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ADMIT-1 enables the computation of sparse Jacobian and Hessian matrices, using automatic
differentiation technology, from a MATLAB environment. Given a function to be differenti-
ated, ADMIT-1 will exploit sparsity if present to yield sparse derivative matrices (in sparse
MATLAB form). A generic automatic differentiation tool, subject to some functionality
requirements, can be plugged into ADMIT-1; examples include ADOL-C (C/C11 target
functions) and ADMAT (MATLAB target functions). ADMIT-1 also allows for the calculation of
gradients and has several other related functions. This article provides an introduction to the
design and usage of ADMIT-1.
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1. INTRODUCTION
The efficient numerical solution of nonlinear systems of algebraic equations
F~x! 5 0, F~x! : R n 3 R m, usually requires the repeated calculation or
estimation of the matrix of first derivatives, the Jacobian matrix, J~x! [

R m3n. In large-scale problems, the matrix J is often sparse, and it is
important to exploit this fact in order to efficiently determine, or estimate,
the matrix J at a given argument x.
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Similarly, the efficient numerical solution of numerical optimization
problems involving a scalar-valued function, f~x! : R n 3 R, may require
repeated computation of the second derivative Hessian matrix H~x! [

R n3n. The symmetric matrix H~x! is often sparse; it is important to exploit
this sparsity in order to efficiently compute the matrix H at a given
argument x.

In this article we present software to compute sparse Jacobian and
Hessian matrices efficiently and painlessly using automatic differentiation-
(henceforth referred to as AD) technology. ADMIT-1 is a MATLAB toolbox,
which uses a generic AD plug-in tool (any AD tool can be used provided it
satisfies the functionality criteria, which we describe in Section 4) to
implement the sparse Jacobian and Hessian computing engines. The re-
quirements from the users are minimal: the user is just required to supply
the code for the function computation. For complete information on the
ADMIT-1 toolbox, refer to the ADMIT-1 user manual [Coleman and Verma
1997]. There has been an earlier implementation of AD in MATLAB [Rich
and Hill 1992] (thanks to the anonymous referee for pointing this out).

Automatic differentiation is a chain-rule-based technique for evaluating
the derivatives analytically (and hence without any truncation errors) with
respect to input variables of functions defined by a high-level language
computer program [Berz et al. 1996; Griewank 1993; 1994; Griewank and
Corliss 1991]. We present a basic review of automatic differentiation in
Section 2.

Large-scale nonlinear problems often exhibit structure, e.g., partial sep-
arability, composition, discrete time optimal control forms, and inverse
structure. The derivative matrices of these structured computations are
typically dense; however, it is possible to define sparse extended derivative
matrices [Coleman and Verma 1996a; 1996b] which can be computed using
ADMIT-1. It is also possible to compute gradients (a special case of
Jacobians) of structured computations by exposing the sparsity in an
associated extended Jacobian matrix [Coleman and Jonsson 1999]. The
software for structure computations is presented as a separate MATLAB
toolbox, ADMIT-2 [Coleman and Verma 1999], an extension of the AD-
MIT-1 toolbox.

This article is outlined as follows. In Section 2, we give a brief back-
ground on AD followed by a review of the sparsity-exploiting techniques to
compute the sparse Jacobian and Hessian matrices in Section 3. In Section
4 we present the software design of the ADMIT-1 tool. In Section 5, we
present a detailed usage of the ADMIT-1 in a nonlinear equation solution
using the Newton step. In Section 6 we present the algorithms and
numerical results. In Section 7, we explore the different sparse derivative
evaluation methods available in ADMIT-1 and provide examples on how to
use them. In the Appendix we present brief description of the functionality
of some main ADMIT-1 functions.

The ADMIT-1 software and related information can be accessed at
http://www.tc.cornell.edu/UserDoc/Software/Num/ad .
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2. AUTOMATIC DIFFERENTIATION BACKGROUND

Automatic differentiation is based on the fact that all computer programs,
no matter how complicated, use a finite set of elementary functions as
defined by the programming language. The function computed by the
program is simply a composition of these elementary functions. The partial
derivatives of the elementary functions are known, and the overall deriva-
tives are computed using the chain rule; this process is known as automatic
differentiation [Griewank 1993].

Abstractly, the program to evaluate the solution u (an m-vector) as a
function of x (generally a n-vector) has the form

x [ ~x1, x2, . . . , xn!

2

z [ ~z1, z2, . . . , zp!, p .. m 1 n

2

y [ ~y1, y2, . . . , ym!

where the intermediate variables z are related through a series of these
elementary functions which may be unary,

zk 5 felem
k ~zi!, i , k,

consisting of operations such as ~2, pow~ z!, sin~ z!, . . . ! or binary,

zk 5 felem
k ~zi, zj!, i , k, j , k.

such as ~1, /, . . . !.
There are a number of cases when the elementary function is not

differentiable (e.g., felem
k ~zi! 5 abs~zi! or felem

k ~zi, zj! 5 max~zi, zj!). Sophis-
ticated heuristic techniques are developed to treat these cases. For more
details consult Griewank [1993].

Automatic Differentiation has two basic modes of operations, the forward
mode and the reverse mode. In the forward mode the derivatives are
propagated throughout the computation using the chain rule, e.g., for the
elementary step zk 5 felem

k ~zi, zj! the intermediate derivative dzk / dx can
be propagated in the forward mode as

dzk

dx
5

­felem
k

­zi

dzi

dx
1

­felem
k

­zj

dzj

dx
.

This chain-rule-based computation is done for all the intermediate vari-
ables z and for the output variables u, finally yielding the derivative
du / dx.

152 • T. F. Coleman and A. Verma

ACM Transactions on Mathematical Software, Vol. 26, No. 1, March 2000.



The reverse mode computes the derivatives du / dzk for all intermediate
variables backward (i.e., in the reverse order) through the computation. For
example, for the elementary step zk 5 felem

k ~zi, zj!, the derivatives are
propagated as

du

dzi

1 5
­felem

k

­zi

du

dzk

and
du

dzj

1 5
­felem

k

­zj

du

dzk

.

At the end of computation of the reverse mode the derivative du / dx will be
obtained. The derivatives in the adjoint mode are propagated in an incre-
mental form in the adjoint mode because the arguments of the elementary
function may appear again in the forward evaluation process; all the
derivatives are initialized to zero.

The forward and reverse modes can be used to compute the direct and the
adjoint products Jv and J Tv given a vector v, where J is the Jacobian of a
nonlinear mapping [Griewank 1993]. Both these computations require time
proportional to one function evaluation, with the adjoint product being
approximately twice as costly as the direct mode. The Hessian-vector
product Hv can also be computed via AD in time proportional to one
function evaluation.

3. COMPUTATION OF SPARSE JACOBIAN AND HESSIAN MATRICES

In this section we review the techniques for computing sparse Jacobian and
Hessian matrices. For details on this subject refer to Coleman and Cai
[1986], Coleman and Verma [1998b], and Coleman and Moré [1984a;
1984b].

Sparse finite-differencing techniques were first introduced by Curtis et
al. [1974], Coleman and Moré [1984a; 1984b], and Coleman and Cai [1986],
and Newsam and Ramsdell [1983] further developed these ideas using
graph-theoretic interpretations. Recently, related methods were developed
to be used in conjunction with AD tools instead of finite differencing
[Averick et al. 1994; Bischof et al. 1997; Coleman and Verma 1998a].

3.1 Computation of a Sparse Jacobian

One way to approach the problem of estimating a sparse Jacobian matrix of
a mapping F : R n 3 R m is in the following terms: given a sparse m 3 n
matrix J, obtain vectors d1, d2, . . . , dp such that the products Jd1, Jd2,
. . . , Jdp determine J uniquely. For example, if J is diagonal, then d1 5
e (a vector of all ones) suffices, since Je determines all nonzeros of J
uniquely. If J is tridiagonal, then only three products are required, Jd1,
Jd2, and Jd3 where d1 5 e1 1 e4 1 e7 1 . . . , d2 5 e2 1 e5 1 e8 1
. . . , d3 5 e3 1 e6 1 e9 1 . . . . The matrix J can then be reconstructed
because each nonzero entry of J appears in one of Jd1, Jd2 or Jd3. This
approach is called the one-sided column approach for computing a sparse
Jacobian [Coleman and Moré 1984b; Coleman et al. 1984; Curtis et al.
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1974]. The alternative row approach can be phrased as “obtain vectors d1,
d2, . . . , dp such that the products J Td1, J Td2, . . . , J Tdp determine J
uniquely.” The vectors di are determined by the nonzero structure of J.
This method cannot be implemented using finite differences based on F;
however, AD can be used in the reverse mode to compute products J Td.

The new bicoloring approach [Coleman and Verma 1998a], which com-
bines the row and column views, is an efficient approach for minimizing the
cost of computing a sparse Jacobian matrix of a nonlinear map, employing
AD. The authors show how to define “thin” matrices V and W such that the
nonzero elements of J can easily be extracted from the calculated pair
~W TJ, JV !. The pair ~W TJ, JV ! can be directly computed using AD given
an arbitrary n-by-tV matrix V and and an arbitrary m-by-tW matrix,
employing the forward mode for computing JV and the reverse mode for
computing W TJ. A similar approach outlining the computation of the
sparse Jacobian using rows and columns was given by Hossain and
Steihaug [1995].

The motivation for taking this two-sided view comes from the following
observations. The one-sided column solution based on a column partition
defines a matrix V such that J can be determined from the product JV.
However, matrix V is not guaranteed to be thin, even if J is very sparse:
consider a sparse matrix J with a single dense row. Alternatively, a
solution based on partitioning of rows can be employed to define a matrix
W such that J can be determined from W TJ. Again, it is easy to construct
examples where defining a thin W is not possible: e.g., consider the case
where J has a single dense column.

Bicoloring circumvents this problem and is never worse than one-sided
coloring. Here is a simple example which demonstrates the advantage of
bicoloring. Consider the following n-by-n Jacobian, symmetric in structure
but not in value:

J 5 1
M ‚ ‚ ‚ ‚

M L

M L

M L

M L

2 (1)

It is clear that a partition of columns consistent with the direct determina-
tion of J requires n groups. This is because a “consistent column partition”
requires that each group contain columns that are structurally orthogonal,
and the presence of a dense row implies each group consists of exactly one
column. Therefore, if matrix V corresponds to a “consistent column parti-
tion” then V has n columns and the work to evaluate JV by the forward
mode of AD is proportional to n z v~F !. By a similar argument, and the fact
that a column of J is dense, a “consistent row partition” requires n groups.
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Therefore, if matrix W corresponds to a “consistent row partition” then W
has n rows, and the work to evaluate W TJ by the reverse mode of AD is
proportional to n z v~F !. In this example the use of a bicoloring dramati-
cally decreases the amount of work required to determine J. Specifically,
the total amount of work required is proportional to 3 z v~F !. To see this
define V 5 ~e1, e2 1 e3 1 e4 1 e5!; W 5 ~e1!, where we follow the usual
convention of representing the ith column of the identity matrix with ei.
Clearly elements M, L are directly determined from the product JV;
elements ‚ are directly determined from the product W TJ.

A graph-theoretic interpretation of the determination problem can be
constructed based directly on Jacobian structure. The associated graph-
coloring problems are known to be NP-complete [Coleman and Verma
1998a; Garey and Johnson 1979]; therefore, heuristic schemes are consid-
ered to construct the “bipartition.” For more insight into the problem
involved and algorithmic details refer to Section 6.

Below are performance results obtained for bicoloring summarized from
Coleman and Verma [1998a]: Table I shows the summary of the perfor-
mance of bicoloring on a linear programming testbed of matrices; Table II
shows the performance on the Harwell-Boeing collection. The numbers in
the tables denote the total number of Jacobian matrix products (forward Jd
or adjoints J Td) needed to compute the sparse Jacobian matrices in the
collection.

Also, similar to the results reported in Averick et al. [1994] for forward-
mode direct determination, the Jacobian matrices determined by our bicol-
oring/AD approach are significantly and uniformly more accurate than the
finite-difference approximations (usually around 6 digits more accuracy
than FD). This is true for both direct determination and the substitution
approach. Second, the direct approach is uniformly more accurate than the
substitution method. The Jacobian matrices determined via substitution
are sufficiently accurate for most purposes, achieving at least 10 digits of
accuracy and usually more. For comparison on accuracy of these methods
we refer the reader to Coleman and Verma [1998a].

Table I. Totals for LP Collection (http://www.netlib.org/lp/data/ )

Bicoloring One-Sided Coloring

Direct Substitution Column Row

337 270 1753 452

Table II. Totals for Harwell-Boeing Collection (ftp from orion.cerfacs.fr )

Bicoloring One-Sided Coloring

Direct Substitution Column Row

320 244 732 738
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In Section 6, we present an overview of implementation of the one-sided
column and row methods and the bicoloring method in ADMIT-1 software.

3.2 Computation of a Sparse Hessian

In this section we review the techniques to compute sparse Hessian
matrices. It is well known that the product ¹2 f~x! z d can be computed
using AD, or approximated by finite differencing. When the nonzero struc-
ture of ¹2 f~x! is known, then usually a few well-chosen directions d1,
d2, . . . , dp are needed to compute all the nonzeros of ¹2 f~x! using the
products ¹2 f~x!d1, ¹2 f~x!d2, . . . , ¹2 f~x!dp.

The algorithms that we have implemented are based on the work of
Powell and Thoint [1979], Coleman and Cai [1986], Coleman and Moré
[1984a], and Coleman et al. [1984]. These authors consider direct and
indirect (substitution) methods; indirect methods usually require fewer
function (or gradient) evaluations, while direct methods produce more
accurate approximations to the Hessian matrix H. For a complete review
on this subject, refer to Coleman and Cai [1986].

Let G represent the adjacency graph of H. In summary, there are
basically three different ways to compute a sparse Hessian:

(1) Ignoring the symmetry: This is exactly like the single-sided Jacobian
problem: symmetry is ignored, i.e., Hi, j and Hj, i are computed indepen-
dently. Since, the intersection graph of H is given by the adjacency
graph of matrix H 2, the minimum number of groups needed to compute
the Hessian via this method is denoted by x~G2!. The intersection
graphs and their construction are explained in detail in Section 6.

(2) Direct—exploiting symmetry: This is the path-coloring method as de-
scribed in Coleman and Moré [1984a]. The minimum number of func-
tion evaluations are given by the path-coloring chromatic number
which is denoted by xp~G!.

(3) Substitution—exploiting symmetry: This is the cyclic-coloring method
as described in Coleman and Cai [1986]. The complexity in this case is
given b ythe cyclic-coloring chromatic number which is denoted by
x0~G!.

Since every cyclic coloring of G is a coloring of G, and every coloring of G2

is a path coloring of G, and a path coloring a cyclic coloring, we get the
following string of inequalities:

x~G! # x0~G! # xp~G! # x~G2!

ADMIT-1 software provides methods for computing the sparse Hessian
matrix using any of the three methods. We present an example in Section 6
which illustrates the selection of any of above three methods for computing
a Hessian matrix.
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4. SOFTWARE DESIGN OF ADMIT-1

The high-level design of the ADMIT-1 toolbox is shown in Figure 1.
ADMIT-1 takes an AD tool as a plug in (shown in the top box) and takes as
input the user-defined nonlinear function (“fun”) and outputs a sparse
Jacobian or Hessian matrix as required by the user. A generic AD tool, with
functionality described in Section 4.1, is required.

The core of the ADMIT toolbox is formed by two routines, evalJ and
evalH, with usage described in Appendix A. ADMIT-1 uses the sparse
techniques for computation of sparse Jacobian and Hessians as outlined in
Section 3 (and other derivative information like gradient and Jacobian
matrix products etc.). Refer to the Appendix to learn about additional
functionality of ADMIT-1.

4.1 Expected Design of the Underlying AD Tool

The underlying AD plug-in tool is expected to have both reverse and
forward modes of automatic differentiation. If the AD tool has only the
forward mode then it can be used with ADMIT-1, but cannot take advan-
tage of the bicoloring technique to evaluate the sparse Jacobian matrix. In
particular, the following five capabilities from the AD tool are recom-
mended in order to qualify as a plug-in tool for ADMIT-1 (first three for the
Jacobian/gradient evaluations and the last two for the Hessian evaluation).
ADMIT-1 requires the source file (e.g., C or MATLAB, depending on target
functionality of the plug-in AD tool) for the input function. The design of
the user function is outlined in Section 5.

The five functionality features expected from the AD tool are listed
below. The function f : R n 3 R is a scalar-valued function, and F : R n

3 R m is a vector-valued function.

(1) Jacobian-Matrix (forward) product: ~F, x, V ! 3 J~x!V.

(2) Matrix-Jacobian (reverse) product: ~F, x, W ! 3 J~x!TW.

(3) Jacobian Sparsity Pattern: F 3 SPJ.

(4) Hessian-Matrix product: ~ f, x, V! 3 H~x!V.

(5) Hessian Sparsity Pattern: f 3 SPH.

‘fun’  

AD TOOL

Sparse J/H

C/MATLAB Program

ADMIT-1

Fig. 1. Design of ADMIT-1 toolbox.
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SPJ and SPH stand for the sparsity patterns of the Jacobian and Hessian
matrix respectively. ADMIT-1 requires that the AD plug-in tool compute
these sparsity patterns automatically.

Note that gradient computation is a special case of these requirements,
since computing the gradient is equivalent to a reverse product with W 5 1,
a scalar; the reverse product is ¹ f~x! 5 J T.

The packages ADOL-C [Griewank et al. 1996] and ADMAT [Coleman and
Verma 1998a] satisfy the requirements listed above.

The sparse Jacobian and Hessian matrices can be computed using a
method of your choice, e.g., bicoloring. ADMIT-1 provides ADOL-C drivers
for the above functions, described in Appendix B. An AD tool which
implements only the forward mode can also be used as an ADMIT-1
plug-in, albeit with restricted features. For example, the bicoloring tech-
nique is replaced with the one-sided column method. If you need to compute
only the first-order derivatives, then an AD tool which has the first three
features can be used as an ADMIT-1 plug-in.

5. EXAMPLE OF ADMIT-1 USAGE FOR SOLVING NONLINEAR EQUATIONS

In this section we illustrate a local nonlinear equation solver, based on a
sequence of Newton steps, using ADMIT-1.

5.1 User Function Design

First, we describe the design of the functions that can be used with
ADMIT-1. Here we present the expected designs of C/C11 target functions
(with ADOL-C as the plug-in AD tool) and MATLAB target functions (with
ADMAT as the plug-in AD tool).

If ADOL-C is the plug-in AD tool, the design of the target C/C11
function is as follows. The function must be named getfun .

void getfun(float* x,int n,float* y,int m, float *Extra, int
*numrows, int *numcols)
{
/* Compute y 5 F(x) here */
}

The input argument x is a vector of dimension n; y is the output vector of
dimension m. Extra is a one-dimensional array corresponding to a two-
dimensional (full) matrix stacked column-by-column. The matrix repre-
sented by Extra is of size numrows -by-numcols .

If ADMAT is the plug-in AD tool, the design of the target MATLAB
function is as follows:

function y 5 getfun(x,Extra)
% Compute y 5F(x) here
end

Here is a simple example illustrating how to use ADMIT-1 to calculate
the Jacobian of the function y 5 F~x!, F : R n 3 R n where

y~1! 5 2x~1!2 1 O
1

n

x~i!2,
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y~i! 5 x~i!2 1 x~1!2, i 5 2 : n.

The Jacobian of function F has an arrowhead sparsity structure, as
shown in Figure 2 for n 5 50.

When using ADOL-C as the plug-in AD tool, ADMIT-1 requires a C
program (examplefun.c ) to evaluate F:

void getfun(float* x,int n,float* y,int m, float *Extra, int
*numrows, int *numcols)
{

int j;
/* Nonzero Diagonal */
for(j 50;j;j 11)

y[j] 5x[j]*x[j];
for(j 50;j;j 11)
{

/* Dense first row */
y[0] 5y[0] 1x[j]*x[j];
/* Dense first column */
y[j] 5y[j] 1x[0]*x[0];

}
}

In order to evaluate the function F and the Jacobian J at x9 5 ~1, 1,
..., 1! for n 5 5 execute in MATLAB:

.. x5ones(5,1); n 5 5;

.. fun 5’examplefun’; JPI 5 getJPI(fun,n);

.. [f,J] 5evalJ(fun,x,[],[],JPI);

.. f
f 5

7
2
2
2
2

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 148

Fig. 2. The sparsity structure of Jacobian J.
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The function call “getJPI” extracts sparsity/coloring information. As
illustrated in the Newton iteration example in Section 5.2, only one
execution of “getJPI” is required for a given target function.

To use ADMAT as the plug-in AD tool instead of ADOL-C, the same
MATLAB script for evaluating the Jacobian can be used with the MATLAB
version of the function:

function f 5 examplefun(x,m,Extra)
y5x.*x;
y(1) 5y(1) 1x’*x;
y5y1x(1)*x(1);

5.2 Newton Process for Nonlinear Equations F(x)50

Suppose that the user has a MATLAB routine to compute the nonlinear
function F~x! and needs to solve F~x! 5 0 for the vector x. A typical
method is to employ the Newton iteration method, and we illustrate this
method using ADMIT-1 via an example. The example target function is the
“Broyden” nonlinear function. Here is the shell (MATLAB) program:

.. fun 5 ’broyden’;

.. itbnd 5100;

.. tol 5 1e-6;

.. xstart 5[zeros(50,1);0.2*ones(50,1)];

..

.. %get the Coloring Info Once and for all

.. JPI 5 getJPI(fun,100);

..

.. [x,it,norm] 5 newton(fun,xstart,tol,itbnd,JPI);

.. cleanup

.. exit

The Broyden nonlinear function is listed here:

function fvec 5 broyden(x,Extra);
% Evaluate the Broyden nonlinear equations test function.

n 5 length(x); fvec 5zeros(n,1);
i 52:(n-1);
fvec(i) 5 (3-2*x(i)).*x(i)-x(i-1)-2*x(i 11) 1ones(n-2,1);
fvec(n) 5 (3-2*x(n)).*x(n)-x(n-1) 11;
fvec(1) 5 (3-2*x(1)).*x(1)-2*x(2) 11;

Finally we list our M-file containing the Newton procedure.

function [x,it,nf] 5 Newton(fun, xstart, tol, itbnd, JPI)
% Initializations
n5length(xstart);
if (nargin , 3) tol 51e-5; end
if (nargin , 4) itbnd 560; end
n5length(xstart); x 5xstart;

% First Evaluation
[f,J] 5evalJ(fun,x,[],[],JPI);
it 50;
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% The Newton Iteration
while ((norm(f) . tol) & (it , itbnd))

delta 5 -J \f;
x5x1delta;
[f,J] 5evalJ(fun,x,[],[],JPI);
it 5it 11;

end
nf 5norm(f);

The function Newton uses the ADMIT-1 driver function evalJ to com-
pute the Jacobian matrix and use it in a subsequent Newton step computa-
tion. ADMIT-1 functions can be plugged into optimization algorithms to
provide an efficient and accurate solution to nonlinear problems.

6. ALGORITHMS

In Section 2 we reviewed the techniques for computing sparse Jacobian and
Hessians used in the ADMIT-1 software. In this section, we present the
algorithms involved in implementing the graph-theoretic techniques.

6.1 Computing Sparse Jacobians

There are basically five different options to compute a sparse Jacobian
matrix using ADMIT-1. These different methods correspond each to a
different partition which can be computed by solving a graph-coloring
problem on appropriately defined graphs [Coleman and Moré 1984b]. The
chromatic number of a graph is defined as the least number of colors
required to color the graph, or in other words, the least number of groups
required to compute the Jacobian matrix. The method and corresponding
chromatic numbers are illustrated in Table III.

The algorithm involved for the finite-differencing method is the same as
the one-sided column AD method except that the former uses finite differ-
ences to approximate the product Jd. The various chromatic numbers
satisfy the inequality:

xs~J ! # xd~J ! # min~xc~J !, xr~J !! (2)

Inequality (2) holds, since bicoloring subsumes both one-sided coloring
techniques; for more details, refer to Coleman and Moré [1984b].

6.1.1 The One-Sided Algorithms. We first review the algorithms for the
one-sided methods. The one-sided column method involves coloring the

Table III. Various Methods for Computing Sparse Jacobian Matrices

Method Chromatic Number Notation

One-sided column method xc~J !
One-sided row method xr~J !

Finite-differencing method x f~J !
Direct bicoloring method xd~J !

Substitution bicoloring method xs~J !
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column intersection graph of the Jacobian sparsity structure. For a detailed
treatment on this subject, please refer to Coleman and Moré [1984b]. The
method implemented in ADMIT-1 is outlined in the following pseudo-
MATLAB code:

function group 5 color(J);
[m,n] 5 size(J);
ng50;
while there are ungrouped columns

find an ungrouped column c;
for i 5 1: ng

if c doesn’t intersect with any column in group i
assign it group i: group(c) 5i;

end
end

if c is unassigned, assign it a new group:
ng5ng11; group(c) 5ng11;

end
end

end

In the above code, J denotes the sparsity structure of the Jacobian
matrix. Two columns are said to “intersect” if they both have a nonzero in
the same row position. The main step of the algorithm consists of assigning
each vertex in turn the lowest numbered color not yet used by the
neighbors. The order in which the candidate columns are searched for is
unspecified in the algorithm given above. Ordering based on graph-coloring
heuristics has proven to be effective [Coleman et al. 1984]. One such
ordering, smallest-degree ordering, is the default ordering used in ADMIT-1.

The one-sided column method is just the transpose of column method: the
same coloring algorithm is used on the sparsity pattern of J T.

6.1.2 The Bicoloring Algorithms. The problems of finding the best “bi-
partition” for both direct and substitution determination can be approached
in the following way. First, permute and partition the structure of J: J̃ 5
P z J z Q 5 @JCJR#, as indicated in Figure 3. The construction of this

J

JC

R

J

J

C

R

Fig. 3. Possible partitions of the matrix J̃ 5 P z J z Q.
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partition is crucial; however, we postpone that discussion until after we
illustrate its utility. Assume P 5 Q 5 I and J 5 @JCJR#.

Second, define appropriate intersection graphs &C
I , &R

I based on the
partition @JCJR#; a coloring of &C

I yields a partition of a subset of the
columns, GC, which defines matrix V. Matrix W is defined by a partition of
a subset of rows, GR, which is given by a coloring of &R

I . The difference
between the direct and substitution cases is in how the intersection graphs,
&C

I , &R
I , are defined, and how the nonzeroes of J are extracted from the

respective pair, ~W TJ, JV !.
For this discussion, we omit the details on how the intersection graphs

&C
I , &R

I are defined, for both the direct and substitution bicoloring. For the
algorithmic details, refer to Coleman and Verma [1998a]. Once the inter-
section graphs are colored, the boolean matrices V and W can be formed in
the usual way: each column corresponds to a group (or color), and unit
entries indicate column (or row) membership in that group:

Example. Consider the example Jacobian matrix structure shown in
Figure 4 with the partition ~JC, JR! shown.

The matrices V and W for this problem turn out to be

V 5 1
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

2 JV 5 1
J11 0 3

0 0 3

J31 3 3

0 3 0
0 J52 J53

2
W 5 1

1 0
0 1
1 0
0 1
0 0

2 W TJ 5 S 3 J32 J13 J14 J35

3 J42 J23 J44 0 D.

11 13

3531

42 44

52 53

32

23

14J J J

J

J J J

J J

J J

Fig. 4. Example partition.
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Clearly, all nonzero entries of J can be identified in either JV or W TJ.

Determination by Substitution. The basic advantage of determination
by substitution in conjunction with partition J 5 @JCJR# is that sparser
intersection graphs &C

I , &R
I can be used. Sparser intersection graphs mean

thinner matrices V, W which, in turn, result in reduced cost.
All the elements of J can be determined from ~W TJ, JV ! by a substitu-

tion process. This is evident from the illustrations in Figure 5.
Figure 5 illustrates two of four possible nontrivial types of partitions. The

nonzero elements in the section labeled “1” can be solved for directly—by
the construction process there will be no conflict. Nonzero elements in “2”
can either be determined directly, or will depend on elements in section “1.”
But elements in section “1” are already determined (directly), so, by
substitution, elements in “2” can be determined after “1.” Elements in
section “3” can then be determined, depending only on elements in “1” and
“2,” and so on, until the entire matrix is resolved.

Example. Consider again the example Jacobian matrix structure shown
in Figure 4.

The coloring of &C and &R leads to the following matrices V, W and the
resulting computation of JV, W TJ:

V 5 1
1 0
0 1
1 0
0 0
0 0

2 JV 5 1
J11 1 J13 0

3 0
J31 3

0 3

J53 J52

2
W 5 1

1 0
0 1
1 0
0 1
0 0

2 W TJ 5 S 3 J32 J13 J14 J35

3 J42 J23 J44 0 D

JR

JC

6

5
4

3

1

2

5

7

J

JR

C

8

6

4

3 1

2

Fig. 5. Substitution orderings.
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It is now easy to verify that all nonzeroes of J can be determined via
substitution.

How to Partition J. We now consider the problem of obtaining a useful
partition @JCJR#, and corresponding permutation matrices P, Q, as illus-
trated in Figure 3.

Algorithm MNCO builds partition JC from bottom up, and partition JR

from right to left. At the kth major iteration either a new row is added to
JC, or a new column is added to JR; the choice depends on considering a
lower bound effect:

r~J R
T! 1 max~r~JC!, nnz~r!! , ~r~JC! 1 max~r~J R

T!, nnz~c!!!, (LB)

where r~A! is the maximum number of nonzeroes in any row of matrix A; r
is a row under consideration to be added to JC; and c is a column under
consideration to be added to JR. Hence, the number of colors needed to color
&C

I is bounded below by r~JC!; the number of colors needed to color &R
I is

bounded below by r~J R
T!.

In algorithm MNCO, matrix M 5 J~R, C! is the submatrix of J defined
by row indices R and column indices C: M consists of rows and columns of
J not yet assigned to either JC or JR.

Minimum Nonzero Count Ordering (MNCO).

(1) Initialize R 5 ~1 : m!, C 5 ~1 : n!, M 5 J~R, C!

(2) Find r [ R with fewest nonzeroes in M
(3) Find c [ C with fewest nonzeroes in M
(4) Repeat Until M 5 A

if r~J R
T! 1 max~r~JC!, nnz~r!! , ~r~JC! 1 max~r~J R

T!, nnz~c!!! ~LB!

JC 5 JC ø ~r ù C!

R 5 R 2 $r%
else

JR 5 JR ø ~c ù R!

C 5 C 2 $c%
end if
M 5 J~R, C!.

end repeat

Note that JR, JC, upon completion, have been defined; the requisite permu-
tation matrices are implicitly defined by the ordering chosen in MNCO.

6.1.3 Numerical Results. We give some results here to illustrate the
effectiveness of the bicoloring technique. The test function F [ R n3n we
use is a sample nonlinear function which has a sparse Jacobian matrix
having the structure shown in Figure 2. Additional details are provided in
Coleman and Verma [1998a]. Our results, shown in Figure 6, suggest the
following order of execution time requirement by different techniques for
the given test function:
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FD . AD~row! . AD~column! . AD~bi-coloring, direct!

. AD~bi-coloring, substitution!.

In general, the above order will vary a little depending on the problem
being solved, e.g., for the special case of computing gradient, typically the
AD~row! method will be quicker than the AD~column!. However, the
above order for the given test function is typical for general nonlinear
functions, e.g., for the problems with results summarized in Tables I and II.

FD stands for the finite-differencing method. AD~row!, AD~column!
are the one-sided methods. Note that FD requires more time than
AD~column! even though the same coloring is used for both. This is
because the work estimate tV z v~F ! is actually an upper bound on the
work required by the forward mode where tV is the number of columns of V.
In contrast, tV z v~F ! is tight for finite differencing, since the subroutine to
evaluate F is actually called (independently) tV times.

Another interesting observation is that the reverse-mode calculation,
AD~row!, is about twice as expensive as the forward calculation
AD~column!. This is noteworthy because, in this example, based on the
structure in Figure 1, the column dimensions of V and W are equal. It may

Fig. 6. A comparison of different sparse techniques.
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be pragmatic to estimate “weights” w1, w2, with respect to a given AD tool,
reflecting the relative costs of forward and reverse modes. It is very easy to
introduce weights into algorithm MNCO to heuristically solve a “weighted”
problem. The heuristic MNCO can be changed to address this problem by
simply changing the conditional ~LB! to

if w1 z r~J R
T! 1 w2 z max~r~JC!, nnz~r!!

, w1 z r~JC! 1 w2 z max~r~J R
T!, nnz~c!!.

6.2 Algorithms for Computing Sparse Hessians

The algorithms we have implemented for this step are based on the work of
Powell and Thoint [1979] and Coleman et al. [1985].

(1) Ignoring the symmetry: Given the sparsity pattern of Hessian, SPH,
subroutine ignhess (called by getHPI) determines a permutation p and
a partition of the columns of H, consistent with the determination of all
nonzeros H directly and independently. This routine is the same as the
one used for the one-sided column method for the Jacobians.

(2) Direct—exploiting symmetry: Given the sparsity pattern of Hessian,
SPH, subroutine dirhess (called by getHPI) determines a permutation
p and a partition of the columns of H, consistent with the determina-
tion of all nonzeros H directly and exploiting the symmetry of H.
This method implements path coloring [Coleman et al. 1985]:

Path-coloring algorithm
Let G 5 ~V, E! be the adjacency graph.
for k 5 1, 2, . . .
(a) Let Uk be the set uncolored vertices. If Uk is empty, STOP.
(b) Sort the vertices in G~Uk!, in decreasing order of degree.
(c) Build a vertex set Wk, by examining the vertices in Uk in the

order determined in step 2, and adding a vertex v to Wk, if there
is not a path between v and any vertex in Wk of length # 2.

(d) for each v in Wk, assign color~v! 5 k.
endfor

The array color determines the grouping of columns.

(3) Substitution—exploiting symmetry: Given the sparsity pattern of Hes-
sian, SPH, subroutine subhess (called by getHPI) determines a per-
mutation p and a partition of the columns of H, consistent with the
determination of all nonzeros H by substitution.
This method requires cyclic coloring of the adjacency graph of the
Hessian matrix. The algorithm involved can be found in detail in
Coleman and Cai [1986]. In summary, the algorithm involves finding a
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permutation p, such that the columns of Lp (the lower triangular part
of H~p, p!) in the same group do not intersect in the same row position.
So the algorithm involves two main steps:
(a) Find a permutation (using a heuristic scheme such as the symmet-

ric minimum degree method) p, such that the column intersection
graph of Lp is as sparse as possible.

(b) Color the intersection graph G~Lp! to yield the column grouping g.

7. CHOOSING DIFFERENT COLORING METHODS

ADMIT-1 allows for usage of different coloring method options, via the two
functions, getJPI and getHPI . In the following illustration, we demon-
strate how to use different methods.

.. m5100; n 5100;

.. JPId 5 getJPI(fun,m,n); 4 JPI for direct bicoloring

.. (default) method

.. JPIs 5 getJPI(fun,m,n,[],‘s’); 4 JPI for substitution

.. bicoloring method

.. JPIc 5 getJPI(fun,m,n,[],‘c’); 4 JPI for column coloring

.. method

In the above illustration the sparsity pattern of the Jacobian is computed
three times. This is costly and it can be avoided:

......

..

.. [JPId,SPJ] 5 getJPI(fun,m,n); 4 JPI for direct bicoloring

.. (default) method

.. JPIs 5 getJPI([],m,n,[],‘s’,SPJ); 4 JPI for substitution

.. bicoloring method

.. JPIc 5 getJPI([],m,n,[],‘c’,SPJ); 4 JPI for column

.. coloring method

Similarly for Hessians:
.. n5100;

.. [HPIi,SPH] 5 getHPI(fun,n); 4 HPI for ignore symmetry

.. (default) method

.. HPId 5 getHPI([],n,[],‘d-a’,SPH); 4 HPI for direct

.. symmetry exploiting method

.. HPIs 5 getHPI([],n,[],‘s-a’,SPH); 4 HPI for substitution

.. symmetry exploiting method

8. CONCLUDING REMARKS

The ADMIT-1 toolbox extends the MATLAB environment to provide a
powerful computing environment for large-scale optimization and sensitiv-
ity analysis. The capability of doing automatic differentiation within the
MATLAB opens up a wide range of applications which can easily use the
AD technology.

The use of the ADMIT-1 tool with ADMAT as the plug-in tool is
particularly interesting. Since ADMAT is written in MATLAB, it can be
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used just like any MATLAB toolbox without the need of external compila-
tion steps (unlike the ADOL-C plug-in). Also, ADMAT can be readily
applied to any of the thousands of different functions present in the
MATLAB toolbox. With ADMAT, it is now possible to differentiate through
a variety of MATLAB toolboxes, thus enabling automatic differentiation of
complicated MATLAB applications. (However, ADMAT cannot differentiate
through MEX files, since it needs the full MATLAB source code.)

APPENDIX

A. THE ADMIT-1 FUNCTIONALITY

In this section, we illustrate the high-level functionality of ADMIT-1. First,
we describe the main functions evalJ and evalH both of which employ the
algorithms discussed in previous sections.

evalJ

Purpose.

Compute the value of a differentiable vector mapping f and its Jacobian
J. Function evalJ is designed for the case where J is a sparse matrix.

Synopsis.

f 5evalJ(fun,x)

f 5evalJ(fun,x,Extra)

f 5evalJ(fun,x,Extra,m)

[f,J] 5evalJ(fun,x,Extra,m,JPI)

[f,J] 5evalJ(fun,x,Extra,m,JPI,verb)

[f,J] 5evalJ(fun,x,Extra,m,JPI,verb,fdstep)

Description.

f 5evalJ(fun,x,Extra,m) Evaluate the function at the input argument
x . The function is assumed to be a square mapping with dimension
defined by the length of x . The first input argument, fun , is an integer
handle identifying the target function. You can provide a full matrix,
Extra , to be used by your target function. Extra cannot be a MATLAB
sparse matrix. Scalar m is the row dimension of the vector mapping, i.e.,
f : R n 3 R m.

[f,J] 5evalJ(fun,x,Extra,m,JPI) Evaluate the sparse Jacobian J at
the point x . JPI encodes the “coloring” information about the sparse
matrix J. (See getJPI.) Different sparsity-exploiting methods are possi-
ble; the default sparse method is direct determination using bicoloring
[Coleman and Verma 1998a].
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[f,J] 5evalJ(fun,x,Extra,m,JPI,verb) Indicates the display level.
verb # 0 No display.
verb $ 1 The number of groups used are displayed.
verb $ 2 Information is displayed in graph form.

[f,J] 5evalJ(fun,x,Extra,m,JPI,verb,fdstep) Scalar fdstep de-
notes the finite-difference step size, for use when method 5 ‘f’ (see
getJPI).

evalH

Purpose.

Compute the value of a scalar-valued function, the gradient, and possibly
the Hessian matrix. When the Hessian matrix is computed, sparsity is
exploited (using graph-coloring techniques, etc. [Coleman and Cai 1986;
Coleman and Moré 1984a])

Synopsis.

v5evalH(fun,x)

v5evalH(fun,x,Extra)

[v,grad] 5evalH(fun,x,Extra)

[v,grad,H] 5evalH(fun,x,Extra,HPI)

[v,grad,H] 5evalH(fun,x,Extra,HPI,verb)

[v,grad,H] 5evalH(fun,x,Extra,HPI,verb,fdstep)

Description.

[v,grad] 5evalH(fun,x,Extra) Determine the (scalar) value and gra-
dient (dense vector) of fun at the input argument x . The first input
argument, fun , is an integer handle identifying the user function. You
can provide a full matrix, Extra , to be used by your target function.
Extra cannot be a MATLAB sparse matrix.

[v,grad,H] 5evalH(fun,x,Extra,HPI) Evaluate the sparse Hessian
matrix H at x . HPI encodes the “coloring” information about H required to
compute a compact representation of H. (See getHPI .) Different sparsity-
exploiting methods are possible; the default sparse method used is direct
determination (ignoring the symmetry).

[v,grad,H] 5evalH(fun,x,Extra,HPI,verb,fdstep) Scalar fdstep
denotes the finite-difference step size, for use when the finite-differenc-
ing option is selected (see getHPI ).
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getJPI

Purpose.

Compute sparsity and coloring information to allow for the efficient
determination of a (sparse) Jacobian matrix.

Synopsis.

JPI 5 getJPI(fun, m)

JPI 5 getJPI(fun, m, n)

JPI 5 getJPI(fun, m, n,Extra)

JPI 5 getJPI(fun, m, n, Extra, method)

JPI 5 getJPI([], m, n, Extra, method, SPJ)

Description.

JPI 5 getJPI(fun, m, n, Extra) encapsulates (in a MATLAB sparse
matrix) the sparsity pattern and graph-coloring information necessary to
efficiently compute the sparse Jacobian matrix; the coloring determined
corresponds to the default—direct bicoloring. The Jacobian matrix is
assumed to be m 3 n. You can provide a full matrix, Extra , to be used
by your target function fun .

JPI 5 getJPI(fun, m, n,Extra, method) overrides the default
coloring.

method 5 ‘d’ : direct bicoloring (the default).
method 5 ‘s’ : substitution bicoloring.
method 5 ‘c’ : one-sided column method.
method 5 ‘r’ : one-sided row method.
method 5 ‘f’ : sparse finite difference.

JPI 5 getJPI([], m, n,Extra, method, SPJ) You can supply SPJ, a
sparse MATLAB matrix representing the sparsity structure of the Jaco-
bian matrix. The sparse matrix structure SPJ is required on input when
method 5 ‘f’ .

getHPI

Purpose.

Compute the sparsity structure and graph-coloring information for the
sparse Hessian matrix H.

Synopsis.

HPI5 getHPI(fun, n)

HPI5 getHPI(fun, n, Extra)

HPI5 getHPI(fun, n, Extra, method)
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HPI5 getHPI([], n, Extra, method, SPH)

Description.

HPI5 getHPI(fun, n, Extra) The sparsity structure and relevant
coloring information (to allow for efficient calculation of the sparse
Hessian H) is encapsulated in HPI , a sparse matrix. The default coloring
corresponds to direct determination. You can provide a full matrix,
Extra , to be used by your target function (if required).

HPI5 getHPI(fun, n,Extra,method) overrides the default coloring.
method 5 ‘i-a’ : The default, ignore the symmetry. Compute exactly
using AD.
method 5 ‘d-a’ : direct method [Coleman and Moré 1984a], using AD.
method 5 ‘s-a’ : substitution method [Coleman and Cai 1986] using
AD.
method 5 ‘i-f’ : ignore the symmetry and use finite differences (FD)
method 5 ‘d-f’ : direct method [Coleman and Moré 1984a] with FD.
method 5 ‘s-f’ : substitution method [Coleman and Cai 1986] with
FD.

HPI5 getHPI(fun, n,Extra,method,SPH) SPH is a sparse MATLAB
matrix representing the sparsity structure of the Hessian matrix. The
sparse structure SPH is required as input when method 5 ‘s-f’ .

B. THE AD TOOL DRIVERS

Additional functions for driving the plug-in AD tool are described in this
section. These drivers are all in form of MEX files.

forwprod

Purpose.

Computes the Jacobian matrix product, J 3 V, where J is the Jacobian
of a nonlinear vector mapping and V is a matrix. The product is
computed directly via automatic differentiation—the cost is proportional
to the number of columns in V. Note: forwprod is particularly efficient
when the number of columns of V is small. Otherwise, when J is sparse it
may be more efficient to compute J first (using evalJ and exploiting
sparsity) and then perform the multiplication.

Synopsis.

[f,JV] 5forwprod(fun,x,V)

[f,JV] 5forwprod(fun,x,V,m)

[f,JV] 5forwprod(fun,x,V,m,Extra)

Description.

[f,JV] 5forwprod(fun,x,V,m,Extra) returns the function value and
the product JV 5 J * V, evaluated at x . The row dimension of the
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Jacobian matrix is m. You can provide a full matrix, Extra , for use in
your target function fun (if required).

revprod

Purpose.

Compute W T 3 J where J 5 J~x! is the Jacobian matrix of a nonlinear
vector mapping and W is an arbitrary (consistent) matrix. The product is
computed directly via automatic differentiation with the computational
cost proportional to the number of columns in W. Note: revprod is
particularly efficient when the number of columns of W is small. Other-
wise, when J is sparse it may be more efficient to compute J first (using
evalJ and exploiting sparsity) and then perform the multiplication.

Synopsis.

[f,WJ] 5revprod(fun,x,W);

[f,WJ] 5revprod(fun,x,W,Extra);

Description.

[f,WJ] 5revprod(fun,x,W,Extra) returns the function value and the
product WJ 5 ~W T * J !T 5 J TW. A full matrix, Extra , can be provided
to be used by a target function fun (if required).

HtimesV

Purpose.

Compute H 3 V where H 5 H~x! is a Hessian matrix of a scalar-valued
function and V is a compatible matrix. Note: Function HtimesV is
particularly efficient when the number of columns of V is small. Other-
wise, when H is sparse it may be more efficient to compute H first (using
evalH and exploiting sparsity) and then perform the multiplication.

Synopsis.

HV5HtimesV(fun,x,V)

HV5HtimesV(fun,x,V,Extra)

Description.

HV5HtimesV(fun,x,V,Extra) returns the product HV 5 H * V, where
the Hessian matrix H is evaluated at the given point x . You can provide
a full matrix, Extra , to be used (if required) by your target function fun .

hesssp

Purpose.

Computes the sparsity pattern of the Hessian matrix.
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Synopsis.

SPH5hesssp(fun,n)

SPH5hesssp(fun,n,Extra)

Description.

SPH5hesssp(fun,n,Extra) returns the n 3 n sparsity structure of the
Hessian matrix. SPHis a MATLAB sparse matrix. Note the current point
is not required: a superstructure of the sparsity structure for all points x
is returned. The structure can be displayed by spy(SPH) . A full matrix,
Extra , can be provided to be used by your target function fun , if
required.

jacsp

Purpose.

Compute the sparsity pattern of the Jacobian matrix.

Synopsis.

SPJ5jacsp(fun,m)

SPJ5jacsp(fun,m,n)

SPJ5jacsp(fun,m,n,Extra)

Description.

SPJ5jacsp(fun,m,n,Extra) returns the m3 n sparsity structure of
the Jacobian matrix. SPJ is a MATLAB sparse matrix. A full matrix,
Extra , can be provided to be used by a target function fun .
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