
HPFBench: A High Performance Fortran
Benchmark Suite

Y. CHARLIE HU
Harvard University
GUOHUA JIN
Rice University
and
S. LENNART JOHNSSON, DIMITRIS KEHAGIAS, and NADIA SHALABY
Harvard University

The High Performance Fortran (HPF) benchmark suite HPFBench is designed for evaluating
the HPF language and compilers on scalable architectures. The functionality of the bench-
marks covers scientific software library functions and application kernels that reflect the
computational structure and communication patterns in fluid dynamic simulations, funda-
mental physics, and molecular studies in chemistry and biology. The benchmarks are charac-
terized in terms of FLOP count, memory usage, communication pattern, local memory
accesses, array allocation mechanism, as well as operation and communication counts per
iteration. The benchmarks output performance evaluation metrics in the form of elapsed
times, FLOP rates, and communication time breakdowns. We also provide a benchmark guide
to aid the choice of subsets of the benchmarks for evaluating particular aspects of an HPF
compiler. Furthermore, we report an evaluation of an industry-leading HPF compiler from the
Portland Group Inc. using the HPFBench benchmarks on the distributed-memory IBM SP2.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-
tions—Concurrent, distributed, and parallel languages; G.1.3 [Numerical Analysis]: Numer-
ical Linear Algebra—Linear systems (direct and iterative methods); G.4 [Mathematics of

The programs in HPFBench suite were developed by Thinking Machines Corp. in Connection
Machine Fortran with partial support from ARPA under subcontract DABT63-91-C-0031 with
the Computer Science Department of Yale University and the Northeast Parallel Architec-
tures Center (NPAC) at Syracuse University. Verification, debugging, and documentation
were made in part by the Parallel Computation Research Group at Harvard University with
support from Thinking Machines Corp. Porting to High Performance Fortran was partially
supported by the Computer Science Department and the Center for Research and Parallel
Computation of Rice University.
Authors’ addresses: Y. C. Hu, Division of Engineering and Applied Sciences, Harvard Univer-
sity, 33 Oxford Street, Cambridge, MA 02138; G. Jin, Computer Science Department, Rice
University, 6100 Main Street, Houston, TX 77005; S. L. Johnsson, D. Kehagias, and N.
Shalaby, Division of Engineering and Applied Sciences, Harvard University, 33 Oxford Street,
Cambridge, MA 02138.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 0098-3500/00/0300–0099 $5.00

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000, Pages 99–149.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F347837.347872&domain=pdf&date_stamp=2000-03-01

Computing]: Mathematical Software—Efficiency; Parallel and vector implementations; I.6.3
[Simulation and Modeling]: Applications; J.2 [Computer Applications]: Physical Sciences
and Engineering—Astronomy; Chemistry; J.3 [Computer Applications]: Life and Medical
Sciences—Biology and genetics

General Terms: Languages, Measurement, Performance

Additional Key Words and Phrases: Benchmarks, compilers, High Performance Fortran

1. INTRODUCTION
High Performance Fortran (HPF) [High Performance Fortran Forum 1993;
1997] is the first widely supported, efficient, and portable parallel program-
ming language for shared- and distributed-memory systems. It continues
the Fortran tradition of providing a balanced mix of features for writing
portable but efficient programs, and is realized by defining a set of
standard extensions to Fortran 90. High-level constructs such as FORALL
are provided where advanced compilers are believed capable of generating
efficient code for different hardware. Programmer control (such as array
layout directives) is provided in areas for which compiler optimization
remains a challenging problem. Thus, HPF enables application developers
to write portable and efficient software that will compile and execute on
traditional vector multiprocessors, shared-memory machines, distributed
shared-memory machines, message passing distributed-memory machines,
and distributed systems, such as networks of workstations.

Since the first release of the HPF specification in 1994, a growing
number of vendors have made commercially available HPF compilers, with
more vendors announcing plans to join the effort. However, there has not
been a systematically designed HPF benchmark suite for evaluating the
qualities of the HPF compilers, and the HPF compiler vendors have mostly
relied on individual application programmers to feedback their experience
often with some particular type of applications on a particular type of
architecture (for example, see Hu et al. [1997]). The development of the
HPFBench benchmark suite was a first effort to produce a means for
evaluating HPF compilers on all scalable architectures.

The functionality of the HPFBench benchmarks covers linear algebra
library functions and application kernels. The motivation for including
linear algebra library functions is for measuring the capability of compilers
in compiling the frequently time-dominating computations in applications.

One motivation for building libraries, in particular in the early years of
new architectures, is that they may offer significantly higher performance
by being implemented, at least in part, in lower-level languages to avoid
deficiencies in compiler technology, or in the implementation of compilers
and run-time systems. However, though the functionality of libraries is
limited compared to that of applications being run on most computers,
implementing libraries in low-level languages tend to be very costly, and
often means that high or even good performance may not be available until

100 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

late in the hardware product cycle. This in turn implies that following the
rapid advances in hardware technology is very difficult, since the older
generation hardware often competes successfully with the new generation
because of the difference in the quality of software. Thus, it is important to
minimize the amount of low-level code also in software libraries, and shift
the responsibility of achieving high efficiency to the compiler.

In addition to some of the most common linear algebra functions that are
frequently occurring in many science and engineering applications, the
HPFBench benchmark suite also contains a set of small application codes
containing typical “inner loop” constructs that are critical for performance,
but that are typically not found in libraries. An example is stencil evalua-
tions in explicit finite difference codes. The benchmarks were chosen to
complement each other, such that a good coverage would be obtained of
language constructs and idioms frequently used in scientific applications,
and for which high performance is critical for good performance of the
entire application. Much of the resources at supercomputer centers are
consumed by codes used in fluid dynamic simulations, in fundamental
physics, and in molecular studies in chemistry or biology. The selection of
application codes in the HPFBench benchmark suite reflects this fact.

The two groups of HPFBench are listed as follows. The names by which
we refer to the codes are given in parenthesis.

Linear algebra library functions
(1) Triangular solvers:

(a) Conjugate Gradient (conj-grad)
(b) Parallel cyclic reduction (pcr)

(2) Fast Fourier transform (fft)
(3) Gauss-Jordan matrix inversion (gauss-jordan)
(4) Jacobi eigenanalysis (jacobi)
(5) LU factorization (lu)
(6) Matrix-Vector multiplication (matrix-vector)
(7) QR factorization and solution (qr)

Applications kernels cover the following applications and methods:
(1) Boson: many-body simulation (boson)
(2) Diffusion equation: in three dimensions using an explicit finite

difference algorithm (diff-3d)
(3) Poisson’s equation by the Conjugate Gradient method (ellip-2d)
(4) Solution of the equilibrium equations in three dimensions by the

finite-element method (fem-3d)
(5) Seismic processing: generalized moveout (gmo)
(6) Spectral method: integration of Kuramoto-Sivashiniski equations

(ks-spectral)
(7) Molecular dynamics, Leonard-Jones force law:

(a) with local forces only (mdcell)
(b) with long-range forces (md)

(8) Generic direct N-body solvers with long-range forces (for vortices)
(n-body)

HPFBench: A High Performance Fortran Benchmark Suite • 101

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

(9) Particle-in-cell in two dimensions:
(a) straightforward implementation (pic-simple)
(b) sophisticated implementation (pic-gather-scatter)

(10) QCD kernel: staggered fermion Conjugate Gradient method (qcd-
kernel)

(11) Quantum Monte-Carlo (qmc)
(12) Quadratic programming (qptransport)
(13) Solution of nonsymmetric linear equations using the Conjugate

Gradient Method (rp)
(14) Euler fluid flow in two dimensions using an explicit finite difference

scheme (step4)
(15) Wave propagation in one dimension (wave-1d)

The concept of measuring performance using benchmark codes is not
new. Earlier efforts on benchmarking supercomputer performance (see, for
example Wueller-Wichards and Gentzsch [1982], Lubeck et al. [1985], and
Dongarra et al. [1987]) focused on ad hoc approaches to the evaluation of
systems rather than on potential standardization of the benchmark pro-
cess. Later benchmarking efforts emphasized more on the methodology and
metrics applied to the evaluation of supercomputing systems. In particular,
the well-known sets include the Livermore Fortran kernels [McMahon
1988], the LINPACK [Dongarra 1989], and the NAS kernels from NASA/
Ames [Bailey and Barton 1985]. Each of these benchmark sets contains
codes that closely relate to one particular type of science and engineering
research in a particular environment. Furthermore, the benchmarks are
mostly designed for measuring uniprocessors though the NAS parallel
benchmarks [Bailey et al. 1994] are “paper and pencil” benchmarks that
specify the task to be performed and allow the implementor to choose
algorithms as well as programming model, and the newer NAS parallel
benchmarks 2.0 [Bailey et al. 1995] consists of MPI-based source imple-
mentations. The Perfect Club benchmarks [Berry et. al. 1989; Cybenko et
al. 1990; Sinvhal-Sharma et al. 1991] is a collection of Fortran 77 applica-
tion codes originally designed for the evaluation of sequential architec-
tures, though there have been efforts in porting the codes to parallel
machines [Cybenko et al. 1990]. Different from earlier benchmarks, the
Perfect Club benchmarks focus on whole application codes from several
areas of engineering and scientific computing.

The benchmark package most closely related to HPFBench is the PARK-
BENCH benchmark suite [Hockney and Berry 1994], which represents an
international collaborative effort on providing a focused parallel machine
benchmarking activities and setting standards for benchmarking method-
ologies. PARKBENCH suite defines four areas of benchmarking focus, and
is collecting actual benchmarks from existing benchmarks suites or from
users’ submissions. The programming models of the benchmark codes are
planned to be both message passing and HPF. The four benchmarking
focuses include low-level benchmarks for measuring basic computer charac-
teristics, kernel benchmarks to test typical scientific subroutines, compact

102 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

applications to test complete problems, and HPF kernels to test the
capabilities of HPF compilers. The motivation for kernel benchmarks and
compact applications resembles that of the linear algebra functions and
applications kernels in our HPFBench suite, while the HPF kernels in
PARKBENCH are for testing different phases of compilations rather than
benchmarking whole HPF codes. At the release of the first PARKBENCH
report in 1994, the suite contained very few actual codes, and the compact
applications were largely missing. The HPFBench efforts were first started
in 1990 and therefore overlapped with the PARKBENCH effort. Further-
more, to our knowledge, the HPFBench suite is the first benchmark suite
that focuses entirely on the High Performance Fortran programming envi-
ronments.

In this article, we strive to provide sufficient insight into the benchmark
codes for prospective users to choose one or a subset of codes that would
best expose and measure specific features of a compiler or system. The
source code and the details required for the use of the suite are covered
online at http://dacnet.rice.edu/Depts/CRPC/HPFF/benchmarks. The online
documentation gives information about how to run the programs and, for
each code, the meaning of the arguments, memory requirements as derived
from array declarations and layout directives (excluding temporary arrays
generated by the compiler and the run-time system), and floating-point
operations as a function of input arguments in order to allow for an
estimate of the resources and time required to run the code. In all, there
are 25 benchmarks in the suite, comprising about 16,000 lines of source
code. The full HPFBench benchmark suite (including the sample data files)
occupies 2.64MB.

Section 2 describes the methodology of HPFBench. Section 3 summarizes,
for each of the HPFBench benchmarks, the employed data structures and
their layout, the floating-point operation count, the dominating communi-
cation patterns, and some characteristics of the implementation. Section 4
reports on an evaluation of an industry-leading HPF compiler from the
Portland Group Inc. using the HPFBench benchmarks on the distributed-
memory IBM SP2. Finally, Section 5 summarizes the article.

2. THE HPFBENCH METHODOLOGY

2.1 Language Aspects

The HPFBench benchmark codes are written entirely in High Performance
Fortran 1.0 standard [High Performance Fortran Forum 1993]. High Per-
formance Fortran is an extension of Fortran 90. The main differences are a
set of data-mapping compiler directives for explicit management of data
distribution among processor memories and some parallel constructs for
expressing additional parallelism.

2.1.1 Fortran 90. Compared to constructs in Fortran 77, some of the
new constructs in Fortran 90 specify data references on whole arrays, or
segments thereof, such as CSHIFT, EOSHIFT, SPREAD, and SUM. In the

HPFBench: A High Performance Fortran Benchmark Suite • 103

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

context of distributed-memory architectures, these functions define collec-
tive communication patterns, and are often implemented as library func-
tions, whether explicitly available to the user (as part of the run-time
system supporting the compiler) or only callable by the compiler. By
specifying the collective communication explicitly, path selection and
scheduling can be optimized without sophisticated code analysis. Another
Fortran 90 construct is the triplet notation for array sectioning in expres-
sions, which, in general, imply both local memory data motion and commu-
nication.

Fortran 90 memory management is more complex than in Fortran 77,
and its effective handling is critical for any compiler and associated
run-time system for high-performance systems. Thus, Fortran 90 offers
both heap- and stack-based dynamic array allocation, and allows the
programmer to declare arrays as static, allocatable, or automatic. Dummy
array arguments passed in subroutine calls allow for run-time memory
management in the form of adjustable, assumed-shape, and assumed-size
arrays. The HPFBench codes all declare explicit-shape arrays that either
are static or automatic, and the dummy arrays are all adjustable, except in
a few cases where static arrays are declared.

In some execution models, like vector architectures, one processor, the
Control Processor, (for vector architectures the scalar processor) performs
scalar operations and instruction storage and broadcast. Therefore, the use
of scalar variables in array expressions often implies communication be-
tween the Control Processor and the processing elements. Since this
communication is critical for all operations, the communication network
between the Control Processor and the processing elements is often of a
higher capacity than the network between the processing elements, but not
of as high a capacity as that between individual processing elements and
their associated memory. Several of the HPFBench codes contain con-
structs that imply communication between the Control Processor and the
processing elements. The HPFBench n-body code contains constructs that
allow for a clear comparison between the two networks: Control Processor
to and from processing elements, and between processing elements.

2.1.2 HPF Extensions. The main extensions of HPF on top of Fortran 90
are

(1) data-mapping directives,

(2) parallel FORALL statements and constructs and INDEPENDENT DO,

(3) a set of library procedures, and

(4) interfaces to extrinsic procedures.

Data-mapping directives, including data alignment and distribution di-
rectives, allow the programmer to advise the compiler how to assign array
elements to processor memories. HPF 1.0 standard defines three kinds of
distributions for each array axis: local to a processor, block, and cyclic.
Tables V and IX list the distribution of arrays used in dominating compu-

104 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

tations of the linear algebra and application kernel codes, respectively. All
codes using arrays of two or more dimensions include layout directives,
which affect the storage-to-sequence association.

Parallel FORALL statements and constructs and INDEPENDENT DO
allow fairly general array sectioning and specifications of parallel computa-
tions. The HPFBench benchmark suite contains the FORALL construct in a
variety of situations: applied to data within individual processors only (i.e.,
no communication required), applied to a mixture of local and remote data,
with and without masks, etc.

HPF also defines a set of library procedures which serve as interfaces to
run-time systems for collective communications. A subset of HPF library

Table I. Summary of Fortran 90 Constructs in the HPFBench Benchmark Codes

Language
Constructs

Array Data Structures

1D 2D 3D (4-7)-D

CSHIFT fft-1d fft-2d fft-3d mdcell
conj-grad ks-sprectral boson qcd-kernel
jacobi jacobi rp
pcr(1) pcr(2) pcr(3)
qptransport ellip-2d
wave-1d n-body

step4, pic-simple

Array Sections diff-3d

SPREAD matrix-vector(1) matrix-vector(2,3,4)
qr:factor/qr:solve
gauss-jordan
jacobi
lu:nopivot/lu:pivot
md, n-body

SUM matrix-vector(1) matrix-vector(2,3,4)
qr:factor/qr:solve rp
ellip-2d
ks-spectral
md
qmc

MAXVAL,MINVAL mdcell qmc

MAXLOC gauss-jordan
lu:pivot

WHERE fft-1d fft-2d fft-3d
jacobi fem-3d
qr:factor/qr:solve mdcell

pic-gather-scatter

Mask in SUM qr:factor/qr:solve

Mask in MAXLOC gauss-jordan

HPFBench: A High Performance Fortran Benchmark Suite • 105

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

procedures are tested in a few HPFBench codes. These include scatter and
vector scatter operations, parallel prefix operations, and the sort operation.

Lastly, HPF defines extrinsic mechanism by which an HPF program can
interoperate with program units written in other programming paradigms,
such as explicit message-passing SPMD style. Extrinsic procedures are not
used by any of the HPFBench benchmark codes.

The Fortran 90 and HPF unique language constructs used in the HPF-
Bench benchmark suite are summarized in Tables I and II.

2.2 Performance Metrics

The primary performance metrics that are output by each HPFBench
benchmark code are as follows:

—Elapsed time (in seconds): total wall clock time spent in executing the
benchmark.

—Elapsed FLOP rate (in MFLOPs): number of million floating-point oper-
ations per second obtained by dividing the stated FLOP count for the
benchmark by the elapsed time.

—Communication time breakdowns: the amount of wall clock time spent in
each of the different communications performed in the benchmark.

A frequently used performance measurement, arithmetic efficiency, is
computed by dividing the FLOP rate by the peak FLOP rate of all the

Table II. Summary of HPF Language Constructs in the HPFBench Benchmark Codes

Language
Constructs

Array Data Structures

1D 2D 3D (4-7)-D

Layout Directives All Codes

FORALL jacobi mdcell
diff-2d pic-gather-scatter
gmo
pic-simple

INDEPENDENT DO mdcell

Mask in FORALL boson pic-simple pic-gather-scatter

sum_prefix/copy_prefix qptransport qmc pic-gather-scatter

sum_scatter pic-simple pic-gather-scatter

copy_scatter wave-1d lu:pivot
gauss-jordan
mdcell
pic-simple, qmc

grade_up pic-gather-scatter
qptransport

106 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

participating processors. Since the peak FLOP rate varies with the under-
lying machines and can be easily calculated once fixing a target machine,
we leave this measurement out from the output of the benchmarks.

For benchmarks with different subroutines, performance metrics for
different modules of a benchmark are reported separately. For instance, the
factorization and solution times for qr are reported separately.

In addition to the above performance metrics that each benchmark
outputs at the run-time, the following metrics of the benchmarks are
detailed in Section 3 which gives the benchmark descriptions. Such metrics
characterize the benchmarks in the HPFBench suite and can be used to
assist a user in choosing appropriate benchmarks for his or her specific
evaluation needs.

—FLOP count: In counting the number of FLOPs we adopt the operation
counts suggested in Hennessy and Patterson [1990] which were also used
in Livermore Fortran kernels [McMahon 1988] and PARKBENCH [Hock-
ney and Berry 1994], and summarized in Table III, for addition, subtrac-
tion, multiplication, division, square root, logarithms, exponentials, and
trigonometric functions. For reduction and parallel prefix operations,
such as the intrinsic SUM and segmented Scans, we use the sequential
FLOP count, i.e., N 2 1 for N element one-dimensional arrays.
The performance evaluation and analysis are based on the execution
semantics of HPF. Thus, the execution of the statement vtv 5
sum(v*v, mask) implies that the self inner product of the vector v is
executed for all elements, rather than only the unmasked ones. As for the
summation that is performed under mask, we only count operations
associated with mask elements being true when the mask is data inde-
pendent (predictable at compile time). Otherwise, we count operations as
if all elements of the mask were true.

—Memory usage (in bytes): The reported memory usage only covers user-
declared data structures including all the auxiliary arrays required by
the algorithm’s implementation, given the data type sizes of Table IV.
Temporary variables and arrays that may be generated by the compiler
are not accounted for.
In the case where a lower-dimensional array L is aligned with a higher-
dimensional array H, L effectively takes up the storage of size$H %, and
we report the collective memory of L and H to be 2 p size$H %.

—Communication pattern: We specify the types of communication an
algorithm exhibits, as well as the language constructs with which they

Table III. Number of FLOPs Accounted for Each Operation Type

Operation Type FLOPs

1, 2 , 3 1
4 , Î 4

log, exp, sin, cos, ... 8

HPFBench: A High Performance Fortran Benchmark Suite • 107

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

are expressed. These communication types include stencils, gather, scat-
ter, reduction, broadcast (SPREAD), all-to-all broadcast (AABC) [Johns-
son and Ho 1989], all-to-all personalized communication (AAPC) [Johns-
son and Ho 1989], butterfly, Scan, circular shift (CSHIFT), send, get, and
sort. It should be noted that more complex patterns (such as stencils and
AABC) can be implemented by more than one simpler communication
function (for instance CSHIFTs, SPREADs, etc.).

—Operation count per iteration (in FLOPs): We give the number of floating-
point operations for one iteration in the main loop. This metric serves as
the first order approximation to the computational grain size of the
benchmark, giving insight into how the program scales with increasing
problem sizes.

—Communication count per loop iteration: We group the communication
patterns invoked by this benchmark and specify exactly how many such
patterns are used within the main computational loop. This metric,
together with the operation count per iteration, give the relative ratio
between computation and communication in the benchmark.

2.3 Benchmark Guide

In this section, we provide some guidelines on how to select benchmarks
from the HPFBench suite for evaluating specific features of an HPF
compiler.

First, the salient features of the HPFBench benchmark listed in the
previous section codes are summarized in a set of tables through out the
article as follows.

—Language constructs: Tables I and II.

—Data Layout: Table V for linear algebra functions and Table IX for
application kernels.

—Collective communications: The use of certain types of collective commu-
nications is covered by Tables VI and X for linear algebra and application
kernels, respectively. Implementation techniques for some of the commu-
nications in the application kernels are covered in Table XI.

—Computation/communication ratio, memory usage: The number of arith-
metic operations per communication as well as the benchmark’s memory
usage is listed in Table VII for library codes and in Table XII for
application kernels.

Table IV. Data Type Sizes (in bytes) for Standard 32–Bit-Based Arithmetic Architectures

Data Type Size

integer 4
logical 4

double-precision real 8
double-precision complex 16

108 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

We now discuss how one can use the features summarized in various
tables to help choosing appropriate benchmarks to evaluate specific fea-
tures of a compiler.

Since individual processor performance is critical for high performance
on any scalable architecture, the HPFBench benchmark suite includes two
codes that do not invoke any interprocessor communication: matrix-
vector(3) and gmo.

Broadcast, reduction, and nearest-neighbor array communication are
important programming primitives that appear in several benchmarks,
some of which largely depend on these primitives for efficient execution.
For instance, on most architectures, the matrix-vector multiplication
benchmark will be dominated by the time for broadcast (SPREAD) and
reduction (SUM). SPREAD is also likely to dominate the execution time for
the Gauss-Jordan matrix inversion benchmark, while CSHIFT is expected
to have a significant impact on the performance for both tridiagonal system
solvers, the FFT, and several of the application kernels implementing
stencils through CSHIFTs, such as boson , ellip-2d , mdcell , rp , and
wave-1d .

The linear algebra subset of the HPFBench benchmark suite is provided
to enable testing the performance of compiler-generated code against that
of a highly optimized library, such as the ESSL and PESSL [IBM 1996] for
the IBM SP2. Performance attributes for the linear algebra codes are
presented in Tables V–VII, tabulating the data representation and layout
for dominating kernel computations, the communication pattern along with
their associated array ranks, and the computation-to-communication ratio
in the main loop. These tables can be used to decide on an appropriate
benchmark code according to a given testing criteria. For instance, if a user
desires to evaluate how a particular compiler implements CSHIFT on a
two-dimensional array, Table VII indicates that there are three choices:
jacobi , fft-2d , and pcr(2) . If having local axis (and therefore local
memory addressing) in the main computational kernel is desired (or not),
then by Tables V and VII the pcr(2) is picked (or ruled out). In the latter
case, to decide between the jacobi and fft-2d codes, Table VII shows the
other communication patterns associated with each. Hence, if minimizing
other communication patterns is the goal, the fft-2d code would be
selected. Conversely, if evaluating broadcasts and sends is also of interest,
then jacobi would be the appropriate choice.

The application kernels of the benchmark suite are intended to cover a
wide variety of scientific applications typically implemented on parallel
machines. Table VIII captures some of the essential features by which
many application codes are classified. Many finite difference codes using
explicit solvers require emulation of grids on one or several dimensions.
Depending on the layout of the associated arrays, the interprocessor may or
may not correspond directly to the dimensionality of the data arrays. Table
VIII specifies the interprocessor communication implied in the application
kernels. The application kernels contain one code for unstructured grid
computations (fem-3d), pure particle codes (n-body and md), and codes

HPFBench: A High Performance Fortran Benchmark Suite • 109

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

that make use of both regular grid structures and particle representations
(mdcell , pic-simple , and pic-gather-scatter). Tables VIII–XII can be
used to aid in the selection of one code or a subset of benchmark codes for a
specific task. If, for example, an application code with an AABC is desired,
then Table X yields the codes md and n-body . Table IX shows that only
n-body is guaranteed to perform an AABC with respect to the processing
elements, since one of the axes is local while both are distributed in md.
Both codes perform AABC communication with respect to the index space.
On the other hand, Table XI states that if the implementation of AABC in
the form of SPREADs is of interest, then md is the code of choice.
Alternatively, n-body ’s AABC includes CSHIFTs and a Broadcast from one
processor or the Control Processor.

2.4 Performance Evaluation

The HPFBench benchmarks are entirely written in HPF. To measure the
overhead of HPF compiler-generated code on a single processor, we also
provide an Fortran 77 version for each of the HPFBench benchmarks. On
parallel machines, an ideal evaluation of performance of the compiler-
generated code is to compare with that of a message-passing version of the
same benchmark code, as message-passing codes represent the best perfor-
mance tuning effort from low-level programming. Message passing imple-
mentations of LU, QR factorizations, and matrix-vector multiplication are
available from IBM’s PESSL library [IBM 1996], and in other libraries such
as ScaLAPACK [Blackford et al. 1997] from University of Tennessee,
among others. However, the functions in such libraries often use blocked
algorithms for better communication aggregation and BLAS performance.
A fair comparison with such library implementations thus requires sophis-
ticated HPF implementations of the blocked algorithms.

In the absence of message-passing counterparts that implement the same
algorithms as the HPFBench codes, we adopt the following two-step meth-
odology in benchmarking different HPF compilers.

—First, we compare the single-processor performance of the code generated
by each HPF compiler versus that of the sequential version of the code
compiled under a native Fortran 77 compiler on the platform. Such a
comparison will expose the overhead of the HPF compiler-generated
codes.

—Second, we measure the speedups of the HPF code on parallel processors
relative to the sequential code. This will provide a notion on how well the
codes generated by an HPF compiler scale with the parallelism available
in a scalable architecture.

2.5 Benchmarking Rules and Submission of Results

We encourage online submission of benchmarking results for the HPF-
Bench codes. The ground rule for performance measurement is as follows:
only HPF directives, including data layout for arrays and computation

110 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

partitionings, and source code segments for collective communications such
as those listed in Tables VI and X can be modified (but still using HPF/F90
language features) so that maximum performance can be achieved by
compiler-generated codes on a particular machine.

We encourage the submission of performance measured on both single-
processor and parallel systems. The relative single-processor performance
on the same architecture would measure the overhead of different HPF
compilers, while the parallel performance reflects the scalability of the
generated code.

Benchmark results can be submitted through the HPF Forum Web server
accessible from the HPFBench Web page http://dacnet.rice.edu/Depts/
CRPC/HPFF/benchmarks. A complete submission of benchmarking results
should include

—a detailed description of the hardware configuration including machine
model, CPU, memory, cache, interconnect, and software support includ-
ing operating system, compiler, and run-time libraries used for the
benchmark runs;

—directive and source code changes to the original benchmark codes; and

—problem size used and output results from the benchmarks.

Due to the large numbers of benchmark codes in the HPFBench suite, we
define a subset of representative benchmarks, or core benchmarks, in
Section 3.4. Results for the core benchmarks are encouraged as the mini-
mum required test set for benchmarking.

3. THE HPFBENCH BENCHMARK SUITE

The functionality of the HPFBench benchmarks covers linear algebra
library functions that frequently appear as the time-dominant computation
kernels, and application kernels that contain time-dominant computation
kernels that are not linear algebra kernels. This section gives a brief
description of each of the benchmark codes, together with the main data
structures used, the algorithms employed, and the communication pat-
terns.

3.1 Library Functions for Linear Algebra

Linear algebra functions frequently appear as the time-dominant computa-
tion kernels of large applications, and often hand-optimized as mathemati-
cal library functions by the supercomputer vendors (e.g., ESSL and PESSL
[IBM 1996] from IBM). These hand-optimized implementations attempt to
make efficient use of the underlying system architecture through efficient
implementation of interprocessor data motion and management of local
memory hierarchy and data paths in each processor. Since these are
precisely the issues investigated in modern compiler design for parallel
languages and on parallel machine architectures, the library subset of the
HPFBench benchmark suite is provided to enable testing the performance

HPFBench: A High Performance Fortran Benchmark Suite • 111

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

of compiler-generated code against that of any highly optimized library,
such as the PESSL.

The linear algebra library functions subset included in the HPFBench
suite is comprised of matrix-vector multiplication, dense matrix solvers,
two different tridiagonal system solvers (based on parallel cyclic reduction
and the Conjugate Gradient method respectively), a dense eigenanalysis
routine, and an FFT routine. Most of them support multiple instances, e.g.,
multiple instances of tridiagonal systems are solved concurrently by calling
the appropriate pcr function once.

We summarize some of the important properties of our implementations
of the linear algebra benchmarks by means of three tables. Table V gives
an overview of the data representation and layout for the dominating
computations. Table VI shows the communication operations used along
with their associated array ranks. Table VII tabulates the computation-to-
communication ratio in the main loop of each linear algebra benchmark.

3.1.1 Conjugate Gradient (conj-grad) . This benchmark uses the Con-
jugate Gradient method [Golub and van Loan 1989] for the solution of a

Table V. Data Distributions of Arrays in Dominating Computations of the Linear Algebra
Functions, as Specified Using the DISTRIBUTE Directive. The distribution of an axis is
either local to a processor, denoted as “*”, or sliced into uniform blocks and distributed

across the processors, denoted as “b”, short for “block,” or distributed across the processors
in a round-robin fashion, denoted as “c”, short for “cyclic. Benchmarks lu and qr are the

only benchmarks that would benefit from “Cyclic” data distribution from better load
balancing.

Code

Arrays

1D 2D 3D 4D

conj-grad X(b)

fft: 1d X(b)
2d X(b,b)
3d X(b,b,b)

gauss-jordan X(b) X(b,b)

jacobi X(b) X(b,b)

lu X(b,b) or X(c,c)

matrix-vector: (1) X(b) X(b,b)
(2) X(b,b) X(b,b,b)
(3) X(*,b) X(*,*,b)
(4) X(b,b) X(*,b,b)

pcr: (1) X(b) X(*,b)
(2) X(b,b) X(*,b,b)
(3) X(b,b,b) X(*,b,b,b)

qr X(b,b) or X(c,c)

112 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

single instance of a tridiagonal system. The tridiagonal system is stored in
three 1D arrays. The tridiagonal matrix-vector multiplication required in
the Conjugate Gradient method corresponds to a three-point stencil in one
dimension. It is implemented using CSHIFTs. Unlike the CSHIFTs in the
parallel cyclic reduction method, the CSHIFTs in the Conjugate Gradient
method are only for nearest-neighbor interactions.

3.1.2 Fast Fourier Transform (fft) . These routines compute the com-
plex-to-complex Cooley-Tukey FFT [Cooley and Tukey 1965]. One-, two-, or
three-dimensional transforms can be carried out. In the HPFBench bench-
mark, the twiddle computation is included in the inner loop. It implements
the butterfly communication in the FFT as a sequence of CSHIFTs with
offsets being consecutive powers of two. The structures of the code for two-
and three-dimensional transforms are similar.

In addition to CSHIFTs used to implement the butterfly communication,
the bit-reversal operation is performed to reorder the output data points.
Bit-reversal defines a communication pattern that has large demands on
the network bandwidth and often cause severe network contention for
many common networks and routers. With the data layout in the HPF-
Bench benchmark, the bit-reversal constitutes an all-to-all personalized
communication (AAPC) whenever the size of the local data set of the axis
subject to bit-reversal is at least as large as the number of processing nodes

Table VI. Communication Pattern of the Linear Algebra Functions (the Array Dimensions
for Reduction and Broadcast Are of Source and Destination, Respectively). MAXLOC is a

type of reduction that returns the index of the largest array element.

Communication Pattern

Arrays

1D 2D 3D

Cyclic shift fft-1d fft-2d fft-3d
pcr (1) pcr (2) pcr (3)
jacobi jacobi
conj-grad

Broadcast matrix-vector(1) matrix-vector(2,3,4)
qr: factor/qr: solve
gauss-jordan
jacobi

Reduction matrix-vector(1) matrix-vector(2,3,4)
qr: factor/qr: solve
jacobi

MAXLOC gauss-jordan
lu: pivot

Scatter gauss-jordan
fft-2d fft-3d
lu: pivot

Gather gauss-jordan

HPFBench: A High Performance Fortran Benchmark Suite • 113

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

along the axis subject to bit-reversal. A detailed analysis of the parallel
FFT can be found in Johnsson et al. [1992].

The FFT is one of the most widely used algorithms in science, engineer-
ing design, and in signal processing. Being a very efficient algorithm, FFT
has relatively low operation count per data point, namely, O~logn!, but its
communication is global and extensive. Hence, FFTs tend to expose weak-
nesses in communication systems, in particular a low bisection bandwidth.
It is also a good benchmark for the handling of complex arithmetic, and
(local) memory hierarchies.

3.1.3 Gauss-Jordan Matrix Inversion (gauss-jordan) . Given a square
matrix A, the Gauss-Jordan routines compute the inverse matrix of A, A21,
via the Gauss-Jordan elimination algorithm with partial pivoting [Golub
and van Loan 1989; Wilkinson 1961]. Pivoting is required if the system is
not symmetric positive definite. The pivot element is chosen from the pivot
row, and the columns are permuted. At each pivoting iteration, this variant
of the algorithm subtracts multiples of the pivot row from the rows above
as well as below the pivot row. Thus, both the upper and lower triangular

Table VII. Computation-to-Communication Ratio and Memory Usage in the Linear Algebra
Functions. In general, 1D, 2D, and 3D arrays are of size n, n2, and n3, respectively, except
matrix-vector and qr which use 2D arrays of size mn. matrix-vector , lu , qr , and pcr
operate on multiple instances of matrices or linear systems, and the number of instances is
denoted using i. Finally, r denotes the number of right-hand sides of linear systems as in

lu , pcr , and qr .

FLOP Count Memory Usage Communication
Code (per iteration) (in bytes) (per iteration)

conj-grad 26n 40n 4 CSHIFTs, 3 Reductions

fft-1d 5n 100n 2 CSHIFTs
fft-2d 10n2 115n2 4 CSHIFTs
fft-3d 15n3 136n3 6 CSHIFTs

gauss-jordan n~n 1 2 1 2n2! 32n2116n n Reduction, 3n Sends,
2n Gets, 2n Broadcasts

jacobi n~6n2126n! 88n214n 2n CSHIFTs on 1D arrays,
2n CSHIFTs on 2D arrays,
2n Sends, 4n 1D to 2D
Broadcasts

lu: nopivot 2 / 3n3i 8n~n 1 2r!i n Reduction, n Broadcast
lu: pivot 2 / 3n3i 8n~n 1 2r!i n Reduction, n Broadcast

matrix-vector 2nmi 8~n 1 nm 1 m!i 1 Broadcast, 1 Reduction

pcr ~5r 1 12!ni 8~r 1 4!ni ~2r 1 4! CSHIFTs

qr: factor ~5.5m 2 0.5n!n2 36mn 2n Reductions, 2n Broadcasts
qr: solve ~8m 2 1.5n!n2 44mn 1 8m~r 1 1! 2n Reductions, 4n Broadcasts

114 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

matrices are brought to zero. An analysis of the numerical behavior of the
algorithm can be found in Dekker and Hoffman [1989]. Rather than
replacing the original matrix with the identity matrix, this space is used to
accumulate the inverse solution.

Since there is no alignment between the layout of 1D arrays used as
temporary arrays in swapping rows and columns of the 2D arrays during
total pivoting, data motion occurs in the swappings. SPREAD communica-
tion is used for spreading pivot rows and columns to 2D temporary arrays.

3.1.4 Jacobi Eigenanalysis (jacobi) . The HPFBench routines are only
valid for real symmetric matrices. Given a real symmetric matrix A of size
n 3 n, the benchmark uses the Jacobi method to compute the eigenvalues
of the matrix A. Eigenvectors are not computed within the benchmark. The
Jacobi method makes iterative sweeps through the matrix. In each sweep,
successive rotations are applied to the matrix to zero out each off-diagonal
element. A sweep consists of the application of n~n 2 1! / 2 rotations. As
each element is zeroed out, the elements previously zeroed out generally
become nonzero again. However, with each step, the square root of the sum
of the squares of the off-diagonal elements decreases, eventually approach-
ing zero. Thus, the matrix approaches a diagonal matrix, and the diagonal
elements approach the eigenvalues. For a detailed description of this
method see Golub and van Loan [1989] and Schroff and Schreiber [1988].

The Jacobi eigenanalysis benchmark is interesting in that it uses both
1D and 2D arrays with an extraction of the diagonal taking place in
computing rotation factors and an alignment and broadcast taking place in
applying the rotation factors. Aligning the 1D arrays with the 2D arrays

Table VIII. Characterization of the Application Kernels

Function HPFBench Code

Embarrassingly parallel gmo

Structured grid emulation 1D wave-1d
2D boson, ellip-2d, step4
3D diff-3d, rp, mdcell
4D qcd-kernel

Unstructured grid emulation fem-3d

Particle-particle interaction
global 2D n-body

3D md
local 3D mdcell

Particle-grid interaction 2D pic-simple
3D pic-gather-scatter, mdcell

FFT 1D wave-1d
2D ks-spectral, pic-simple

HPFBench: A High Performance Fortran Benchmark Suite • 115

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

result in poor load balance for the computation of rotation factors, while not
aligning the arrays yields good load balance, but results in a potentially
high communication cost.

The main communication patterns include nearest-neighbor CSHIFTs
under masks on 1D rotation vectors, SPREADs for duplicating 1D rotation
vectors into 2D arrays, and CSHIFTs on 2D arrays.

3.1.5 LU Factorization (lu) . Given a dense square matrix A of size n
3 n, and, a right-hand-side vector of size n, these routines solve the dense
system of equations AX 5 B by factoring the matrix A into a lower
triangular matrix L and an upper triangular matrix U, such that A 5
LU. The factorization method is Gaussian elimination with or without
partial pivoting. Load balance is a well-known issue for LU factorization,
and the desired array layout is cyclic distribution. Thus the lu benchmark
codes uses two-dimensional arrays with cyclic distributions.

3.1.6 Matrix-Vector Multiplication (matrix-vector) . This HPFBench
benchmark is a collection of routines computing one or more matrix-vector
products. Given arrays x, y, and A containing multiple instances [Johnsson
et al. 1989] of the vectors x and y and the matrix A, respectively, the
matrix-vector routines perform the operation y 4 y 1 Ax for each in-
stance. The matrix-vector multiplication is implemented for the following
array layouts:

Table IX. Data distributions of arrays in Dominating Computations of the Application
Kernels, as Specified Using the DISTRIBUTE Directive. The distribution of an axis is either
local to a processor, denoted as “*”, or sliced into uniform blocks and distributed across the
processors, denoted as “b”, short for “block.” “Cyclic” distribution is not used in any of the

applications benchmarks.

Code

Arrays

Unstructured Grid1D 2D 3D 4D, 6D, 7D

boson X(*,b,b)
diff-3d X(b,b,b)
ellip-2d X(b,b)
fem-3d X(*,b,b), X(*,*,b)
gmo X(b) X(*,b)
ks-spectral X(b,b)
mdcell X(*,b,b,b)
md X(b) X(b,b)
n-body X(*,b)
pic-simple X(*,b) X(*,b,b)
pic-gather-scatter X(*,b) X(*,b,b)
qcd-kernel X(*,b,b,b,b,b)

X(*,*,b,b,b,b,b)
qmc X(b,b) X(*,*,b,b)
qptransport X(b)
rp X(b,b,b)
step4 X(*,b,b)
wave-1d X(b)

116 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

(1) one instance of the three operands with each instance spread over all
the processors,

(2) multiple instances with each instance of each operand occupying a
subset of the processors,

(3) multiple instances with each instance of the corresponding operands
allocated to the memory unit associated with one processor. This layout
requires no communication and represents a truly embarrassingly
parallel case,

(4) multiple instances with the row axis (the axis crossing different rows)
of array A allocated local to the processors, and the other axis of A as
well as the axes of the other operands spread across the processors.
This layout only requires communication during the reduction.

For all cases, the spread-and-reduction algorithm is used, i.e., y 5
sum~A p spread~x, dim 5 dim2!, dim 5 dim1!. Since a compiler typi-
cally allocates some temporary arrays to store the intermediate results
when compiling the expression, the execution time for this implementation
will on most architectures be dominated by the SPREAD and SUM opera-
tions, and the implicit alignments of the temporary arrays with input
arrays x and A and output array y.

Matrix-vector multiplication is a typical level-2 BLAS operation. It is the
dominating operation in iterative methods for the solution of linear systems
of equations. It only requires two floating-point operations per matrix
element, and its performance is very sensitive to data motion. In case one
above, each operand is distributed across all nodes such that the input
vector must be aligned with the matrix, and the result vector aligned with
the output vector as part of the computation.

3.1.7 Parallel Cyclic Reduction (pcr) . Parallel Cyclic Reduction is one
of the two tridiagonal solvers in HPFBench. It is different from the other
tridiagonal solver, cond-grad , both in the systems to be solved and in the
methods used. While cond-grad solves a single-instance tridiagonal sys-
tem, this code handles multiple instances of the system AX 5 B. The three
diagonals representing A have the same shape and are 2D arrays. One of
the two dimensions is the problem axis of extent n, i.e., the axis along
which the system will be solved. The other dimension is the instance axis.
For multiple right-hand sides, B is 3D. In this case, its first axis represents
the right-hand sides, is of extent r, and is local to a processor. Excluding
the first axis, B is of the same shape as each of the arrays for the diagonal
A. The HPFBench code tests two situations, with the problem axis being
the left and the right parallel axis, denoted as coef_inst and inst_coef ,
respectively.

While cond-grad uses Conjugate Gradient method to solve tridiagonal
systems, the pcr benchmark solves the irreducible tridiagonal system of
linear equations AX 5 B using the parallel cyclic reduction method [Golub

HPFBench: A High Performance Fortran Benchmark Suite • 117

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

and van Loan 1989; Hockney 1965; Hockney and Jesshope 1988], which
performs the reduction and obtains the solution in one pass. Parallel
implementation issues are discussed in Johnsson [1985] and Johnsson and
Ho [1990]. The communication consists of circular shifts with offsets being
consecutive powers of two and implemented by the intrinsic CSHIFT.

Like matrix-vector multiplication, few operations per data element are
performed. Each element in each solution vector is updated log n times
before its final value is available. However, only a few operations are
performed on an element after each CSHIFT communication, regardless of
n, and no replication or reduction is performed. Tridiagonal solvers expose
communication overhead to a much greater extent than dense matrix-
vector multiplication. In the latter case, the number of operations per
communicated element scales as O~ ÎM!, where M is the number of
elements of each submatrix residing on each processor [Johnsson et al.
1989].

3.1.8 QR Factorization and Solution (qr) . This benchmark solves
dense linear systems of equations using Householder transformations
[Dahlquist et al. 1974; Golub and van Loan 1989]. Given an m 3 n
coefficient matrix A, where m $ n, and a set of r right-hand-side vectors in
the form of an m 3 r matrix B, the QR routines factorize and solve the
system of equations AX 5 B. The matrix A is factored into an orthogonal
matrix Q and an upper triangular matrix R, such that A 5 QR. Then, the
solver uses the factors Q and R to calculate the least squares solution to
the system AX 5 B, i.e., to compute the set of r vectors in array X (each
corresponding to a particular right-hand side). The HPFBench version of
the QR routines only supports single-instance computation and performs
the Householder transformations without column pivoting.

Both the factorization and the solution routines make use of masks. An
alternative would be to use array sections. Whichever approach yields the
highest performance and requires the least memory depends upon how the
compiler handles masked operations, the penalty for carrying out opera-
tions under masks, and how array sections are implemented, in particular
with respect to temporary storage.

The communication patterns appearing are SPREADs and reductions.
The reductions are performed within the intrinsic function SUM. In the
solution routines, the right-hand-side matrix B is aligned with A through
assignment to another array (rhs) of the same shape as A. Therefore, the
misalignment overhead is reduced, at the expense of additional memory
space. Due to this alignment, n $ r must hold. Thus the matrix sizes must
satisfy the inequality m $ n $ r.

3.2 Application Kernels

The application kernel benchmarks are intended to cover computations
(including communication) that dominate the running time of a wide

118 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

variety of scientific applications frequently implemented on scalable archi-
tectures. We characterize these benchmarks to assess their performance
according to some inherent properties that inevitably dictate their compu-
tational structure and communication pattern.

Single-node performance is at least as important as the communication
related performance on most architectures. The HPFBench application
kernels contain one “embarrassingly parallel” code, gmo, which does not
include any interprocessor communication.

A large number of production codes are based on structured (regular)
discretizations of space or time. Many solution methods imply data refer-
ences along the axes of grids resulting from such discretizations. For
methods of relatively low order with respect to accuracy, the data refer-
ences associated with updating variables at grid points are confined to
neighborhoods that extends one or two grid points in all directions. For
computations of this nature, the efficient support of communication as
defined by the grid is often crucial. The HPFBench application kernels
contain codes that depend on the emulation of grids distributed across
processors as follows: one-dimensional grids: wave-1d ; two-dimensional
grids: boson , ellip-2d , and step4 ; three-dimensional grids: diff-3d , rp ,
and mdcell ; four-dimensional grids: qcd-kernel .

Since the geometries involved are often complex, unstructured (irregular)
grids are the most common form of spatial discretizations in engineering
applications, and the finite-element method is a common solution tech-
nique. The collection of elements is typically represented as a list of
elements with arrays describing the connectivity or adjacency. The fem-3d
HPFBench benchmark is intended to cover some of the aspects of this type
of codes. This benchmark uses an iterative solver for the equilibrium
equations. The execution time is dominated by matrix-vector multiplica-
tion, which is in turn dominated by gather and scatter operations on the
unstructured grid (unassembled stiffness matrix).

In addition to codes solving field problems for a variety of domain shapes
and media, many computations also involve discrete entities, like particles.
The so-called N-body codes solve field equations based on particle-particle
interactions with or without spatial discretizations. Traditional N-body
codes do not use a spatial discretizations and have an arithmetic complex-
ity of O~N 2!. The so-called particle-in-cell (pic) codes make explicit use of a
grid for long-range interaction and require the representation of both
particle attributes and grid-point data. Hierarchical N-body codes of arith-
metic complexity O~N log N ! or O~N ! construct a hierarchy of grids.

The HPFBench benchmark suite contains two codes that carry out direct
interaction between all particles: md for particle interaction in three-
dimensional space, and n-body for particle interaction in two-dimensional
space.

The HPFBench codes involving both grid and particle representations are
pic-gather-scatter and mdcell (with three-dimensional grids) as well
as pic-simple (with a two-dimensional grid).

HPFBench: A High Performance Fortran Benchmark Suite • 119

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

A particularly important computational kernel is the FFT, for which
efficient implementations appear in many libraries. The HPFBench suite
includes three application kernels that make extensive use of the FFT:
ks-spectral and pic-simple perform FFTs on two-dimensional grids,
while wave-1d performs FFTs on a one-dimensional grid.

Several benchmarks (pic-simple , qmc, qptransport , and wave-1d)
rely on a random-number generator for problem initialization. Although
Fortran 90 provides an intrinsic function (RANDOM NUMBER) for ran-
dom-number generation, the sequence the intrinsic function generates
seems to vary with different F90 compilers. To ensure the same problem is
solved for these benchmarks under different HPF compilers and on differ-
ent platforms, we provide our random-number generator wrapper as an
HPFBench utility function. The wrapper calls the UNIX C library function
drand48() which is both compiler- and architecture-independent. One
consequence of this change is that initializing a distributed array will be
serialized. Since a random-number generator is only called during initial-
ization, we consider this serialization to be acceptable.

The above characterization of the application kernels is summarized in
Table VIII. Table IX lists the data representation and layout for the arrays
used in the dominating computations in the application kernels, and Table
X summarizes the communication patterns in the codes. Table XI tabulates
the implementation techniques for the stencil, gather/scatter, and AABC
communication patterns, whereas Table XII lists the computation-to-com-
munication ratio for the main loop of application codes, as well as the
memory usage.

3.2.1 Boson: Many-Body Simulation (boson) . This benchmark per-
forms quantum many-body computations for bosons on a two-dimensional
lattice using a grid-based Monte Carlo technique. The code uses a Carte-
sian lattice with periodic boundary conditions and uniform site connectivity
resulting in stencil communication. The algorithms are outlined and dem-
onstrated in Batrouni and Scalettar [1992], Hirsch et al. [1982], and
Tobochnik et al. [1992].

The implementation uses 3D arrays, with the first axis representing the
time axes, and the other two axes representing the two spatial axes of the
grid. Nearest-neighbor CSHIFTs are heavily used along the spatial axes.
The CSHIFTs are interleaved with computations in a way that precludes
the use of a linear stencil formulation as well as the use of polyshift
(PSHIFT [George et al. 1994]). The main computations are scalar opera-
tions among 2D parallel arrays, i.e., the 3D arrays with the time axes
locally (and sequentially) indexed.

3.2.2 3D Diffusion Equation: Explicit Finite Difference (diff-3d) .
This diffusion equation simulation is the integration of the three-dimen-
sional heat equation using an explicit finite difference algorithm, which is
stable subject to the Courant condition dt , dx2 / D, where D is the
diffusivity. The benchmark code fully exploits the fact that the stencil

120 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

coefficients are the same for all grid points (constant coefficients). Thus
neither left-hand-side nor right-hand-side matrices are stored explicitly in

Table X. Communication Patterns in the Application Kernels

Communication
Pattern

Arrays

1D 2D 3D (4,5,6,7)-D

Stencil wave-1d ellip-2d rp, diff-3d

step4

Gather pic-simple fem-3d
pic-gather-scatter

Scatter qptransport pic-gather-scatter mdcell

Scatter
w/combine

qmc fem-3d

pic-gather-scatter

Reduction qptransport ellip-2d
ks-spectral
md
qmc
rp

Broadcast ellip-2d,md qmc
n-body,rp

AABC md, n-body

Butterfly (FFT) wave-1d pic-simple
ks-spectral

Scan qptransport qmc pic-gather-scatter

Cyclic shift wave-1d ellip-2d boson mdcell
n-body rp qcd-kernel
step4

Sort pic-gather-scatter
qptransport

HPFBench: A High Performance Fortran Benchmark Suite • 121

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

this benchmark. Only the solution variables F~x, y, z, t! are stored in
array form for one time step as a 3D array of shape nx 3 ny 3 nz.

The operations in this benchmark are dominated by the evaluation of a
seven-point centered difference stencil in three dimensions. The communi-
cation is implemented by array sections. Instead of array sections,
CSHIFTs could have been used. This implementation technique is used in
ellip-2d , which evaluates five-point stencils in two dimensions, and the
rp benchmark which also performs a seven-point centered stencil in three
dimensions, just as diff-3d . Stencil evaluations are interesting from a
compiler evaluation perspective because they occur frequently in a variety
of application codes, and there are many opportunities for optimization of
data motion between processing elements, and between memory and regis-
ters. Some of these issues, related to the data-parallel programming
paradigm, are explored in Hu and Johnsson [1996], while some compiler
techniques are explored in Brickner et al. [1993].

This benchmark is an example of applications with structured Cartesian
grids, solving homogeneous linear differential equations with constant
boundary conditions.

3.2.3 Solution of Poisson’s Equation by the Conjugate Gradient Method
(ellip-2d) . This benchmark uses the preconditioned Conjugate Gradi-
ent method to solve Poisson’s equation on a regular two-dimensional grid

Table XI. F90/HPF Constructs Used in Implementing Some Common Communication
Patterns in the Application Kernels

Communication
Pattern Code Implementation Techniques

Stencil boson CSHIFT
ellip-2d CSHIFT
mdcell CSHIFT
rp CSHIFT
wave-1d CHSIFT
step4 chained CSHIFTs
diff-3d Array sections

Gather fem-3d FORALL with indirect addressing
pic-gather-scatter FORALL with indirect addressing
pic-simple FORALL with indirect addressing

Scatter mdcell INDEPENDENT DO w/indirect addressing
pic-gather-scatter FORALL with indirect addressing
qptransport indirect addressing

Scatter w/combine fem-3d HPF sum_scatter library procedure
pic-gather-scatter HPF sum_scatter library procedure
qmc HPF copy_scatter library procedure

AABC md SPREAD
n-body CSHIFT, SPREAD, scalar to array assignment

122 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

with Dirichlet boundary conditions. The Poisson’s equation is discretized
with a centered five-point stencil. The matrix-vector product in the Conju-
gate Gradient algorithm [Dahlquist et al. 1974; Golub and van Loan 1989;
Press et al. 1992] takes the form of a stencil evaluation on the two-
dimensional grid. In addition, one reduction and one broadcast is required
for the Conjugate Gradient method.

Compared to diff-3d , this HPFBench benchmark is dominated by the
evaluation of a two-dimensional stencil instead of a three-dimensional
stencil. Hence, for a given subgrid size, the optimum computation-to-
communication ratio (volume/surface) is higher for ellip-2d . However,
the inner products and broadcast require some communication, but it can

Table XII. Computation-to-Communication Ratio and Memory Usage in Main Loop of
Application Kernels. In applications involving structured grids, nx, ny, nz denote the number

of mesh points along x-, y-, and z-axes. In particle simulation applications, np denotes the
number of particles. nt denotes the extent of time axis in quantum dynamics applications
boson and qcd . In fem-3d , nve and ne denote the number of vertices per element and the

number of elements in an unstructured mesh. Problem sizes in gmo and qmc are more
involved and are detailed in the code.

Code
FLOP Count Memory Usage Communication

(per iteration) (in bytes) (per iteration)

boson 4~258 1 36 / nt! z

ntnxny

40nxny 1 128nt 1
12000 1 4000mb

1 1536ntnxny

38 CSHIFTs

diff-3d 9~nx 2 2! z 8nxnynz 1 7-point Stencil
~ny 2 2!~nz 2 2!

ellip-2d 38nxny 96nxny 4 CSHIFTs, 3 Reductions

fem-3d 18nvene 56nvene 1 140nv

11200ne

1 Gather, 1 Scatter w/combine

gmo 6000nvec 2nvec z ~8 z nsout z N/A
~ntrout11! 1
8 1 8 z nvec)

ks-spectral ~76 1 40log2nx! z 144nxny 8 1D FFTs on 2D arrays
nxny

mdcell ~101 1 392np! z ~184 1 160np! z 195 CSHIFTs,
npnxnynz nxnynz 7 Scatters on local axis

md ~23 1 51np!np 160np 1 80np
2 6 1D to 2D SPREADs,

3 1D to 2D sends,
3 2D to 1D Reductions

n-body
Broadcast 17np

2 72np 3 Broadcasts
SPREAD 17np

2 72np 3 SPREADs, 3 SPREADs
CSHIFT 17np~np 2 1! 72np 3 CSHIFTs, 3 CSHIFTs
CSHIFT-sym. 13.5np~np 2 1! 96np 3 CSHIFTs

HPFBench: A High Performance Fortran Benchmark Suite • 123

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

be made very efficient. The three dominating operations with respect to
performance on many scalable architectures in this benchmark are the
reduction (SUM), broadcast, and the evaluation of the five-point centered
difference stencil.

This benchmark is an example of a class of applications with structured
grids, involving the solution of linear nonhomogeneous differential equa-
tions with Dirichlet boundary conditions by means of an iterative solver.
From a performance point of view, like diff-3d , this benchmark is
interesting, since it discloses how efficiently stencil communication and
evaluation are handled by the compiler.

3.2.4 Finite-Element Method in Three Dimensions (fem-3d) . This
benchmark uses the finite-element method on trilinear brick elements to
solve the equilibrium equations in three dimensions. The mesh is repre-
sented as an unstructured mesh. Specifically, this code evaluates the
elemental stiffness matrices and computes the displacements and the
stresses at the quadrature points using the Conjugate Gradient method on
unassembled stiffness matrices [Johnson 1987; Johnson and Szepessy
1987].

Table XII. Continued

Code
FLOP Count Memory Usage Communication

(per iteration) (in bytes) (per iteration)

pic-simple np 1 15nxny z 64np 1 72nxny 1 Scatter w/ add 1D to 2D,
~lognx 1 logny! 3 FFT, 1 Gather 3D to 2D

pic-gather-
scatter

270 np 12nxnynz 1 88np 81 Scans, 27 Scatters w/add,
27 1D to 3D Scatters,
27 3D to 1D Gather

qcd-kernel 606nxnynznt 720nxnynznti 4 CSHIFTs

qmc @~42 1 2nonmaxw! z

npndnwne 1
~142no 1 251! z

nwne#nb

16npnd 1 96nwne nmaxw SPREADs 3D to 1D,
5 Reductions 2D to 1D,
~npnd 1 4! Scans on 2D,
~npnd 1 1! Sends,
3 Reductions 2D to scalar

qptransport 34n 160n 10 Scatters 1D to 1D,
1 Sort, 5 Scans, 1 CSHIFT,
1 EOSHIFT, 3 Reductions

rp 44nxnynz 120nxnynz 2 Reductions, 12 CSHIFTs
(2 7-point Stencils)

step4 2500nxny 1000nxny 128 CSHIFTs
(8 16-point Stencils)

wave-1d 29nx 1 10nxlognx 64nx 12 CSHIFTs, 2 1D FFTs

124 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

The unstructured mesh is read from a file and stored in the element
nodes array. A partitioning of the unstructured mesh is performed in an
attempt to minimize the surface area (communication) for the collection of
elements stored in the memory of a processor. The partitioning is carried
out by Morton ordering (implemented in HPF as a general partitioning
method in Hu et al. [1997]) of the elements using the coordinates of the
element centers. The array of pointers derived from the unstructured mesh
is reordered so that the communication required by the subsequent gather
and scatter operations is reduced. The nodes are also reordered via Morton
ordering. The nodes of the mesh are stored in a 2D array whose first axis is
local to a processing element. It represents the coordinates of each node.
The computations of the benchmark are dominated by the sparse matrix-
vector multiplication required for the Conjugate Gradient method. It is
performed in three steps: a gather, a local elementwise dense matrix-vector
multiplication, and a scatter. The elementwise matrix-vector multiplication
exploits the fact that the elemental stiffness matrices are symmetric.

The fem-3d is a good example of finite-element computations on unstruc-
tured grids. In order to preserve locality of reference and allow for blocking,
and the use of dense matrix optimization techniques, finite-element codes
are often based on unassembled stiffness matrices. Moreover, by exploiting
symmetry in the elemental stiffness matrices, this code is a good test case
for compiler optimizations with respect to local memory references for a
somewhat more complex situation than a dense nonsymmetric matrix.
Through the use of the reordering of the mesh points and nodes to improve
locality, the gather and scatter operations are expected to be efficient.

3.2.5 Seismic Processing (gmo) . This benchmark is a highly optimized
HPF code for a generalized moveout seismic kernel for all forms of Kirchhoff
migration and Kirchhoff DMO (also known as x 2 t migration and x 2 t
DMO). For each vector unit, the code explicitly strip-mines the main
computational loop into vector chunks of length nvec. In order to perform
the strip-mining, the indices isamp , ksamp, and the real variable del have
a local axis of extent equal to the vector length nvec. independent do
loops are used to express each calculation in the loop for one whole vector
chunk and across all the vector units. An outer do-loop steps through all
the vector chunks sequentially.

The gmo benchmark is a good test case of a compiler’s local memory
management. The code is written explicitly with efficient local memory
management in mind.

3.2.6 Spectral Method: Integration of Kuramoto-Sivashiniski Equations
(ks-spectral) . This benchmark uses a spectral method to integrate the
Kuramoto-Sivashiniski equations on a two-dimensional regular grid. The
two-dimensional grid is stored in a two-dimensional array with block
distribution. The code performs the integration using a fourth-order Runga-
Kutta integration of the equation dX / dt 5 f~ X, t! with step size dt.
Within an integration step, the core computation is a 2D FFT performed on

HPFBench: A High Performance Fortran Benchmark Suite • 125

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

the grids. In fact, all the communication in the benchmark happens inside
the 2D FFT.

3.2.7 Molecular Dynamics, Lennard-Jones Force Law (md, mdcell) .
Many molecular dynamics codes make use of the Lennard-Jones force law
for particle interaction. With few exceptions, this force law is applied with a
cut-off radius. A grid is superimposed on the domain of particles, and the
cell size of the grid is chosen such that the cut-off radius is smaller than the
cell size. This guarantees that interaction only involves particles in adja-
cent cells. Furthermore, if the cell size is only moderately larger than the
cut-off radius, then, for simplicity in implementation, all particles in
adjacent cells are assumed to interact, and no separate interaction lists are
maintained. The loss of efficiency is modest. The HPFBench mdcell code is
designed with these assumptions. Accurate modeling of electrostatic forces
does, however, require long-range interaction between particles, in which
case the radius cannot be cut off. Thus, molecular dynamics codes that
attempt to include electrostatic forces must evaluate interactions between
all particles, i.e., such codes have many aspects in common with general
N-body codes. The HPFBench code md carries out an evaluation of interac-
tions between all particles using a Lennard-Jones potential without cut-off.
The mdcell and the md codes both use a Maxwell initial distribution and a
Verlet integration scheme. Both benchmarks make heavy use of parallel
indirection.

—Local forces only: In the mdcell code particles only interact with parti-
cles in nearby cells; thus no neighbor tables are required. The benchmark
assumes periodic boundary conditions and initializes particles with the
Maxwell distribution.
The particles are initialized and manipulated in 4D arrays, i.e., the first
axis is local and is used for storing particles in the same cell, while the
other axes are parallel, representing the 3D grid of cells. Utilizing the
symmetry, each cell only needs to fetch directly 13 neighbor cells instead
of all 26 in the neighbor-cell interaction. The fetching of neighbor cells is
performed via CSHIFT. No linear ordering [Lomdahl et al. 1993] is
imposed on the order of fetching the 13 neighbors; therefore the number
of CSHIFTs is not minimized. The migration of particles are imple-
mented by slicing through the 4D particle arrays and copying particles
that need to move to different cells out to a newly allocated slice of the
4D array, followed by a scatter operation within the local axis of the 4D
array to squeeze out the “bubbles” in the array. Since particle can at most
move to a neighboring cell, the copying operation is implemented using a
CSHIFT.

—Long-range forces: The md code carries out a Lennard-Jones force law
without cut-off. The interaction is evaluated directly through an O~N 2!
method. The all-to-all communication is implemented with a send-
spread-reduce algorithm. Each particle attribute is implemented as a 1D
array. For instance, particle positions are implemented as three 1D

126 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

arrays with a location for each particle. The all-to-all communication
makes use of 2D temporary n 3 n arrays, where n is the number of
particles. The particle information is spread across both dimensions
using SPREAD operations.

3.2.8 A Generic Direct N-Body Solver, Long-Range Forces (N-Body) .
This benchmark consists of a suite of two-dimensional N-body solvers all of
which directly compute all pairwise interactions [Hockney and Eastwood
1988]. The different codes in the suite allows for a comparison of different
ways of programming the all-to-all communication. The different ways of
programming the direct method are described in detail with code listings in
Greenberg et al. [1992]. The data structures consist of 2D arrays with the
first dimension local to a node, holding the particle information, and the
second parallel, representing the number of particles. The all-to-all commu-
nication for the direct method is implemented with four different commu-
nication patterns:

(1) Broadcast, implemented as an assignment of a single array element to
an array,

(2) SPREAD, implemented using SPREAD,

(3) CSHIFT, implemented using CSHIFT,

(4) CSHIFT, implemented using CSHIFT, and exploiting symmetry.

3.2.9 Particle-in-Cell Codes (pic-simple, pic-gather-scatter) .
The HPFBench benchmark suite contains two codes for particle-in-cell
methods. Both codes represent a structured grid in the form of 3D arrays,
but differ in their representation of particle attributes. The pic-simple
code implements a two-dimensional spatial grid with a third local axis for
vector values at the grid points and a 2D array for particles, with the
attributes for each particle forming a local axis. The pic-gather-scatter
code implements a three-dimensional spatial grid for a scalar field, while
each particle attribute is represented by its own 1D array.

The long-range particle interaction in particle-in-cell codes is determined
by solving field equations on the grid by some efficient method, like the
FFT, interpolating the field to particles in a cell, moving the particles, and
then projecting back to the grid points. The pic-simple code scatters field
data from the particles to the grid with send-with-add, whereas the
pic-gather-scatter code accomplishes this task with both send-with-
add and sort-scan-with-add.

—Straightforward implementation: The pic-simple benchmark repre-
sents a two-dimensional electrostatic plasma simulation. It is meant to
be a naive implementation of the method, representative of the sort of
parallel code that users would write on their first attempt.
The particle information is represented by 2D arrays, with the first axis
being local to a processing element and storing the relevant attributes for
each particle. Initially, the particles are placed randomly according to a

HPFBench: A High Performance Fortran Benchmark Suite • 127

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

uniform distribution inside a square box of shape cr 3 cr. This box is
centered in the domain. Each particle is given a random velocity in the
range @2cv / 2, cv / 2# along the x- and y-axes, which is modified with a
component normal to, and proportional to, the vector from the box center
to the particle. The magnitude of this modification vector is cl. The
two-dimensional grids are represented by 3D arrays, again with the first
axis being local and representing the 2D vector field at each gridpoint.
The computations consist of scattering the charge data from the particles
to the grid points using sum_scatter. Charge data sent to the same
gridpoint are combined on-the-fly, and no sophisticated interpolation
scheme is used. Then, a two-dimensional FFT is used to solve Poisson’s
equation for the electrostatic field on the two-dimensional grid. This is
followed by invoking a gather operation to determine the field at the
particles. Then, the particle positions and velocities are advanced in
time, using a leap-frog method.

—Sophisticated implementation: The pic-gather-scatter benchmark
tests the gather/scatter operations between data structures for particles
and for cells in a typical 3D particle-in-cell application. The solver for the
field equations on the grid is not included. Two different techniques for
particle-grid interactions are used: send-with-add and sort-scan-send.
The sort-scan-send version avoids congestion, which occurs in the send-
with-add version. The sort-scan-send version also uses a more sophisti-
cated interpolation function in distributing the charges (masses, etc.) to
the grid.
The particle positions are stored in a 2D array, with the first axis being
local and representing the three coordinates of a particle position. The
field at the grid points is stored in 3D arrays, the first axis of which is
local while the other two are parallel. Hence, this layout does not
minimize the surface to volume ratio.
The benchmark makes extensive use of HPF library code for many
communication and the sorting functions, including sum_scatter, sum_
prefix, copy_ prefix, and grade_up.
The scan-and-send sorts particles into canonical ordering using the
concatenated coordinates of a particle, i.e., ~z?y?x!, as its key. This
ordering differs from the ordering of the cells and gridpoints in that the
address space for the cells and grid points is three-dimensional. Using a
coordinate-sort for the particles as described in Hu and Johnsson [1996]
should improve the locality in the send and get operations between the
1D particle arrays the 3D grid arrays.

3.2.10 QCD Kernel: Staggered Fermion Conjugate Gradient Method
(qcd-kernel) . This benchmark represents the kernel of a staggered
fermion Conjugate Gradient algorithm for Quantum Chromo-Dynamics
(QCD). The operation performed is

128 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

r~x! 5 mc 1 O
m51

4

@u~x!†c~x 1 m! 2 u~x 2 m!c~x 2 m!#

where all the entities are double complex, except m which is a double
constant. r and c represent three-element “vectors” (the three colors), and u
represents a 3 3 3 operator between colors; † denotes the adjoint operator.
The aforementioned operation is carried out on a four-dimensional lattice of
shape nx 3 ny 3 nz 3 nt (three spatial and one time dimension). The
integer m loops over the four dimensions of the lattice, so x 6m is a
neighboring lattice point along dimension m. This method is described in
detail in Aoki et al. [1991], which is also an excellent source of bibliography
on the subject.

The qcd-kernel benchmark is implemented as a multiple-instance code,
with 5D arrays for lattice data, or more for nonscalar fields. The kernel is
highly optimized in the following ways:

—All the complex entities are declared as a pair of real values (real and
imaginary parts separately) to avoid operations on complex data types
(and relying on the compiler to translate them).

—The 3 3 3 operator u is represented as a vector of length nine, so that
both u and its transpose can be accessed without any extra space or
mapping overheads.

—Matrix operations are calculated element by element by straight-line
code; the only loop overhead is the sequential loop for m over the four
dimensions.

—Only the five dimensions for the multiple-instance lattice (four dimen-
sions for space and time and one dimension for the nins instances) are
parallel; other dimensions are local. Thus, the only communication is the
circular shifts x 6m.

The qcd-kernel benchmark is interesting as an example of how efficient
local arithmetic can be carried out on small matrices, and it is a good
reference for compiler optimizations local to a node.

3.2.11 Quantum Monte-Carlo (qmc) . This benchmark evaluates the
ground-state energy for two fermions confined in a one-dimensional square
potential well using a Green’s function quantum Monte Carlo method. The
basic algorithm consists of moving random walkers in configuration space
(two-dimensional in this model problem) by sampling their steps from the
Green’s function for the Helmholtz equation, and multiplying their weights
by a factor that is a function of configuration space position. For a thorough
description of the algorithmic methodology see Anderson et al. [1991].

To load balance the calculation high-weight particles are split, and
low-weight particles are killed at each step. This kill-and-split algorithm is

HPFBench: A High Performance Fortran Benchmark Suite • 129

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

implemented with scans and sends and is described in Traynor et al.
[1991].

The manifestation of the fermion sign problem in this calculation is the
tendency of large numbers of walkers of opposite sign to collect in the same
region of configuration space. To mitigate this problem, a walker-cancella-
tion scheme is used, as described in Anderson et al. [1991]. This amounts to
an N-body problem on the walkers, and it is implemented using the
sequential spread algorithm every nc (cancellation number) iteration steps.
Thus, by making nc large, this code is a good test of the scan-and-send
load-balancing algorithm. By making nc small, it is a good test of the
sequential SPREAD N-body algorithm. Both limits are examined in this
test suite.

The main data structures of the code are 4D arrays, with the first two
axes being local to a node and representing a walker, and the other two
axes being parallel, representing the independent ensembles of walkers.
Most computations, however, are performed on 2D arrays corresponding to
the two parallel axes of the 4D arrays. The communication includes
reductions along one axis of these 2D arrays, scatter with combine on 2D
arrays implemented via copy_scatter, and scan operations by calling the
HOF intrinsic functions copy_ prefix and sum_ prefix along one dimension of
the 2D arrays.

3.2.12 Quadratic Programming Problem (qptransport) . This bench-
mark is an optimization code for finding optimum paths on a bipartite
graph with a quadratic cost function. The benchmark generates random
sparse quadratic transportation problems and solves them using an un-
usual alternating direction method. Each problem is based on a large,
sparse, bipartite graph. The graph vertices are either “sources” (with an
exogenous supply of some commodity) or “sinks” (with a demand). The
edges of the graph connect the sources and sinks, and each one has a
quadratic cost function. The problem is to route the commodity from the
source nodes to the sink nodes so as to exactly use all of the supplies and
satisfy all demands with the minimum possible total cost. The example
code generates problems, solves them, and checks that the solutions seem
approximately correct. However only the solution phase is timed. It repre-
sents the graph as one long vector with many short segments of average
length 16.

The code performs very few FLOPs and is dominated by many rank, scan,
and scatter operations on 1D arrays by calling the HPF library functions,
grade_up, sum_ prefix, min_ prefix, copy_ prefix, and indirect addressing. It
is believed that rank and scan operations that could recognize and take
advantage of all the short segments being short would substantially speed
up this benchmark.

3.2.13 Solution of Nonsymmetric Linear Equations Using the Conjugate
Gradient Method (rp) . This benchmark solves a nonsymmetric linear
system of equations that result from seven-point centered difference ap-
proximations of the differential operators in the following equation:

130 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

d2u

dx2
1

d2u

dy2
1

d2u

dz2
1 d~x!

du

dx
1100.0

du

dy
1100.0

du

dz
5 F

where d~x! is a polynomial function of x. F is never explicity specified.
Instead, a solution vector u is set up as a vector of all ones, and then the
right-hand-side vector is derived from the linear system of equations. The
PDE assumes Dirichlet boundary condition, and the domain is descretized
by a regular grid in three dimensions. The particular method employed
uses the single-node version of Conjugate Gradient accelerated Cimmino
row projections [Bramley and Sameh 1992; Cimino 1939]. That is, the
Conjugate Gradient method is applied to the normal equations ATAx 5
ATb, where A is a nonsymmetric matrix with seven diagonals. Each
unknown in the equation corresponds to a gridpoint in the three-dimen-
sional grid, and the matrix A is represented in seven 3D arrays.

The multiplication ATAx is implemented as two matrix-vector multiplica-
tions, i.e., AT~Ax!. Since the matrix A is represented in seven 3D arrays,
each matrix-vector multiplication becomes a seven-point stencil evaluation.
The stencil is implemented using CSHIFTs, which involve movement of
data interior to the subgrid on each processor, as well as actual interpro-
cessor communication of data on the boundary of each subgrid. The local
data movement can be eliminated via restructuring the code using the
array aliasing feature of CMF [Hu and Johnsson 1999].

This code is dominated by two seven-point centered stencils in three
dimensions, global reduction, and broadcast. One of the two stencil evalua-
tions has variable coefficients with a single-source array, while the other
stencil evaluation has a different source array for each shift. Stencils with
multiple sources are common in the solution of Navier-Stokes equations.

3.2.14 Explicit Finite Difference in Two Dimensions (step4) . This
benchmark solves a subsonic Euler flow over a backward-facing step. The
method employed uses fourth-order accurate finite difference equations.
Artificial viscosity is used to stabilize the numerical method.

The communication pattern for the difference operations involves a
16-point stencil with four stencil points coming from each direction: north,
east, south, and west, as shown in Table X. The 16-point stencil is
implemented as four four-point stencils, one along each axis. Each four-
point stencil is in turn implemented using chained CSHIFTs. For boundary
points, some stencil points are truncated at the boundary, and fewer stencil
points are employed. As a consequence, a combination of third-order
accurate (for boundary points) and sixth-order accurate (for interior points)
local approximations is used which guarantees fourth-order global conver-
gence [Olsson 1994; 1995a; 1995b].

3.2.15 Wave Equation (wave-1d) . This benchmark simulates the inho-
mogeneous one-dimensional wave equation using the method of character-
istics. It does a spline fit to the function at every time step and makes

HPFBench: A High Performance Fortran Benchmark Suite • 131

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

heavy use of the FFT. A random-number generator is used for the simula-
tion.

The only data structure in the code is a 1D array. Communication occurs
within the computation of the FFT, and in an unbalanced four-point
stencil.

3.3 HPFBench Problem Size

Two classes of problem sizes are defined for the HPFBench benchmark
suite. Tables XIII and XIV give two problem sizes, Class A and Class B, and
the total number of floating-point operations (in millions) performed for the
two problem sizes for each of the HPFBench benchmarks. For all applica-

Table XIII. HPFBench Benchmark Problem Size A

Problem Size A

Benchmark Problem Size Mflops Iteration

conj-grad 217 3278.4 962
fft-1d 217 111.4 10
fft-2d 29 3 28 111.4 10
fft-3d 26 3 26 3 25 111.4 10
gauss-jordan 29 3 29 270.3 1
jacobi 28 3 28 614.2 6
lu: nopivot ~2911! 3 ~2911! 89.5 1
lu: pivot ~2911! 3 ~2911! 89.5 1
matrix-vector(1) 28 3 28 65.5 500
matrix-vector(2) 28 3 28 3 24 1048.6 500
matrix-vector(3) 28 3 28 3 24 1048.6 500
matrix-vector(4) 28 3 28 3 24 1048.6 500
pcr(2): coef_inst 29 3 29 3 23 117.4 1
pcr(2): inst_coef 29 3 29 3 23 117.4 1
qr:factor 29 3 29 3 16 671.0 1
qr:solve 29 3 29 3 16 873.0 1
boson 25 3 26 3 26 272.9 4
diff-3d 27 3 27 3 27 1800.3 100
ellip-2d 29 3 29 655.4 100
fem-3d 4913 3 4096 627.6 133
gmo 256 3 1500 3 8 1541.0 1000
ks-spectral 29 3 28 228.6 4
md 500 1276.1 100
mdcell 24 3 24 3 24 3 4 658.8 4
nbody:bcast 214 4563.1 1
nbody:cshift 214 4563.1 1
nbody:cshift-sym 214 3623.6 1
nbody:spread 214 4563.1 1
pic-gather-scatter 218bodies, 26 3 26 3 26mesh 118.0 1
pic-simple 218bodies, 26 3 26 3 27mesh 160.3 10
qcd-kernel 4 3 9 3 8 3 8 3 16 3 16 3 2 1270.9 64
qmc 2 3 1 3 211 3 27 6491.1 40
qptransport 213 178.1 40
rp 26 3 26 3 25 5765.1 1000
step4 4 3 28 3 27 819.1 10
wave-1d 217 104.3 4

132 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

tions, the problem sizes are chosen so that the total memory requirement
would be around 50MB for Class A and 200MB for Class B. Therefore, the
Class B problem sizes approach the capacity of the main memory in a
single processor of most modern distributed-memory machines. Larger
problem sizes will be added in the future when there is a significant
increase of the main memory in the processors of parallel machines. For
most mesh-based codes, the 200MB total memory requirement of Class B
translates into about 220 mesh points, i.e., 210 3 210 in 2D or 27 3 27 3

26 in 3D. For Class A, the 50MB requirement translates into about 217

mesh points.

Table XIV. HPFBench Benchmarks Problem Size B

Problem Size B

Benchmark Problem Size Mflops Iteration

conj-grad 220 26227.2 962
fft-1d 220 1048.6 10
fft-2d 210 3 210 1048.6 10
fft-3d 27 3 27 3 26 1048.6 10
gauss-jordan 210 3 210 2148.5 1
jacobi 29 3 29 4872.7 6
lu: nopivot ~21011! 3 ~21011! 717.9 1
lu: pivot ~21011! 3 ~21011! 717.9 1
matrix-vector(1) 210 3 210 1048.6 500
matrix-vector(2) 210 3 210 3 24 8388.6 500
matrix-vector(3) 210 3 210 3 24 8388.6 500
matrix-vector(4) 210 3 210 3 24 8388.6 500
pcr(2): coef_inst 210 3 210 3 23 521.1 1
pcr(2): inst_coef 210 3 210 3 23 521.1 1
qr:factor 210 3 210 3 16 5369.0 1
qr:solve 210 3 210 3 16 6979.0 1
boson 25 3 27 3 27 2173.7 4
diff-3d 28 3 28 3 28 14402.4 100
ellip-2d 210 3 210 2621.4 100
fem-3d 4913 3 4096 627.57 133
gmo 1024 3 1500 3 8 6162.0 1000
ks-spectral 210 3 29 998.2 4
md 1372 9603.2 100
mdcell 25 3 25 3 25 3 4 5270.4 4
nbody:bcast 215 18253.6 1
nbody:cshift 215 18253.6 1
nbody:cshift-sym 215 14495.1 1
nbody:spread 215 18253.6 1
pic-gather-scatter 220bodies, 27 3 27 3 27mesh 471.9 1
pic-simple 220bodies, 27 3 27 3 27mesh 718.2 10
qcd-kernel 4 3 9 3 16 3 16 3 16 3 16 3 2 1270.8 64
qmc 2 3 1 3 213 3 27 25963.0 40
qptransport 216 1426.1 40
rp 27 3 27 3 27 46140.0 1000
step4 4 3 210 3 29 13107.0 10
wave-1d 220 960.5 4

HPFBench: A High Performance Fortran Benchmark Suite • 133

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

3.4 Core HPFBench Benchmarks

The large number of benchmarks included in the HPFBench suite strive to
cover a wide variety of computational structures and communication pat-
terns found in differnet disciplines. Nevertheless, it can be too strenuous
for vendors to evaluate an HPF compiler using the full set of benchmarks.
Therefore, we pick a subset of eight benchmarks to form the core HPF-
Bench Suite. The criteria in picking the core benchmarks are to cover as
many F90/HPF constructs, array distributions, computational structures,
communication patterns, and different implementations of them as possi-
ble. The core suite consists of two from the linear algebra subset—fft and
lu —and six from application kernels—ellip-2d , fem-3d , mdcell , pic-
simple , pic-gather-scatter , and rp .

4. EVALUATION RESULTS OF PGHPF ON THE IBM SP2

We report on the results of evaluating an industry-leading HPF compiler,
pghpf , from the Portland Groups, Inc., on the distributed-memory IBM
SP2, using all 25 benchmarks in the HPFBench suite. Version 2.2-2 of
pghpf with compiler switch -O3 -W0,-O4 was used and linked with -Mmpl .
To measure the overhead of HPF compilers on a single node, we also
measure the performance of the HPF versions of the codes compiled under
pgf90 with the same compiler switchs as above plus -Mf90 and linked with
-rpm1, and the performance of the sequential code compiled using the
native Fortran 77 compiler, xlf, with compiler flag -O4 .

Our evaluation was performed on an IBM SP2 with 16 uniprocessor
nodes. Each node has a RS6000 POWER2 Super Chip processor running
AIX 4.3 at 120MHz and has 128MB of main memory. The nodes are
communicating through IBM’s MPL library on the IBM SP2 high-perfor-
mance switch network with a peak node-to-node bandwidth of 150MB/
second. All results were collected under dedicated use of the machines.

We use Class A problem sizes of the benchmarks as listed in Table XIII
for the evaluation, due to the relative small main memory on each node of
the IBM SP2.

4.1 Linear Algebra Functions

4.1.1 Sequential Performance. Table XV compares the the performance
of the linear algebra benchmark codes compiled using pgf90 and pghpf,
respectively, versus that of the sequential versions of the same codes
compiled using xlf, on a single node of the SP2. For lu using pghpf, block
distribution is used, since using cyclic distribution gives much worse
performance than using block distribution on one node and on multiple
nodes, as reported in more detail in Section 4.3. Table XV shows that the
HPF and the F90 compilers incur significant overhead to the generated
code when running on a single processor. Specifically, codes compiled using
pgf90 and pghpf are 1.07 to 3.02 times slower than the sequential codes for
all benchmarks except fft-3d , lu:nopivot , pcr:coef_inst , and pcr:
inst_coef . Benchmarks fft-3d and lu:nopivot under pgf90 are about

134 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

5% and 15% faster than under xlf, respectively. Benchmarks pcr:coef_
inst and pcr:inst_coef are 41–43% faster than their sequential coun-
terparts. A close look at these benchmarks shows that the improvement is
due to the default padding (-Moverlap 5size:4) by pghpf along all paral-
lel dimensions of an array which reduces cache conflict misses by from a
moderate amount in fft-3d and lu:nopivot to a significant amount in
pcr:inst_coef and pcr:coef_inst .

To understand the overhead incurred on the codes generated by the
pgf90 and pghpf compilers, we measured the time spent on segments of the
code that would cause communication when running on parallel nodes, and
compared them with those of the sequential codes. Table XVI lists the time
breakdowns for the three versions of each benchmark. Table XVI shows
that the overhead of the HPF and F90 compilers occurs mainly in code
segments corresponding to cshift, spread, sum, and scatter. First, cshift is
up to four times slower when compiled using pgf90 or pghpf, compared with
the sequential versions of the codes. This contributed to the longer total
time for conj-grad , jacobi , and pcr . Second, scatter under pgf90 and
pghpf is about nine (for lu:pivot) to 44 times (for fft-2d and fft-3d)
slower than under xlf. Third, sum under pgf90 and pghpf is 2.3 to 14 times
slower than under xlf, which contributed to the significant slowdown for
matrix-vector(4) and qr under the pgf90 and pghpf compilers. Lastly,
spread is about 10% faster than xlf for all four of the matrix-vector
benchmarks, but is 1.1 to 2.6 times slower than xlf for gauss-jordan ,
jacobi , lu , and qr .

4.1.2 Parallel Performance. Figure 1 shows the parallel speedups of the
linear algebra benchmarks compiled using pghpf on up to 16 nodes of the
SP2, using the performance of the sequential codes as the base. Overall,

Table XV. Single-Node Performance of the Linear Algebra Kernels

Code

xlf pgf90 pghpf

Time
(sec.)

FLOP Rate
(Mflops/s)

Time
(vs. xlf)

Time
(vs. xlf)

conj-grad 176.7 18.56 1.08 1.17
fft-2d 52.5 2.12 1.07 1.08
fft-3d 68.1 1.65 0.95 1.00
gauss-jordan 28.3 9.49 1.24 1.46
jacobi 54.5 11.27 2.20 1.98
lu: nopivot 23.2 3.88 0.85 1.03
lu: pivot 19.6 4.60 1.14 1.16
matrix-vector(1) 3.62 18.2 3.02 2.92
matrix-vector(2) 57.2 18.3 2.86 2.93
matrix-vector(3) 56.3 18.6 2.90 2.94
matrix-vector(4) 56.4 18.6 2.93 2.93
pcr: coef_inst 25.3 0.57 1.23 0.59
pcr: inst_coef 25.3 0.57 1.22 0.57
qr: factor 83.7 8.01 1.30 1.34
qr: solve 75.3 11.58 1.53 1.47

HPFBench: A High Performance Fortran Benchmark Suite • 135

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

pghpf achieves a linear speedup for pcr:inst_coef and moderate speed-
ups for conj-grad , fft-2d , qr:solver , and lu:pivot . But for jacobi ,
gauss-jordan , and matrix-vector(4) , there is little speedup beyond
eight nodes.

To understand the contributing factors that limit the scalability of the
benchmarks under pghpf, we further measure, for each benchmark, the

Table XVI. Breakdown of the Single-Node Time of the Linear Algebra Benchmarks

Code Breakdown xlf pgf90 pghpf

conj-grad total 176.66 190.45 207.13
cshift 44.81 61.77 65.57

fft-2d total 52.5 56.0 56.7
scatter 1.01 9.31 9.52
cshift 18.7 15.3 17.7

fft-3d total 67.6 64.8 68.8
scatter 2.22 17.3 18.0
cshift 27.1 11.0 13.5

gauss-jordan total 28.31 35.18 41.36
spread 4.72 4.91 5.06
maxloc 9.65 17.73 18.27
scatter 0.03 0.03 0.09

jacobi total 54.5 119.9 107.77
cshift 14.49 58.57 50.37
spread 7.93 14.31 15.08

lu: nopivot total 23.2 19.8 23.8
spread 9.68 9.91 10.0

lu: pivot total 19.6 22.3 22.7
spread 9.49 9.80 10.0
maxloc 0.05 0.08 0.20
scatter 0.01 0.44 0.44

matrix-vector(1) total 3.61 10.9 10.5
sum 0.61 8.21 7.71
spread 1.23 1.12 1.14

matrix-vector(2) total 57.2 164.0 168.0
sum 10.2 121.0 124.0
spread 19.5 17.4 17.7

matrix-vector(3) total 56.3 164.0 166.0
sum 9.71 122.0 122.0
spread 18.8 17.0 17.1

matrix-vector(4) total 56.4 165.0 165.0
sum 9.91 123.0 122.0
spread 18.4 17.4 17.1

pcr: coef_inst total 25.3 31.2 15.0
cshift 2.38 3.25 3.07

pcr: inst_coef total 25.3 30.77 14.50
cshift 2.44 2.63 2.59

qr: factor total 83.77 108.5 112.4
sum 5.48 16.11 17.06
spread 9.99 21.7 10.0

qr: solve total 75.31 115.5 110.51
sum 6.91 15.92 20.62
spread 11.71 30.55 19.86

136 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

amount of time spent in the different communications for runs on 1, 4, 8,
and 16 nodes. Figure 2 shows the measured breakdowns of the total time.

Figure 2 shows that, in general, communications cshift, scatter, spread,
and sum scale well under pghpf in most benchmarks, except for cshift in
benchmark pcr:inst_coef . In this case, cshift is performed along the
second axis of some two-dimensional arrays with both axes distributed
across the nodes. For jacobi , spreads scales poorly beyond four nodes. This
contributed to the poor speedup of the benchmark beyond eight nodes.

4.2 Application Kernels

4.2.1 Sequential Performance. Table XVII compares the performance of
the application kernel benchmark codes compiled using pgf90 and pghpf,
respectively, versus that of the sequential versions of the same codes
compiled using xlf, on a single node of the SP2. The table shows that, for
application kernels, the performance difference of pghpf and pgf90 versus
xlf is quite mixed. Specifically, half of the benchmarks when compiled
under pgf90 run from 8% to 53% faster than when compiled with xlf. The
other half of the benchmarks under pgf90 run between 1.01 to 9.11 times
slower than under xlf. In general, pghpf has higher overhead than pgf90.
Specifically, eight of 20 benchmarks compiled with pghpf run between 3%
to 85% faster than under xlf. The other 12 benchmarks under pghpf run
between 1.04 to 4.04 times slower than under xlf.

To understand the overhead difference among the three compilers, we
further measure the time spent on segments of the code that would cause
communication when running on parallel nodes. The comparison (listed in
Table XVIII) shows that gather/scatter and sum under pgf90 and pghpf are
2.5 to 23 times slower than under xlf except in mdcell where scatter under
pghpf and pgf90 is 10% faster than xlf and in ellip-2d where sum under
pgf90 is 1.6 times faster than under xlf. Sort under pgf90 and in pghpf is

1

4

8

12

16

1 4 8 16

S
pe

ed
up

Number of processors

pghpf

conj-grad
qr:solve

gauss-jordan
jacobi

lu:pivot
matrix-vector(4)

pcr:inst_coef
fft-2D

Fig. 1. Speedups of the linear algebra kernels under pghpf relative to the sequential
performance under xlf.

HPFBench: A High Performance Fortran Benchmark Suite • 137

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

0

50

100

150

200

250

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

conj-grad

total
cshift

10

20

30

40

50

60

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

fft-2D

total
cshift

scatter

0

5

10

15

20

25

30

35

40

45

50

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

gauss-jordan

total
spread
maxloc

gather/scatter

0

20

40

60

80

100

120

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

jacobi

total
spread

cshift

0

5

10

15

20

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

lu:pivot

total
spread
maxloc
scatter

50

100

150

200

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

matrix-vector(4)

total
sum

spread

0

2

4

6

8

10

12

14

16

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

pcr:inst_coef

total
cshift

0

20

40

60

80

100

120

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

qr:solve

total
sum

spread

Fig. 2. Total running time and the communication breakdowns for linear algebra bench-
marks. For benchmarks with multiple cases only one case is shown.

138 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

about 4 times slower than under xlf in qptransport , but is about the same
in pic-gather/scatter under all three compilers.

4.2.2 Parallel Performance. Figure 3 shows the parallel speedups of the
application benchmarks compiled using pghpf on up to 16 nodes of the SP2,
using the performance of the sequential codes as the base. The applications
can be divided into four groups according to their speedups. The first group
consists of ellip-2d , which achieves better than linear speedup as a
consequence of 6.7 times better performance under pghpf than under xlf
with both running on one node. The much better performance with pghpf is
due much less cache conflicts from padding. The second group consists of
gmo, which achieves a linear speedup because of no communication. The
third group consists of boson , ks-spectral , mdcell , md, pic-simple ,
fem-3d , wave-1d, n-body:cshift-sym , n-body:cshift , step4 , qcd-
kernel , and qmc. These benchmarks achieve from moderate to almost
linear speedups on up to 16 nodes. The last group consists of diff-3d ,
pic-gather-scatter , n-body:bcast , n-body:spread , qptransport ,
and rp . These benchmarks achieve fairly poor speedups. Among these five
applications, qptransport , pic-gather-scatter , and rp achieve poor
speedups as a result of their poor sequential performance when compared
with xlf. The poor sequential performance is a result of the poor perfor-
mance of gather/scatter, cshift, sort, and sum under pghpf than under xlf,
as shown in Table XVIII.

Table XVII. Single-Node Performance of the Application Kernels

xlf pgf90 pghpf

Time FLOP Rate Time Time
Code (sec.) (Mflops/s) (vs. xlf) (vs. xlf)

boson 57.8 9.40 0.86 1.04
diff-3d 43.7 41.2 0.47 1.42
ellip-2d 96.5 6.79 0.88 0.15
fem-3d 159.0 3.95 1.01 1.48
gmo 107.0 14.4 0.94 0.99
ks-spectral 116.0 1.97 0.70 0.85
md 49.0 26.0 1.13 1.51
mdcell 86.1 4.62 1.04 1.13
n-body:bcast 100.0 45.5 0.62 0.97
n-body:cshift 98.9 46.1 1.05 0.98
n-body:cshift-sym 75.9 47.7 1.16 0.86
n-body:spread 100.0 45.4 0.78 1.12
pic-gather-scatter 24.6 4.80 2.22 4.03
pic-simple 83.9 1.91 0.92 1.22
qcd-kernel 37.9 33.5 1.11 1.37
qmc 107.0 60.7 1.32 2.10
qptransport 337.0 5.29 2.80 4.04
rp 80.5 71.6 9.11 3.49
step4 56.6 14.5 0.85 0.81
wave-1d 54.9 1.90 0.70 0.90

HPFBench: A High Performance Fortran Benchmark Suite • 139

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

Similar to linear algebra benchmarks, we again measure, for each
benchmark, the amount of time spent in the different communications for

1

4

8

12

16

1 4 8 16

S
pe

ed
up

Number of processors

boson
diff-3d

fem-3d
gmo

ks-spectral
md

mdcell
pic-gather-scatter

pic-simple

1

4

8

12

16

1 4 8 16

S
pe

ed
up

Number of processors

n-body:bcast
n-body:cshift

n-body:cshift-sym
n-body:spread

qcd-kernel
qmc

qptransport
rp

step4
wave-1d

0

10

20

30

40

50

60

1 4 8 16

S
pe

ed
up

Number of processors

ellip-2d

Fig. 3. Speedups of the application kernels under pghpf relative to the sequential perfor-
mance under xlf.

140 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

runs on 1, 4, 8, and 16 nodes. Figures 4–6 show the measured breakdowns
of the total time. For most applications, communications cshift, gather/
scatter, sort, and sum scale well under pghpf till eight nodes. On the other
hand, communications broadcast and spread achieve slowdown beyond four
nodes, as shown in n-body:bcast and n-body:spread .

4.3 Effect of Data Layouts

We also evaluate the effects of different data layouts on the benchmark
performance under the HPF compiler pghpf. Specifically, the LU decompo-
sition used in the lu benchmark and and QR factorization used in the qr
benchmark is well known to achieve better load balance with the cyclic
array layout than with block array layout. We measure the overall running
time as well as the communication time breakdowns for lu:pivot and
qr:solve with three distributions: block, cyclic, and block-cyclic with a
block size 4, respectively. The measurements are shown in Figures 7 and 8.

Table XVIII. Breakdown of the Single-Node Time of the Application Kernel Benchmarks

Code Breakdown xlf pgf90 pghpf

boson total 57.8 50.1 60.2
cshift 2.90 9.44 3.57

diff-3d total 43.7 20.4 61.8
ellip-2d total 96.5 84.6 14.4

cshift 87.7 49.5 5.86
sum 2.46 1.54 2.55

fem-3d total 159.0 160.0 235.0
gather 0.77 0.52 41.6
scatter 3.02 32.7 39.3

gmo total 107.0 101.0 106.0
ks-spectral total 116.2 81.6 98.5

scatter 0.41 6.15 7.46
cshift 54.9 21.7 32.9

md total 49.0 55.1 74.1
spread 5.91 5.53 6.03
sum 3.11 24.1 34.7

mdcell total 86.1 89.2 97.7
cshift 9.03 13.6 15.0
scatter 2.27 1.99 2.06

n-body:bcast total 100.0 62.2 96.9
broadcast 15.2 15.4 15.7

n-body:cshift total 98.9 103.0 97.2
cshift 15.5 57.3 15.8

n-body:cshift-sym total 75.9 88.4 65.2
cshift 13.0 43.0 13.4

n-body:spread total 100.0 77.6 112.4
spread 15.6 31.0 31.3

pic-gather-scatter total 24.6 54.5 99.0
sort 0.91 0.68 0.95
scan 0.93 2.64 3.80
gather 2.77 7.43 14.32
scatter 1.06 12.5 18.5

HPFBench: A High Performance Fortran Benchmark Suite • 141

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

Overall, The total running time using block-cyclic(4) distribution is about 2
to 5.5 times longer than using block distribution on 1, 4, 8, and 16 nodes for
both benchmarks. Using pure cyclic distribution, the total running time is
almost identical to that using block distribution for qr:solve and is about
2 to 2.5 times for lu:pivot . The fact that the performance gap on parallel
nodes is consistent with that on one node suggests that the cause of the gap
is again due to poor nodal compilation for cyclic distributions.

A close look at the communication time breakdowns shows that block-
cyclic(4) distribution loses to block and cyclic distributions mainly in the
spread communication on one node as well as on parallel nodes. The
block-cyclic(4) distribution actually beats the pure cyclic distribution for
maxloc and scatter communications as shown by lu:pivot . For qr:solve ,
the pure cyclic distribution only loses to the block distribution on spread by
a factor of two on parallel nodes.

5. SUMMARY

The HPFBench benchmark suite is a set of High Performance Fortran
codes intended for evaluating HPF compilers on scalable parallel architec-
tures. The codes contain new constructs of Fortran 90 and HPF. The
benchmarks cover several aspects of the array syntax of Fortran 90 and
HPF, scientific software library functions, and application kernels that
reflect the computational structure and communication patterns in typical
scientific applications, particularly fluid dynamic simulations, fundamental

Table XVIII. Continued

Code Breakdown xlf pgf90 pghpf

pic-simple total 83.9 77.3 102.0
sum_scatter 0.80 4.22 7.41
copy_scatter 0.31 7.11 7.14
cshift 32.1 21.2 24.1
gather 1.11 1.11 19.3

qcd-kernel total 37.9 41.9 52.0
cshift 6.00 8.82 9.13

qmc total 107.0 141.0 225.0
scan 16.1 11.5 13.4
scatter 3.71 33.8 87.9
reduction 0.72 0.80 0.91

qptransport total 33.7 94.5 136.0
sort 13.8 55.4 61.5
scan 4.11 10.9 14.4
scatter 7.42 18.8 40.4

rp total 80.5 735.0 282.0
sum 4.01 67.1 6.01
cshift 60.5 645.0 262.0

step4 total 56.6 48.0 46.0
cshift 27.7 30.6 28.4

wave-1d total 54.9 38.6 49.2
cshift 16.6 8.66 12.3
scatter 0.72 1.93 2.84

142 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

0

10

20

30

40

50

60

70

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

boson

total
cshift

0

10

20

30

40

50

60

70

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

diff-3d

total

0

2

4

6

8

10

12

14

16

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

ellip-2d

total
cshift

reduction

0

50

100

150

200

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

fem-3d

total
gather
scatter

20

40

60

80

100

120

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

gmo

total

0

20

40

60

80

100

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

ks-spectral

total
scatter

cshift

10

20

30

40

50

60

70

80

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

md

total
spread

sum

0

20

40

60

80

100

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

mdcell

total
cshift

scatter

Fig. 4. Total running time and the communication breakdowns for application kernels
boson , diff-3d , ellip-2d , fem-3d , gmo, ks-spectral , md, and mdcell .

HPFBench: A High Performance Fortran Benchmark Suite • 143

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

0

20

40

60

80

100

120

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

n-body

nb:bcast: total
nb:bcast: bcast

nb:cshift: total
nb:cshift: cshift

0

20

40

60

80

100

120

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

n-body

nb:cshift-sym: total
nb:cshift-sym: cshift

nb:spread: total
nb:spread: spread

0

20

40

60

80

100

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

pic-gather-scatter

total
sort

scan
scatter
gather

20

40

60

80

100

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

pic-simple

total
cshift

sum_scatter
copy_scatter

gather

0

10

20

30

40

50

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

qcd-kernel

total
cshift

50

100

150

200

250

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

qmc

total
scan

scatter
reduction

20

40

60

80

100

120

140

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

qptransport

total
sort

scatter
scan

50

100

150

200

250

300

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

rp

total
cshift
sum

Fig. 5. Total running time and the communication breakdowns for application kernels
n-body , pic-gather-scatter , pic-simple , qcd-kernel , qmc, qptransport , and rp .

144 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

physics, and molecular studies in chemistry or biology. We provide perfor-
mance evaluation metrics in the form of elapsed times, FLOP rates, and
communication time breakdowns, and quantify performance according to
the FLOP count, memory usage, communication pattern, local memory
access, as well as operation and communication counts per iteration. We
also provide a benchmark guide to aid the choice of subsets of the bench-
marks for evaluating particular aspects of an HPF compiler. We expect the

10

20

30

40

50

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

step4

total
cshift

0

5

10

15

20

25

30

35

40

45

50

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

wave-1d

total
cshift

scatter

Fig. 6. Total running time and the communication breakdowns for application kernels step4
and wave-1d .

0

20

40

60

80

100

120

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

block(4)-cyclic: total
cyclic: total
block: total

0

10

20

30

40

50

60

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

block(4)-cyclic: spread
cyclic: spread
block: spread

0

2

4

6

8

10

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

block(4)-cyclic: maxloc
cyclic: maxloc
block: maxloc

0

0.5

1

1.5

2

2.5

3

3.5

4

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

block(4)-cyclic: scatter
cyclic: scatter
block: scatter

Fig. 7. Total running time and communication time breakdowns of lu:pivot under different
array layouts. Note the different scale of the y-axis for the breakdowns.

HPFBench: A High Performance Fortran Benchmark Suite • 145

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

HPFBench benchmark suite to be a valuable asset in the development and
evaluation of Fortran 90 and HPF compilers.

We have reported a performance evaluation of an industry-leading HPF
compiler, pghpf, from the Portland Group Inc. using the HPFBench bench-
marks on the distributed-memory IBM SP2. While with respect to running
the HPF benchmarks on one node, most of the benchmarks achieved good
speedups on up to 16 nodes of the SP2, over half of the 25 benchmarks
compiled using pghpf run over 10% slower than their Fortran 77 counter-
parts compiled using the native F77 compiler xlf. Among these bench-
marks, the gap is over a factor of two for five benchmarks. The measure-
ment of communication time breakdowns shows that the high overhead
with pghpf when running on a single node mainly comes from the poor
nodal performance of these communications segments of the codes; though
on one node, the data movement is all within the node.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees and the Editor-in-Chief
Ronald Boisvert for careful reading of the manuscript and providing us
with detailed comments which have greatly improved both the content and
the presentation of the article.

0

50

100

150

200

250

300

1 4 8 16
T

im
e

(s
ec

.)

Number of processors

block(4)-cyclic: total
cyclic: total
block: total

0

20

40

60

80

100

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

block(4)-cyclic: sum
cyclic: sum
block: sum

0

10

20

30

40

50

60

1 4 8 16

T
im

e
(s

ec
.)

Number of processors

block(4)-cyclic: spread
cyclic: spread
block: spread

Fig. 8. Total running time and communication time breakdowns of qr:solve under different
array layouts. Note the different scale of the y-axis for the breakdowns.

146 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

REFERENCES

ANDERSON, J., TRAYNOR, C., AND BOGHOSIAN, B. 1991. Quantum chemistry by random walk:
Exact treatment of many-electon systems. J. Chem. Phys. 95, 10 (Nov.), 7418–7425.

AOKI, S., SHROCK, R., BERG, B., OGILVIE, M., PETCHER, D., BHANOT, G., ROSSI, P., BITAR, K.,
EDWARDS, R., HELLER, U. M., KENNEDY, A., SANIELEVICI, S., BROWER, R., POTVIN, J., REBBI, C.,
BROWN, F. R., CHRIST, N., MAWHINNEY, R., DETAR, C., DRAPER, T., LIU, K., GOTTLIEB, S.,
HAMBER, H., KILCUP, G., SHIGEMITSU, J., KOGUT, J., KRONFELD, A., LEE, I. H., NEGELE, J.,
OHTA, S., SEXTON, J. C., SHURYAK, E., SINCLAIR, D. K., SONI, A., AND WILCOX, W.
1991. Physics goals of the QCD teraflop project. Int. J. Mod. Phys. C 2, 4 (Dec.), 829–947.

BAILEY, D. H. AND BARTON, J. 1985. The NAS kernel benchmark program. Tech. Memo.
86711. RIACS, NASA Ames Research Center, Moffett Field, CA.

BAILEY, D., BARSZCZ, E., BARTON, E., BROWNING, D., CARTER, R., DAGUM, L., FATOOHI, R.,
FINEBERG, S., FREDERICKSON, P., LASINSKI, T., SCHREIBER, T., SIMON, R., VENKATAKRISHNAN, V.,
AND WEERATUNGA, S. 1994. The NAS parallel benchmarks. Tech. Rep.
RNR-94-007. RIACS, NASA Ames Research Center, Moffett Field, CA.

BAILEY, D., HARRIS, T., SAPHIR, W., WIJNGAARTAND, R., WOO, A., AND YARROW, M. 1995. The
NAS parallel benchmarks 2.0. Tech. Rep. NAS-95-020. RIACS, NASA Ames Research
Center, Moffett Field, CA.

BATROUNI, G. AND SCALETTAR, R. 1992. World-line quantum Monte Carlo algorithm for a
one-dimensional Bose model. Phys. Rev. B46, 14 (Oct.), 9051–9062.

BERRY, M., CHEN, D., KOSS, P., KUCK, D., LO, S., PANG, Y., POINTER, L., ROLOFF, R., SAMEH, A.,
CLEMENTI, E., CHIN, S., SCHNEIDER, D., FOX, G., MESSINA, P., WALKER, D., HSIUNG, C.,
SCHWARZMEIER, J., LUE, K., ORSZAG, S., SEIDL, F., JOHNSON, O., GOODRUM, R., AND MARTIN, J.
1989. The PERFECT Club benchmarks: Effective performance evaluation of super-
computers. Int. J. Supercomput. Appl. High Perform. Eng. 3, 1, 5–30.

BLACKFORD, L. S., CHOI, J., CLEARY, A., D’AZEVEDO, E., DEMMEL, J., DHILLON, I., DONGARRA, J.,
HAMMARLING, S., HENRY, G., PETITET, A., STANLEY, K., WALKER, D., AND WHALEY, R. C.
1997. Scalapack: A linear algebra library for message-passing computers. In Proceedings of
the SIAM Conference on Parallel Processing (Mar.), SIAM, Philadelphia, PA.

BRAMLEY, R. AND SAMEH, A. 1992. Row projection methods for large nonsymmetric linear
systems. SIAM J. Sci. Stat. Comput. 13, 1 (Jan. 1992), 168–193.

BRICKNER, R. G., GEORGE, W., JOHNSSON, S. L., AND RUTTENBERG, A. 1993. A stencil compiler
for the Connection Machine models CM-2/200. In Proceedings of the 4th International
Workshop on Compilers for Parallel Computers, H. Sips, Ed. Delft University of Technology,
Delft, The Netherlands, 68–78.

CIMMINO, G. 1939. Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. Ric.
Sci. Progr. Tecn. Econom. Naz. 9, 326–333.

COOLEY, J. C. AND TUCKEY, J. 1965. An algorithm for the machine computation of complex
Fourier series. Math. Comput. 19, 291–301.

CYBENKO, G., KIPP, L., POINTER, L., AND KUCK, D. 1990. Supercomputer performance
evaluation and the Perfect Benchmarks. In Proceedings of the 1990 ACM International
Conference on Supercomputing (ICS ’90, Amsterdam, The Netherlands, June 11–15), A.
Sameh and H. van der Vorst, Eds. ACM Press, New York, NY, 254–266.

DAHLQUIST, G., BJÖRCK, A., AND ANDERSON, N. 1974. Numerical Methods. Prentice-Hall Series
in Automatic Computation. Prentice-Hall, Englewood Cliffs, NJ.

DEKKER, T. AND HOFFMAN, W. 1989. Rehabilitation of the Gauss-Jordan algorithm. Numer.
Math. 54, 4, 591–599.

DONGARRA, J. J. 1989. Performance of various computers using standard linear equations
software. Tech. Rep. CS-89-85. Department of Computer Science, University of Tennessee,
Knoxville, TN.

DONGARRA, J., MARTIN, J., AND VORLTON, J. 1987. Computer benchmarking: Paths and
pitfalls. IEEE Spectrum 24, 7 (July 1987), 38–43.

GEORGE, W., BRICKNER, R. G., AND JOHNSSON, S. L. 1994. POLYSHIFT communications
software for the connection machine system CM-200. Sci. Program. 3, 1 (Spring), 83–99.

HPFBench: A High Performance Fortran Benchmark Suite • 147

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

GOLUB, G. AND VAN LOAN, C. F. 1989. Matrix Computations. 2nd ed. Johns Hopkins
University Press, Baltimore, MD.

GREENBERG, A., MESIROV, J., AND SETHIAN, J. 1992. Programming direct N-body solvers on
Connection Machines. Tech. Rep. 245. Thinking Machines Corp., Bedford, MA.

HENNESSY, J. L. AND PATTERSON, D. A. 1990. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA.

HIGH PERFORMANCE FORTRAN FORUM. 1993. High Performance Fortran; language specifica-
tion, version 1.0. Sci. Program. 2, 1-2, 1–170.

HIGH PERFORMANCE FORTRAN FORUM. 1997. High Performance Fortran language specification,
version 2.0. Rice University, Houston, TX. http://dacnet.rice.edu/Depts/CRPC/HPFF/
versions/hpf2/hpf2-v20/index.html.

HIRSCH, J., SUGAR, R., SCALAPINO, D., AND BLANKENBECLER, R. 1982. Monte Carlo simulations
of one-dimensional Fermion systems. Phys. Rev. B26, 9 (Nov.), 5033–5055.

HO, C.-T. AND JOHNSSON, S. L. 1990. Optimizing tridiagonal solvers for alternating direction
methods on Boolean cube multiprocessors. SIAM J. Sci. Stat. Comput. 11, 3 (May 1990),
563–592.

HOCKNEY, R. W. 1965. A fast direct solution of Poisson’s equation using Fourier analysis. J.
ACM 12, 1, 95–113.

HOCKNEY, R. AND BERRY, M. 1994. Public international benchmarks for parallel computers:
Parkbench committee report-1. Tech. Rep. Oak Ridge National Laboratory, Oak Ridge, TN.

HOCKNEY, R. W. AND EASTWOOD, J. W. 1988. Computer Simulation Using Particles. Taylor
and Francis, Inc., Bristol, PA.

HOCKNEY, R. W. AND JESSHOPE, C. 1988. Parallel Computers 2. Adam Hilger.
HU, Y. AND JOHNSSON, S. L. 1996. Implementing O~N! N-body algorithms efficiently in

data-parallel languages. Sci. Program. 5, 4, 337–364.
HU, Y. C. AND JOHNSSON, S. L. 1999. Data parallel performance optimizations using array

aliasing. In Algorithms for Parallel Processing, M. Heath, A. Ranade, and R. Schreiber, Eds.
IMA Volumes in Mathematics and Its Applications, vol. 105. Springer-Verlag, Vienna,
Austria, 213–245.

HU, Y. C., JOHNSSON, S. L., AND TENG, S.-H. 1997. High Performance Fortran for highly
irregular problems. In Proceedings of the 6th ACM Symposium on Principles and Practice of
Parallel Programming (SIGPLAN ’97, Las Vegas, NV, June 18–21), M. A. Berman, Ed.
ACM Press, New York, NY.

IBM. 1996. IBM Parallel Engineering and Scientific Subroutine Library Release 2, Guide and
Reference. IBM Corp., Riverton, NJ.

JOHNSON, C. 1987. Numerical Solutions of Partial Differential Equations by Finite Element
Method. Cambridge University Press, New York, NY.

JOHNSON, C. AND SZEPESSY, A. 1987. On the convergence of a finite element method for a
nonlinear hyperbolic conservation law. Math. Comput. 49, 180, 427–444.

JOHNSSON, S. L. 1985. Solving narrow banded systems on ensemble architectures. ACM
Trans. Math. Softw. 11, 3 (Sept. 1985), 271–288.

JOHNSSON, S. L. AND HO, C.-T. 1989. Optimum broadcasting and personalized communication
in hypercubes. IEEE Trans. Comput. 38, 9 (Sept.), 1249–1268.

JOHNSSON, S. L., HARRIS, T., AND MATHUR, K. K. 1989. Matrix multiplication on the connection
machine. In Proceedings of the 1989 Conference on Supercomputing (Reno, NV, Nov. 13–17,
1989), F. R. Bailey, Ed. ACM Press, New York, NY, 326–332.

JOHNSSON, S. L., JACQUEMIN, M., AND KRAWITZ, R. L. 1992. Communication efficient
multi-processor FFT. J. Comput. Phys. 102, 2 (Oct.), 381–387.

LOMDAHL, P. S., TAMAYO, P., GRØNBECH-JENSEN, N., AND BEAZLEY, D. M. 1993. 50 GFlops
molecular dynamics on the Connection Machine 5. In Proceedings of the Conference on
Supercomputing (Supercomputing ’93, Portland, OR, Nov. 15–19), B. Borchers and D.
Crawford, Eds. IEEE Computer Society Press, Los Alamitos, CA, 520–527.

LUBECK, O., MOORE, J., AND MENDEZ, R. 1985. A benchmark comparison of three supercom-
puters: Fujitsu vp-200, hitachi s810/20, and cray x-mp/2. IEEE Computer 18, 12, 10–24.

148 • Y. C. Hu et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

MCMAHON, F. 1988. The Livermore Fortran kernels: A test of numerical performance
range. In Performance Evaluation of Supercomputers, J. L. Martin, Ed. Elsevier North-
Holland, Inc., New York, NY, 143–186.

OLSSON, P. 1994. The numerical behavior of high-order finite difference methods. J. Sci.
Comput. 9, 4 (Dec. 1994), 445–466.

OLSSON, P. 1995a. Summation by parts, projections, and stability. I. Math. Comput. 64, 211
(July 1995), 1035–1065.

OLSSON, P. 1995b. Summation by parts, projections, and stability. II. Math. Comput. 64, 212
(Oct. 1995), 1473–1493.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P. 1992. Numerical
Recipes in C: The Art of Scientific Computing. 2nd ed. Cambridge University Press, New
York, NY.

SCHROFF, G. AND SCHREIBER, R. 1988. On the convergence of the cyclic Jacobi method for
parallel block orderings. Tech. Rep. 88-11. Computer Science Deptartment, Rensselaer
Polytechnic Institute, Troy, NY.

SINVHAL-SHARMA, P., RAUCHWERGER, L., AND LARSON, J. 1991. Perfect benchmarks: Instru-
mented version. Tech. Rep. CSRD-TR-1152.

TOBOCHNIK, J., BATROUNI, G. G., AND GOULD, H. 1992. Quantum Monte Carlo on a
lattice. Comput. Phys. 6, 6 (Nov.-Dec.), 673–680.

TRAYNOR, C., ANDERSON, J., AND BOGHOSIAN, B. 1991. A quantum Monte Carlo calculation of
the ground state energy of the hydrogen molecule. J. Chem. Phys. 94, 5 (Mar.), 3567–3664.

WILKINSON, J. 1961. Error analysis of direct methods of matrix inversion. J. ACM 8, 3 (July),
281–330.

WUELLER-WICHARDS, D. AND GENTZSCH, W. 1982. Performance comparisons among several
parallel and vector computers on a set of fluid flow problems. Tech. Rep. IB 262-82 R01.

Received: November 1996; revised: July 1998, October 1999, and November 1999; accepted:
November 1999

HPFBench: A High Performance Fortran Benchmark Suite • 149

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.

