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ABSTRACT
Computational models of music, while providing good descriptions
of melodic development, still cannot fully grasp the general struc-
ture comprised of repetitions, transpositions, and reuse of melodic
material. We present a corpus of strongly structured baroque alle-
mandes, and describe a top-down approach to abstract the shared
structure of their musical content using tree representations pro-
duced from pairwise differences between the Schenkerian-inspired
analyses of each piece, thereby providing a rich hierarchical de-
scription of the corpus.

CCS CONCEPTS
• Applied computing → Sound and music computing; • In-
formation systems→ Music retrieval.
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1 INTRODUCTION
Despite centuries of musicological studies, the advent of compu-
tational analysis of music has shed new light on the difficulty of
capturing what defines a music piece [18]. This becomes especially
evident when computational systems try to generate novel music
having learned some features of music from a given dataset of hu-
man compositions [2]. However complex or elegant the model used
for the generation, we are still far from obtaining results that are
on par with the starting material. This is generally due to the fact
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that while these models can capture some aspects of the music they
analyze, e.g. typical melodic motifs, they fail to capture the entirety
of the hierarchical, structural aspects of music. In many cases this
leads to algorithms that generate music that sounds reasonable for
a short time span, but seems to "wander off" as the length of the
generated piece increases [3, 4].

With this work, we present a small corpus made of twenty-four
baroque pieces that exhibit strong structural regularities. This cor-
pus can be used to develop and test algorithms that consider musical
structure as a fundamental and primary feature of computational
musicology. Though the size of the corpus is relatively small, it is
ideal for top-down approaches to musical analysis due to its struc-
tural regularity. This is in contrast to larger, less-structured corpora
often used in bottom-up statistical methods, which have resulted
in the issues described above.

In the second part of the paper, we also present ongoing research
that makes use of the strong regularity of this corpus by using spe-
cialized tree representations of musical content to describe musical
structure. First, the melody is abstracted through iterated simplifi-
cations inspired by Schenkerian analysis, producing what we call
Schenkerian trees [12]. Next, the features of these trees are then
compared structurally in a pairwise fashion, generating a novel
representation that we call difference trees. While this is ongoing
research and we cannot give a formal evaluation of the results yet,
we will show by example how these difference trees can be useful
for applications of computational musicology, and discuss further
development for computational music generation [6].

1.1 Related Works
This work is linked to a variety of computational musicology appli-
cations. Some analysis tools that also abstract tree-like structures
based on existing theories of music, such as Schenkerian analysis
[11, 12] or GTTM [7, 8], are well known in literature; however, in
our proposal the tree representations are not the final goal, but
a means for intra-piece comparison in order to analyze the inter-
nal repetition structure. The output is similar to other algorithms
meant for form analysis [17], but to our knowledge our approach
has never been applied in that field.

Since describing structure is a widely known problem in music
generation, some relevant proposals come from that field. GED-
MAS [1] uses a top-down approach for structured generation, but
the melodic content itself is not part of this hierarchical structure.
MorpheuS [9] applies a structure to imitate a given piece, but there,
structure is related to perceived tension, rather than repetition and
reuse of melodic content. Finally, Wiggins [19] provides an in-depth
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theoretical base for the relevance of this approach to music analysis
and generation, but does not provide any practical approach to
perform the proposed analyses.

2 CORPUS DESCRIPTION
The corpus we present is comprised of twenty-four allemandes
(dance music originating from Germany, usually possessing even
meter), written in 1768 by Gabriele Leone (sometimes referred to as
Pietro Leone), a mandolin virtuoso from Naples. These pieces were
originally included in a method for teaching mandolin to violin
players. As such, despite the great technical ability of the author,
the pieces are extremely simple and can be played by a novice. All
of the allemandes are written for a mandolin duo, ideally having the
first part played by the student and the second by the teacher, so all
these pieces are polyphonic. In addition, a single instrument often
plays chords, so either part may polyphonic on its own. Since the
Neapolitan mandolin has only four strings, neither part ever has
more than four simultaneous notes. The corpus is released under a
Creative Commons license, in MusicXML format.

2.1 Structure
Since we propose this corpus as a useful tool to study musical
structures, it is worth describing what kind of structural regularities
this corpus offers.

At a high level, there are some evident regularities, as follows:
• All of the pieces are divided into two sections, which we call
the A section and B section.

• In 20 out of 24 pieces, both the A and B sections are eight
bars long.

• In 22 pieces, the A section is repeated at the end, thus ob-
taining an "A-B-A" structure.

• 20 allemandes have 2/4 meter.
• All pieces are in a major key and modulate in the B section
either to a close tonality, or in only four of the allemandes,
to the minor mode.

The following are the exceptions to above regularities:
• IV has each section repeated (A-A-B-B).
• XI has a 12 bars long A section.
• XIV has both A and B section last only 4 bars.
• XVIII has each section repeated and then the A section again
(A-A-B-B-A).

• XIX has a 16 bar A section and a 24 bar B section.
• XXI has a 4 bar B section.
• VII, IX, XVIII, and XIX have 3/8 meter.
• VIII is unique in the corpus in that it has anacrusis.

Besides the regularities in the macro-level form, within each of the
sections there is frequent use of repetitions, transpositions, and
imitation, both within a single part and between parts of the two
instruments. These make it simple to distinguish four-measure long
phrases that can be further divided into two sub-phrases. The rela-
tive simplicity of the melodic material makes it easy to distinguish
the use of techniques such as repetition, transposition or inversion,
making this corpus useful for algorithms that wish to detect such
techniques. Moreover, the corpus has two voices, so there is still
enough variance and description to extract meaningful information

relating to harmony. One final peculiarity of this corpus not strictly
related to musical structure is that each piece was named by the
author with an adjective describing the “feel” of the piece, like
“The Joyful”, “The Grumpy” or “The Fickle”, and therefore could
be used to research if specific musical techniques relate to the pro-
posed emotions and expressions. Finally, we present the corpus
with chord annotations manually added by one of the authors with
more than five years of formal music education. While there are
many MusicXML corpora available, very few present all the above
characteristics. For this reason, we believe this corpus can represent
a useful tool for many researchers, despite its small size.

3 APPLICATIONS
In the following subsections, we will describe how the study of this
corpus led us to the development of two representations, Schenke-
rian trees and difference trees, that encode musical structure.

For the functioning of the following algorithms, the input must
first be made of monophonic melodies, with chord annotations that
indicate the harmonic development over the melody (lead sheets).
Since we require monophonic melodies, only the first mandolin
part was kept, and when two or more notes were played at the
same time within the single voice, the higher was chosen. The
key and meter were annotated as well, but could be inferred with
appropriate algorithms if not explicitly present in the input. In
order to compare different moments within a piece, it is necessary
to divide the input pieces into smaller segments of equal width and
to apply the algorithms below to each segment. A length of one or
two bars are reasonable choices, depending on the level of detail
that is being considered.

3.1 Schenkerian Tree - Sk_tree
The first algorithm takes a segment of a lead sheet as input, and out-
puts a Schenkeerian tree (Sk_tree) that represents a set of iterated
reductions of the given piece, inspired by what is traditionally done
in Schenkerian analysis [15] or in the Generative Theory of Tonal
Music [10]. Though the details of this algorithm are described in
previous related works [5, 12, 16], it is worth quickly describing
how the algorithm functions at a high-level.

First, we define a sliding window twice as long as the shortest
note duration in the input. That window passes over themelody, and
whenever there are two or more notes present in window, the “more
important” note is selected, given the harmonic context, tonality,
and metric position of the notes. For example, in the context of a
C major piece, over a G chord, a note G will be considered more
important than a note F. Next, a new melody made of all the notes
that were selected in the first pass is created by extending their
duration over the window. For instance, if the first of two quarter
notes was selected in the first pass, that note would be extended to a
half note in the new melody, and the second note is eliminated. The
size of the window is then increased to twice the shortest duration
of this new melody, and the process is iterated until only one note
remains.

These iterated reductions naturally form a tree (see Figure 1),
which we call a Schenkerian tree (Sk_tree), where the nodes of the
tree correspond to the notes of the melody, and each level of the tree
represents a level of reduction. The children of a node correspond
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Figure 1: Example of the process building Sk_trees and a Diff_tree. (a) shows two bars ofmusic being reducedwith the Schenke-
rian approach. The arrow shows the notes that are kept in the successive reduction, and the line joining the arrow represents
the reduced note. (b) shows the Sk_tree obtained from the first measure. Notice that the leaves correspond to the notes that
are present with that duration in the surface melody, regardless of the level. (c) shows the Sk_tree obtained from the second
measure. Notice that there is one node reporting R, as the reduction kept the note on the right, and not the one on the left as
usually occurs. (d) shows the Diff_tree obtained by comparing (a) and (b). Notice that a leaf in this tree occurs whenever a leaf
on either Sk_tree is found.

to the notes present in the window being reduced, with the parent
being the result of that reduction. This note tree is then represented
more compactly by annotating how each note is expanded in the
lower layer.

3.2 Difference Tree - Diff_tree
The above algorithm serves as a way to simplify the melodic ma-
terial in piece to make it easier to find regularities, but does not
actually compare different segments of a piece to find such regu-
larities. The Difference Trees (diff_trees) serve this purpose: they
compare the reductions made in the Sk_trees and annotate the
actions required to transform from the first tree to the second. The
comparisons can be made between any segment of the original
piece, but should only be made going forward, i.e. comparing one
segment only with segments that come after that, due to the fact
that this operation is not commutative.

The algorithm takes as input two Sk_trees, and proceeds as
follows: the root nodes of the two trees are selected (called R_1 and
R_2), and a new node is constructed to be the root of the output
Diff_tree. Considering the direct children of R_1 and R_2 in their
respective trees, in the node of the Diff_tree the following features
are annotated:

• Sk: Schenkerian direction. If R_1 and R_2 come from the
same position in the children notes (left or right note), anno-
tate same, otherwise diff. A leaf note counts as expanded
to the left.

• Ch: Number of children. Annotate if R_2 has the same number
of children as R_1, or if it has more or less. If the result is
same, compare the following features regarding the children:

• Dir: Interval direction. Annotate if the interval described in
R_1 has the same direction as the one described by R_2 or
not (diff).

• Int: Interval width. Regardless of the direction, annotate
if R_2’s interval is more narrow, more wide or the same as
R_1’s interval.

Then, the first child of both is selected, and the algorithm re-
cursively repeats on all children until there are no more children
or if they have a different number of children (a leaf is found), in
which case the recursion stops as it is not possible to operate the
comparison anymore. Figure 1d shows the result of this process.

3.3 Musical Analysis
In this section we provide further examples of trees obtained by ap-
plying the above algorithm to the corpus, and describe the insights
that can be gathered from this process.

Figure 2 shows some Diff_trees computed from one allemande
taken from the corpus: following are some information that can
be inferred by the encoding. In the first tree, comparing segments
1 and 2, the highest level shows an interval that is widened (see
✽ in the figure). The highest level of reduction is strongly reliant
on the harmonic development. This widening is connected to the
fact that the second segment is more harmonically diverse than
the first. Conversely, the second level of both that tree and the one
comparing segments 1 and 5 (✤) sees only narrowing intervals. This
level is less reliant on the harmony but rather gives an indication
of the general melodic contour, and indeed segment 1 (and it’s
repetition segment 3) is the one with the widest extension in the
piece. The mentioned repetition is captured by the tree comparing
segments 1 and 3 (✦), that shows no difference at all across all
features. The comparison between segments 2 and 4 and the one
between segments 6 and 8 (✭) also show a repetition (of the first
measures of these segments), but also shows the ending variation,
that is to be expected from the ending of a phrase/section.

3.4 Future Directions
While some insights can be gathered by analyzing a single piece,
even more can be found by looking at different pieces together.
We are currently developing a way to automatically compare the
Diff_trees obtained by different pieces, possibly reaching a defini-
tion of what is the general structure found in a corpus, rather than
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Figure 2: Diffrence trees computed on allemande V, in compact form. The nodes below the third level were omitted.

a specific structure extracted from a piece. The original motivation
behind this project was to study musical representations that could
capture medium and long term structures of music to be embed-
ded in a music generation system: the above mentioned general
structure extracted from a corpus could define a notion of what is
“typical” within a certain style, that would be useful within a music
generation framework [13, 14].

4 CONCLUSIONS
In this paper, we presented a corpus of twenty-four baroque alle-
mandes that present structural characteristics useful for those who
wish to study automatic ways to analyze structure in music. The
original corpus is in the public domain and we release all the addi-
tional work done on it under a Creative Commons license to allow
and welcome researchers who want to use it as a research tool. In
the second part of the paper, we present the algorithms that we used
to analyze such structures, giving an example of how the corpus
can be useful to researchers and possibly giving insights for future
research developments on structural analysis. We also discussed
the further developments that are being done by ourselves. While
the work presented here is by no means exhaustive of the possible
analyses and representations of structure in music, we hope that
this contribution can help those who wish to formalize this aspect
of music that is fundamental for the creation of meaningful music,
but still seems difficult to define in a practical way.
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