39], DIEN [38] and DMR
[20]. GNN models include GAT [29], GraphSAGE [9], RGCN [26],
HAN [32] and NIRec [15]. Transformer-based methods include

2A demo of data instances and the source codes are published in
https://github.com/qwerfdsaplking/F2R-HMT.
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=42



Table 2: Results on offline datasets

Category Model WC_FULL WC_SMALL Tmall
AUC Logloss AUC Logloss AUC Logloss

FI DeepFM 0.7009 0.2379 0.7022 0.2365 0.9012 0.1999
xDeepFM 0.7021 0.2370 0.7042 0.2354 0.9023 0.1978

UIM
DIN 0.7042 0.2345 0.7073 0.2320 0.9034 0.1954
DIEN 0.7043 0.2347 0.7069 0.2334 0.9045 0.1943
DMR 0.7098 0.2280 0.7089 0.2310 0.9065 0.1926

GNN

GraphSAGE 0.7032 0.2366 0.7056 0.2378 0.9234 0.1789
GAT 0.7130 0.2214 0.7145 0.2210 0.9245 0.1776
RGCN 0.7078 0.2289 0.7101 0.2265 0.9201 0.1801
HAN 0.7015 0.2378 0.7041 0.2399 0.9180 0.1823
NIRec 0.7149 0.2200 0.7167 0.2197 0.9246 0.1775

Transformer

Transformer 0.7200 0.2174 0.7260 0.2075 0.9339 0.1700
Graph-Trans 0.7201 0.2175 0.7277 0.2063 0.9321 0.1715
Graph-BERT 0.7211 0.2165 0.7290 0.2054 0.9345 0.1693
GMT 0.7290 0.2103 0.7360 0.2014 0.9410 0.1603

Graph-Bert [37] and Graph-Transformer [4]. We adopt two widely-
used evaluationmetrics:𝐴𝑈𝐶 and 𝐿𝑜𝑔𝑙𝑜𝑠𝑠 [8], to evaluate the offline
performance. 𝐴𝑈𝐶 measures the goodness of assigning positive
samples higher scores than randomly chosen negative samples. A
higher𝐴𝑈𝐶 value indicates a better performance. 𝐿𝑜𝑔𝑙𝑜𝑠𝑠 measures
the distance between the predicted scores and the ground-truth
labels. A lower 𝐿𝑜𝑔𝑙𝑜𝑠𝑠 value implies better performance. For online
evaluation, we use several online deployed CTR prediction models
as baselines, including DeepFM [8], GBDT4 [16], DIN [39], DIEN
[38], DeepMCP [21] and DMR [20]. We use the click rate to measure
the performance of each method.

4.3 Implementation Details
For each target user-video instance, different categories of models
have different forms of input features. For FI models, we concate-
nate all features together as a vector. For UIM models, the inputs
are the concatenated user-video features, along with a sequence of
user behaviors. In GNN models, the inputs are the two subgraphs
of the target nodes, sampled based on their respective graph sam-
pling models, and we use the final representation of the two target
nodes for prediction. The inputs of Transformer-based models are
the same as GMT, which are the neighbourhoods sampled by GH-
Sampling. Since Graph-Transformer and Graph-Bert are designed
for one type of edges, we choose the induced subgraph as their
graph information. For fair comparison, we set embedding dimen-
sion of all models as 100, the batch size as 128. We tune learning
rate from {1e-2,1e-3,1e-4,1e-5}, dropout ratio from 0 to 0.9, hidden
size of all deep layers from {64, 100, 128}, number of deep layers
from {1, 2, 3, 4}, maximum number of nodes in the subgraph from
{50, 100, 200, 400}, the regularization balancing coefficient 𝛾 from
{0.01, 0.1, 1} We conduct a grid search for parameter selection.

4.4 Results on Offline Datasets
Table 2 shows the experimental results on both WeChat dataset
and Tmall. From Table 2, we have the following observations:
- Our proposed GMT achieves obviously better performance and
beat the other baselines on all datasets. It verifies that the interac-
tion graphs of multiple types and the graph-masked mechanism
empower the Transformer architecture to learn more informative
representations.

4GBDT with DeepFM as feature extractor.
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Figure 4: Results of graph sampling methods. N: Node-wise
sampling; L: Layer-wise sampling;M:Metapath sampling;H:
HGSampling; G: GHSampling.

- UIM methods are better than FI methods, demonstrating that user
interest mining is useful for representation learning.

- GNNmodels, especially GAT and RGCN, are generally better than
both FI and UIMmethods. This is because they utilize the topolog-
ical information of target nodes, which contains useful auxiliary
information and contributes to a better feature interaction.

- The performance of HAN is obviously worse than other graph
models. We conjecture that its shallow-layer architecture impairs
its capability for node feature interaction.

- We notice that Transformer-based models with our data pipeline
are significantly better than other categories of models. It can
be attributed to the deep self-attention architecture, which has a
more powerful representation capability and learns better feature
interaction.

4.5 Ablation Studies
4.5.1 Impacts of four types of interaction graph. In this section, we
investigate how each interaction graph in our model influences the
final results. Table 3 shows the results of removing or only keeping
the masking matrix constructed by the specific interaction graph.
We can find that:

- Only keeping a single type of masking matrix achieves obviously
inferior performance than the full model (GMT), which means
the models cannot learn sufficient structural information of input
nodes.

- It is interesting that the model with only cross-subgraph masking
performs better than that with fully-connected masking, which
implies that the inter-subgraph information aggregation is more
important than intra-subgraph information aggregation.

- Meanwhile, the removal of any masking matrix would downgrade
the final performance. It demonstrates that each interaction graph
contributes to the final results, improving the representation
capability of the Transformer Network.

4.5.2 Impacts of consistency regularization. In order to alleviate
the noise and uncertainty of neighbour sampling, we enforce a
consistency regularization on the embedding of neighbourhood
generated by GMT. To verify its effectiveness, we remove this loss
and compare it performance against our framework. As we can
see in Table 3 (Row 1 and Row 10), the performance of the model
declines without the consistency regularization loss. Enforcing the
neighbourhood embeddings of an identical 𝑢-𝑣 pair to be similar,
the model can be more robust and has a better performance.



Table 3: Ablation results of each module on WC_FULL
dataset

Modules WC_FULL
G𝐼
𝑢𝑣 G𝑆

𝑢𝑣 G𝐶
𝑢𝑣 G𝑃

𝑢𝑣 CR Loss AUC Logloss
✓ ✓ ✓ ✓ ✓ 0.7290 0.2103
✓ ✓ 0.7180 0.2193

✓ ✓ 0.7179 0.2193
✓ ✓ 0.7211 0.2154

✓ ✓ 0.7203 0.2157
✓ ✓ ✓ ✓ 0.7243 0.2132

✓ ✓ ✓ ✓ 0.7252 0.2126
✓ ✓ ✓ ✓ 0.7237 0.2149
✓ ✓ ✓ ✓ 0.7263 0.2123
✓ ✓ ✓ ✓ 0.7274 0.2116
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Figure 5: Results of differentmaximumnumbers of sampled
nodes in the subgraph.
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Figure 6: Results of different similarity graphs, whereW de-
notes weighted similarity graph, and 𝐾-𝑛 denotes 𝑘-NN sim-
ilarity graph with 𝑘 = 𝑛.

4.5.3 Impacts of subgraph sampling. In this section, we compare
the effects of subgraph sampling on WC_FULL dataset. Firstly,
we fix the sampling number 𝑛𝑠 of nodes in the subgraph as 200
and compare different graph sampling algorithms. We implement
four categories of graph sampling methods: 1) Node-wise sam-
pling [9],with sample number of each node selected form {3, 5, 10},
2) Layer-wise sampling [14], with layer number selected from
2, 3, 4, 3) Metapath sampling [15], with three types of metapaths:
UV,UOV,UAUV,UVUV, 4) HGSampling [13] with sample depth se-
lected from 2, 3, 4, 5) GHSampling.

Figure 4 shows the results of each sampling method with the best
parameters. As we can see, layer-wise sampling and HGSampling
are better than node-wise sampling and metapath sampling, and the
greedy sampling strategy is superior to all methods. It is reasonable,
as in such a HIN with rich and meaningful node features, the closest
neighbours of a target node contain themost important and relevant
information. Node-wise sampling and metapath sampling tend to
sample further neighbors than close neighbours, which contains
less useful information and introduce extra noise. On the contrary,
the GHSampling method samples close neighbours as many as
possible and maximizes the inner correlation, thus achieves the
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Figure 7: Results of different feature exploitation strategies
with varied threshold value 𝐾𝑡𝑠 .

best performance. Thenwe analyze the effects of𝑛𝑠 . As illustrated in
Figure 5, the performance improves significantly when 𝑛𝑠 increases
from 5 to 100, and reaches the top when 𝑛𝑠=200. Too large 𝑛𝑠 would
consume heavy computational costs and impede the results.

4.5.4 Impacts of similarity graph construction. In this section, we
compare the effects of the similarity Graph. We compare perfor-
mance of weighted similarity graph with 𝑘-NN graph with 𝑘 se-
lected from {1, 3, 5, 10}. As illustrated in Figure 6, the performance
of the weighted similarity graph is close to that of 𝑘-NN similar-
ity graphs with fine-tuned 𝑘 , and too small 𝑘 would impair the
performance.

Feature exploitation strategies. Moreover, we also conduct
an in-depth analysis on four feature exploitation strategies: S1) Re-
tain all node features, and do not use the similarity graph masking,
S2) Remove feature groups with dimension 𝐾 > 𝐾𝑡𝑠 from all node
features and do not use the similarity graph masking, S3) Retain all
node features, and use feature groups with dimension𝐾 > 𝐾𝑡𝑠 from
node features to calculate similarity masking, S4) Remove feature
groups with dimension 𝐾 > 𝐾𝑡𝑠 from all node features, and use the
removed features to calculate the similarity graph, where 𝐾𝑡𝑠 is a
threshold value and we vary 𝐾𝑡𝑠 from 100 to 105 to illustrate the
variation in performance. As shown in Figure 7, the performance
variation of S2 shows that when𝐾𝑡𝑠 < 105, the more feature groups
we use as node features, the better performance we have. However,
we can also observe that removing feature groups with a dimension
larger than 105 in S2 has slightly better performance than that of S1,
the baseline which uses all feature groups. It is because extremely
sparse features might only bring marginal benefits while consume
more model parameters and introduce noise. S2 shows that using
a similarity graph can consistently bring advantages, but calculat-
ing the graph based on dense features might introduce noise and
impair performance. S4 generally outperforms S3, demonstrating
that some sparse features are more suitable to build connections
between nodes. Removing them from node inputs improves both
effectiveness and efficiency, which is a very practical trick in real
service.

4.6 Performance in Cold-start Scenarios
In this part, we conduct experiments on WC_FULL dataset to verify
that our model mitigates the Cold-Start problem. Figure 8 shows the
performance comparison between DIN and GMT in user cold-start
scenarios with respect to different numbers of historical clicked
videos for users. The results in the figure illustrated that our method
has a more significant relative improvement over DIN when the
number of historical videos is smaller, which implies that GMT
alleviates the Cold-start issue. The reason is that GMT makes use
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Figure 8: Cold-start analysis result.

2 4 6 8 10
Day

1

2

3

4

5

6

C
lic

k-
Th

ro
ug

h
R

at
e

(%
)

GMT
DMR
DeepMCP
DIEN

DIN
GBDT
DeepFM

Figure 9: Results fromOnline A/B test during 10 consecutive
days. The red curve is our method.

of extra heterogeneous graph information, which helps users to
mine potential and implicit connections between users and videos.

4.7 Online Serving & A/B Testing
We conduct online A/B Testing on the Video Recommendation
Service of WeChat Official Account Platform during 10 consecutive
days. Figure 9 illustrates the results of our method with several
baseline models. The results are collected from a consecutive 10
days. As we can see in the Figure, our proposed GMT outperforms
other baselines significantly and it improves the best baseline by
21.9% on average. Note that other Top-5 models in the system
mostly rely on extra techniques, such as multi-tasking training, pre-
hash for item IDs, or node embedding pre-training, which further
demonstrates the superiority and robustness of our methods.

Deployment detailsWe save all the node relations into a graph
database and update the database daily based on the behavior
records of the latest day. We also update the features of each type
of node daily based on the profiles of the latest day. We generate
training datasets hourly based on the click behaviors in the latest
hour. The model is continuously trained on the data of the latest 24
hours with 16 V100 GPUs. The number of training samples for 24
hours is around 40 million. One pass of all samples costs about one
hour.

5 RELATEDWORK
5.1 CTR Prediction
CTR prediction has been extensively studied for many years. Due
to the the high sparsity of input features, it is difficult to achieve
good results via directly using raw features, and thus feature inter-
action modeling becomes a key role in this area [2, 8, 23, 30, 34].
Factorization machines (FM) [23] use a low-dimensional vector to
represent each feature field and learns 2-order feature interaction
through inner product, achieving a significant improvement over

linear models. Wide&Deep [2] combines a wide linear channel
with cross-product and a deep neural network channel to capture
feature interaction. DeepFM [8] integrates factorization machines
and deep neural networks to learn the second-order crossover of
features. xDeepFM [18] propose a novel compressed interaction
network (CIN) to generate feature interactions in an explicit fashion
and at the vector-wise level, combined with a classical DNN. DCN
[30] adopts a multi-layer residual structure to learn higher-order
feature representations. AFM [34] uses attention mechanism to au-
tomatically learn the weights of cross-features. Apart from learning
embedding and interaction on handcrafted features, many works at-
tempts to model user interests from user historical behaviors. Deep
Interest Network (DIN) [39] uses attention mechanism to assign
different scores to user behaviors to learn the user representation.
Deep Interest Evolution Network (DIEN) [38] captures evolving
user interest from their historical behaviors on items via a GRU net-
work with attentional update gates. Deep Session Interest Network
(DSIN) [7] leverages Bi-LSTM with self-attention layers to model
the inter-session and intro-session interests of users. However, al-
though these models try to use powerful network architectures to
model different kinds of historical behaviors, they did not make
use of multi-source neighbourhood information, which limits their
effectiveness.

5.2 Graph Neural Networks for
Recommendation

Graph Neural Networks [10, 17, 25, 29] have been widely explored
in recommender systems in recent years, owing to their strong ca-
pability to model graph information in recommendation. GraphRec
[5] makes the first attempt to introduce GNNs to social recommen-
dation by modeling the user-item and user-user interactions as
graph data. Wu 𝑒𝑡𝑎𝑙 . [33] propose a dual graph attention network
to collaboratively learn representations for two-fold social effects.
KGAT [31] combines user-item graph with knowledge graph and
uses graph convolution to obtain the final node representations.
Heterogeneous graph Attention Network (HAN) [32] utilizes a
semantic-level attention network and a node-level attention net-
work to discriminate the importance of neighbor nodes and node
types. HetGNN [36] groups heterogeneous neighbours based on
node types and use two modules to aggregate information from
them. Despite the progress, it is challenging to directly apply Graph-
based recommendation methods to CTR prediction tasks for feature
sparsity issues.

5.3 Transformers for Graph Data
There are some attempts to use Transformers in the context of
graph-structured data. For example, GTransformer [24] uses a tailed
GNN layer as encoder to extract embeddings and feed them into
Transformer. Graph Transformer [4] constrain the self-attention
mechanism to local neighbourhoods of each node only. Graph-BERT
[37] introduces three types of Positional Encoding to embed the
node position information to the model. Graphormer [35] utilizes
centrality encoding to enhance the node feature and uses spatial
encoding along with edge encoding to incorporate structural in-
ductive bias into the attention mechanism. Although these models



have made great progress, they assume that the graphs are homo-
geneous and only have one type of edges, thus their performances
are limited in our setting.

6 CONCLUSION
In this paper, we focus on exploiting the neighbourhood informa-
tion to improve the performance of CTR prediction. We put CTR
prediction into a heterogeneous graph setting and attempt to model
the neighbourhood interaction. We propose four types of interac-
tion graphs and design a novel model: Graph-masked Transformer
to encode such interactions. Besides, we also design a consistency
regularization to enhance the model robustness. Extensive experi-
ments, including detailed ablation studies, verify the effectiveness
of the neighbour interaction graph modeling and demonstrates
the superiority and the flexibility of the proposed Graph-masked
Transformer. We also successfully deploy the whole framework
into an industrial scenario with billions of users and items and gain
a significant improvement in CTR in a real application.
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