
Engineering a Complete Curriculum Overhaul
Luther Tychonievich
University of Virginia

Charlottesville, Virginia, USA
tychonievich@virginia.edu

Mark Sherriff∗
University of Virginia

Charlottesville, Virginia, USA
sherriff@virginia.edu

ABSTRACT
We present an eight-year curriculum redesign effort impacting al-
most every course in our computer science department. Having
not made a major update to our curriculum in two decades, compli-
cations began to arise from significant increases in enrollment and
instituting multiple degrees in computing in the same department.
Starting from a desire to adjust a few courses, we systematically
collected a broad set of requirements and blue-sky ideas from many
stakeholders, resulting in an unsatisfiable set of content, order-
ing, and course boundary constraints. After multiple rounds of
conversation with our stakeholders in and out of the department,
we evolved and relaxed several of our constraints, allowing us to
develop a compromise plan for seven new courses and a new prereq-
uisite system. We then piloted five of the new courses and collected
feedback on results, iterating on these courses each semester for
two years. We worked with registrars, advisors, and administrators
to develop a transition plan from old to new courses. This paper
presents highlights of each step of this process, a summary of the
resulting curriculum design, and reflections and recommendations
for other departments that may want to undertake a similar update.

CCS CONCEPTS
• Social and professional topics→Computing education pro-
grams.

KEYWORDS
curriculum; redesign; multiple majors; course specification
ACM Reference Format:
Luther Tychonievich and Mark Sherriff. 2022. Engineering a Complete Cur-
riculum Overhaul. In Proceedings of the 53rd ACM Technical Symposium on
Computer Science Education V. 1 (SIGCSE 2022), March 3–5, 2022, Providence,
RI, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3478431.
3499287

1 INTRODUCTION
When we describe a computer science curriculum – meaning the
set of courses we teach in our department and the content we
expect students to learn in each – we accept as self-evident that it
is not a fixed, monolithic structure. Every instructor changes the

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2022, March 3–5, 2022, Providence, RI, USA.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9070-5/22/03.
https://doi.org/10.1145/3478431.3499287

classes that they teach for a myriad of reasons: advances in the field,
updates in pedagogical practice, changes in student background,
personal teaching styles, experiments to smooth over rough patches,
and so on. Courses are not fixed points, meaning that the curricula
composed of them are also not fixed.

As with software maintenance, we observed that this form of
ad hoc curriculum maintenance contributed to a form of brittle-
ness [13, 16, 19]. Efforts from different faculty working to optimize
their own courses in isolation from the rest of the curriculum led
to the courses fitting together less and less well over time. Further,
as pedagogical advances are made along with advances in the field
of computing, courses that that were effective in their methods
and learning objectives twenty, ten, or even five years ago may no
longer be as effective today.

Changing how content is distributed across a set of courses is
much more complicated than changing each course in isolation.
It impacts every degree program that uses any of the replaced
courses. It is complicated by students who are in in the middle
of their degree program when the change occurs. Because it is a
large-scale change, it attracts more attention, causing stakeholders
to notice when previous single-course changes were not aligned
with their priorities. It also invites a wider range of innovative and
mutually-contradictory designs as it is unconstrained by predefined
course boundaries.

The decision that it was time to move forward with a major
re-envisioning of our own curriculum was made by a group of our
faculty over lunch at the 2014 SIGCSE Technical Symposium in
Atlanta, GA, understanding that it was a significant undertaking
and thinking it might be a 2–5 year project. Eight years later, we are
finally beginning to offer the first full versions of our new courses
and enacting the transition to the new curriculum – a process that
will take at least another two years to complete.

In this paper, we describe and explore the process we went
through to complete our curriculum redesign. We use the anal-
ogy of the software engineering life-cycle, from requirements elic-
itation to implementation and testing, to show our process and
thinking at each stage, culminating with the final product that we
are excited to begin using in our department. Our goal with this
report is to help other departments interested in redesign-
ing their curriculum to understand our decisions and expe-
riences at each phase in the process so that they can plan for
these steps and move through them more smoothly. We ex-
pect each institution would arrive at a different set of courses than
we did, but are hopeful that the process we went through will be
useful to others undertaking a similar change at their institution.

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGCSE 2022, March 3–5, 2022, Providence, RI, USA.
© 2022 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-9070-5/22/03.
https://doi.org/10.1145/3478431.3499287

Session: Reducing Curricular Barriers SIGCSE ’22, March 3–5, 2022, Providence RI, USA

453

https://doi.org/10.1145/3478431.3499287
https://doi.org/10.1145/3478431.3499287
https://doi.org/10.1145/3478431.3499287
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3478431.3499287&domain=pdf&date_stamp=2022-02-22

2 RELATEDWORK
There have been various reports providing curricular recommenda-
tions [2, 12, 25–27], implementing [17, 18] and analysing those rec-
ommendations [11, 21, 29], and surveying multiple curricula [3, 30].
While some of these have collected requirements and designed
curricula, they have not addressed the process of implementing a
curriculum change impacting multiple degrees and thousands of
students.

Hoag described the creation and two revisions of a cybersecurity
curriculum over the course of five years [15]. We describe a much
slower process for changing a large, established CS curriculum with
many stakeholders and constraints.

Others have reported efforts to design a curriculum to serve
multiple stakeholders. Bills and Canosa analyzed the requirements
of several computing disciplines and recommended first-year cur-
riculum to serve them all [4]. Boisvert et al aligned the needs of
high schools, colleges, and industry [6]. We describe a curriculum
serving stakeholders across disciplines in our university; we also
discuss the processes we used to implement the change after its
design.

Many previous reports have discussed ways to infuse specific
content into a curriculum [1, 5, 9, 14, 20, 28, 31, 34]. While our
redesign does infuse ethical and social issues across the curriculum
(see §9.2.3), our focus is on restructuring the curriculum as a whole.

3 CURRICULUM HISTORY
Our university is an R1 institution in the United States graduating
around 4,000 undergraduates per year. When this revision project
began in 2014, the Department of Computer Science had around 250
majors per class year across three degree programs – Bachelor of
Science in Computer Science (BS CS), Bachelor of Arts in Computer
Science (BA CS), and Bachelor of Science in Computer Engineering
(BS CpE) [22–24]. At this time, our department consisted of 28
faculty, including both tenure-track and teaching-focused. As of
2021, we have grown to around 700 majors per class year with
roughly 45 active faculty1.

The last major update to our curriculum occurred in 1989 when
the BS CS was our only degree. That update placed a brand-new
course, Program and Data Representation (PDR), in a central role
in the curriculum. PDR introduced the various abstraction layers
of computing, from registers up through advanced data structures,
and was the sole prerequisite for almost all CS electives. Object
orientation and digital logic design were taught in pre-PDR courses
while most systems content (including pipelined architectures and
operating system design), algorithms, software engineering, and
computational theory were in required post-PDR courses.

Overall, the change and resulting curriculum was well-reasoned
and well-accepted by both faculty and students. Subsequently, the
curriculum was accredited by ABET and has been successfully re-
accredited each cycle. The change garnered external praise and
was often cited by our accreditors and industrial partners as a key
component in our curriculum.

1We have many faculty who split time between two departments with dual appoint-
ments, making an exact count of CS faculty difficult.

In subsequent years, we made many changes to the curriculum.
Courses updated their content based on changes in the field; prereq-
uisites changed to accommodate new degree programs; and many
new courses were introduced. However, each change was local-
ized to one or two courses and the overall structure of the BS CS
curriculum remained unchanged.

Our BA CS degree is similar to the BS CS, but due to restrictions
on the number of credits we can require, four of the required courses
from the BS CS were omitted. BA students have the opportunity to
take these courses, but they can graduate without them.

The BS CpE degree is jointly administered with the Department
of Electrical and Computer Engineering, and contains a mix of Com-
puter Science and Electrical Engineering courses as well as some
CpE-specific courses. The CS portion of the BS CpE is similar to the
BS CS, but they take networking instead of theory of computation
and have a different computer architecture course sequence.

The CS courses in all three degrees are displayed in Figure 1.

4 WHY MAKE A CHANGE?
As we updated our curriculum in a series of local changes, each indi-
vidually adequate, the cumulative effect slowlymade the curriculum
less cohesive. It gradually became evident that a full re-imagining
of the curriculum was necessary. Several of the drivers of change
are discussed below.

4.0.1 Challenges of Uniqueness. Our PDR course is not a model
seen at many universities, and, while popular among our students,
that difference proved an increasing problem over time. Having
a unique course central to the degree program limited transfer
students and study abroad opportunities. Its uniqueness made it
hard for new faculty to teach the course and meant that faculty of
subsequent courses often misunderstood prerequisite knowledge
students gained in it. With growth and time, it became clear we
needed to redistribute the material in this course.

4.0.2 Multiple Degree Programs. When our curriculum was last
redesigned, it served only a single degree program, the BS CS.

Students in the BS CpE take a different course series to learn
computer architecture, meaning the courses that depend on com-
puter architecture have students enter with varying experience.
Both the CS and CpE computer architecture courses have evolved
since splitting, increasing that difference.

The BA CS was created to allow students in the university’s
College of Arts and Sciences to major in CS without transferring to
the School of Engineering and Applied Sciences. The program was
created as an Interdisciplinary Major, requiring fewer approvals
but significantly limiting the number of credits it could require.
Multiple prerequisites were adjusted to allow BA CS students to
reach later courses without having taken courses in digital logic,
computational theory, and advanced mathematics.

Because of the order in which degrees have been added, our
curriculum is structured as a BS CS degree with accommodations
for other programs. However, BA CS and BS CpE students represent
well over half of our students. Non-major interest in CS classes
has also grown, through both through the CS minor and through
students in other majors being advised to take our classes. Our

Session: Reducing Curricular Barriers SIGCSE ’22, March 3–5, 2022, Providence RI, USA

454

Figure 1: Prerequisites before (on left) and after (on right) change. Heavy borders indicate courses required by the BS CS degree,
shaded nodes by the BA CS degree, and rounded edges by the BS CpE degree. The BS CpE degree also has many additional
courses administered by Electrical Engineering department (not shown), some of which can satisfy prereqs for CS courses.

students and course sequences no longer look like they did at the
last major curriculum redesign.

4.0.3 Updated Pedagogy and Course Material. Significant advances
have been made by SIGCSE and related communities over the past
30 years in understanding what makes the most effective CS peda-
gogy. Implementing new pedagogy in our courses sometimes ad-
justed the order and level of detail of different topics, accidentally
weakening the alignment between courses.

Many new topics have become important in our field since 1989;
as one example, 30 years ago curricular recommendations for secu-
rity focused on user accounts and type checking, not vulnerabilities
and encryption [32]. As the computing field has evolved, so have
our courses, but in an ad hoc way, adding new topics and removing
or de-emphasizing other topics to make room. The resulting cur-
riculum has some topics in many places while other topics are not
covered to our desired level of detail.

4.0.4 Teaching More Students. Our student body has increased
more than tenfold since our last curriculum redesign, and some
previous curricular designs that had been designed to create or capi-
talize on a sense of community, cooperation, or friendly competition
did not scale to a much larger student body. Our student/faculty ra-
tio has also increased by a factor of five, meaning practices based on
individual faculty-student contact have not aged well. Undergradu-
ate teaching assistants have been key to our adapting to this rapid
growth, and both instruction and assessment have been adjusted
to make the use of TAs more effective.

4.0.5 Teaching a More Diverse Students Body. Some students enter
the university with much more computing experience than they
did 30 years ago, and simultaneously we have made intentional
strides to be more welcoming to students with less experience and
more tech hesitation, leading to a much wider spread of incoming
experiences. We have become a major service-course provider for

the university, with half of all university students taking our intro-
duction to programming course. Part of our success in attracting
more diverse students has come in recruiting to the major from
that introduction to programming course [7, 8], resulting in an
increased desire for it to be a good fit both for those who will never
take another CS course and for those who intend to declare our
majors2. To best serve this wide range of students we’ve changed
the focus of early courses, with ripple-on effects to later courses.

5 REQUIREMENTS ELICITATION (2014–2017)
Before we began designing the new curriculum, we needed to under-
stand the goals and desires of our stakeholders. Specifically, wished
to balance the varying objectives of multiple degree programs,
faculty both in and out of CS, transfer students, administrators,
accreditors, and industry partners. We elicited requirements from
each, a multi-year process that included the following:

5.0.1 Reviewing ACM/IEEE CS2013 Curricular Recommendations.
When we began redesigning the curriculum in early 2014, the
CS2013 Curricular Recommendations [2] had recently been released.
Our undergraduate curriculum committee (UCC) began a two-part
detailed review and curriculum audit based on those recommen-
dations. Each UCC member was assigned a few Knowledge Areas
from CS2013 and worked with instructors of relevant courses to
evaluate how much of that material we currently taught. A report
was generated [10] and used in committee and faculty meetings
to discuss possible changes in coverage. These meetings often re-
sulted in decisions to more closely match CS2013, but sometimes
we agreed that we liked our different levels of focus and would
keep those differences going forward.

5.0.2 TA “Blue Sky” Exercises. Our department depends heavily on
undergraduate teaching assistants, who enroll in a 1-credit training
course [33]. For three years, we included a session in that course

2At our university, students declare their major 1–2 years after matriculating.

Session: Reducing Curricular Barriers SIGCSE ’22, March 3–5, 2022, Providence RI, USA

455

where we explained the current curriculum, then had TAs design,
describe, and defend changes to it. These sessions helped us discover
material that was being repeated and prerequisite material that was
not being taught; helped us understand our students’ perspectives;
and provided us with a wide variety of draft redesigns to consider.

5.0.3 Faculty Interviews. Not all faculty speak up in meetings or
respond to open-ended emails, so we sent UCC representatives to
visit with each faculty member and ask them about the curricu-
lum and how it should change. This helped us better understand
limitations of our current courses and directions for change.

A key insight from these interviews was that the set of topics
our faculty considered to be “core” to CS was larger than we could
hope to teach to all students. This insight, and a subsequent multi-
month full-faculty discussion of what was “core” to CS, led us to
change our plans and vocabulary from covering the “CS core” to
defining the “CS foundation”, the prerequisite knowledge required
by multiple sub-fields of computing.

5.0.4 Degree Programs. Our courses have many clients, each of
whom had some non-functional requirements. The BA CS degree
needed to have prerequisites be no more than four-semesters deep.
The BS CpE degree needed to offer alternate paths through parts
of the curriculum to better integrate with electrical engineering
courses. The computer science minor needed to let students reach
a CS elective after only a few prerequisite courses. Our university
has a matriculation agreement with our state’s community college
system, making alignment between their courses and ours desirable.
Roughly a dozen other degree programs use one or two of our
courses, each with different objectives from them.

Discovering these requirements involved conversations with
deans, administrators, and faculty from many departments. The
resulting set was not readily satisfiable, so additional meetings were
needed to learn which were hard constraints we needed to meet
and which were less rigid and could be changed with limited impact
on the respective programs.

6 DESIGN (2017–2018)
As we began to understand our requirements, we started brain-
storming ways of better meeting them. This proceeded in two
phases.

Phase 1 explored high-level course content and prerequisite
structures. We used a whiteboard with magnets for courses con-
nected by lines for prerequisites and notes about content on the side.
We invited faculty to view and modify this representation, which
helped them express their ideas in their areas of interest without
losing sight of the whole. Phase 1 ended with general consensus
on the set of new courses.

Phase 2 fleshed out those courses in committees. Committees
were formed for each group of related courses and were staffed by
faculty who had taught that subject in the recent past. Committee
processes varied, but generally operated with a committee chair
proposing drafts of course content and using the committee as a
brainstorming and advising group.

Throughout the design process we often faced the need to com-
promise between competing requirements. Some common compet-
ing interests include:

• Tightly integrated courses vs. flexibility to use a different
subset of courses in each degree program.

• Innovative designs vs. compatibility with other programs.
• Deep understanding of basics vs. covering more topics.

We resolved each compromise based on our estimation of need
and ability in our context. Some of these resolutions were very
specific negotiations between the instructors of a course under
design and a course or degree program that would depend on it,
finding new homes for important material that would not fit in
one of our courses. We expect each institution going through this
process will resolve these conflicts in an individual way.

7 IMPLEMENTATION AND TESTING
(2018–2020)

Changing our curriculum involved changes to courses and to uni-
versity systems.

7.1 Piloting New Courses
To test changes to our courses, we ran a two-year pilot study of
our new courses. A pilot was needed to refine the new courses in
single-section offerings and to gain faculty buy-in prior to rolling
out the new courses at the full 3–4-sections-per-semester scale.
A full discussion of the pilot is beyond the scope of this report,
but a few highlights of our pilot process may be useful to others
considering doing their own curriculum redesign pilot.

Because content was moving between courses, it was important
for each student to either take all the piloted courses or none of
them. That requirement effectively created two concurrent kinds
of CS students: those taking the standard courses and those in
the pilot. Those in the pilot required separate advising by specific
pilot-aware academic advisors; separate academic requirements,
implemented as a multi-step exception process in the university
record keeping designed in consultation with a registrar; and case-
by-case academic planning for students who failed a pilot course or
were otherwise unable to complete the pilot and needed to finish
their requirements with non-pilot courses.

All students who entered the pilot needed to be in the same
position in their academic journey in the same semester. Students
on the usual path in our curriculum generally would be at that point
in a Spring semester, while those either ahead or behind would be
at that point in a Fall semester. We chose to start the pilot in a Fall
semester to ensure we learned how well the courses worked for
less-standard students.

We ran the pilot twice in two consecutive years, incorporating
changes from the first year into the second year’s offerings. The
repeated offering helped us refine the courses and made us more
comfortable with them as our new requirements. However, repeat-
ing the pilot created a significant PR problem: the first year pilot
students were so vocal in their appreciation of the new courses
that in the second year the student rumor mill labeled the students
in the pilot as specially privileged. As that reputation grew, we
found it important to change the conversation to emphasize the
pilot as primarily an experimental reordering of material instead of
emphasizing that it was an update and improvement. That said, this
word-of-mouth positive reputation was helpful in convincing more
stakeholders that the change was positive and worth the effort.

Session: Reducing Curricular Barriers SIGCSE ’22, March 3–5, 2022, Providence RI, USA

456

7.2 Updating Rules
Changing university systems was a multi-tiered process. As a state-
sponsored school, there were as many as five different levels of
approval to go through3, a process that took more than a year after
the design was finalized. More importantly, if less visibly, we spent
many hours iterating with registrars and deans and directors of
other degree programs to ensure that the new courses were properly
coded, that orientation materials were available for them, that we
had transition plans handling students who had some of the old
courses and wanted to take some of the new courses, and so on.

Beginning conversations early, listening carefully, and making
adjustments that seemed small to us but were important to others
helped this process go forward without any significant obstacles.

8 DELIVERY (2021 ONWARD)
Final approval of the new courses was given during the 2020–2021
academic year, with the new curriculum rules for the BS CS go-
ing into effect for the 2021–2022 academic year. Due to approvals
needed at the state level4 and from multiple departments, we antici-
pate the new curriculum rules for the BA CS and BS CpE degrees to
go into effect for the 2022–2023 academic year. The first non-pilot
versions of the new courses will be offered in the fall of 2021.

In designing the transition path, we first identified which new
courses were close enough to current courses that students could
take either one and still have a reasonable expectation of having
learned the prerequisite content needed for subsequent courses.
That still left a set of six courses in the old curriculumwhose content
had been redistributed over five courses in the new curriculum in a
way that made mixing the two inadvisable.

We then created a schedule of when each new course would
first be offered and when each old course would last be offered and
moved through it for each degree program, ensuring that regardless
of which semester a student first took a course in either sequence,
all of the remaining courses in that sequence would be available to
them. After several iterations, we found a schedule that meets this
goal with most courses being offered with only a single semester of
overlap between old and new offerings, a level manageable within
our current course staffing process.

9 NEW CURRICULUM OVERVIEW
9.1 Introduction to Programming
We changed our introduction to programming courses (CS1) early
in the curriculum design process because clear requirements im-
pacting only a few courses emerged early in the process. Prior to
the change, CS1 taught basic object-oriented programming in Java,
an approach that did not serve the needs of non-majors. After the
change, CS1 teaches basic imperative programming with functional
decomposition and basic debugging skills; it is formally language-
agnostic, thought most sections teach Python. While designed to
help non-majors, other departments, and transfer students, this
change has also proven popular among CS faculty.

3The number of approval levels varies between the College of Arts and Sciences and
the School of Engineering and Applied Science, and both were required to change the
BA CS and BS CS.
4The BA CS changes required state approval due to transitioning from an Interdisci-
plinary Major to a stand-alone program.

9.2 The CS Foundation
We identified seven courses as the new CS Foundation. All of these
depend onCS1, and collectively they provide the prerequisite knowl-
edge for almost all5 CS electives.

The foundation is divided into two levels: the first level depends
only on Introduction to Programming, while the second level de-
pends on the first level of foundation courses. The prerequisite
chain of the courses (new and old) is presented in Figure 1.

9.2.1 First Level. The first level of the foundation intentionally
consists of courses that are similar to courses taught in our local
community colleges and in many other institutions. We want these
courses to be easy to fill with transfer credit.

Data Structures and Algorithms 1 DSA1 is similar to other
a data structures in Java courses, including searching and
sorting algorithms and basic asymptotic analysis. DSA1 also
introduces statically-typed languages and the use of an IDE.
DSA1 includes a brief introduction to threads and concur-
rency to queue up the topic for later courses.

Discrete Math and Theory 1 DMT1 is similar to other dis-
crete mathematics courses. It is more proof-oriented than
some other offerings, emphasizing prose proof construction,
mathematical induction, and conversion between English
and Math, as well as introducing sets, functions, and logic.
DMT1 includes a brief introduction to state machines, which
are used to explain topics in later courses.

Computer Systems and Organization 1 CSO1 is an intro-
ductory systems course, covering binary, assembly, and C.
CSO1 also teaches how to use command-line tools and man-
ual pages. Not all schools offer a course like CSO1, but our
faculty deemed it important for many fields, including secu-
rity, cyberphysical systems, and emerging architectures.

9.2.2 Second Level. The second level foundation courses build off
the first with the joint goal that all themajor prerequisite knowledge
needed by an introductory electives in any subfield of computer
science is covered by some combination of these courses. Unlike
the first level, alignment with other programs was not a design
objective.

Data Structures and Algorithms 2 DSA2 is similar to many
algorithms courses, covering the implementation and anal-
ysis of common greedy, dynamic programming, and graph
algorithms. DSA2 also covers the basic concepts of machine
learning: the structure of data-driven algorithms generally,
the use of training and test data, and and introduction to
neural networks.

Discrete Math and Theory 2 DMT2 is primarily a computa-
tional theory courses, covering languages and machines,
computability, and complexity classes. Because it has DSA2
as a prerequisite, it includes analysis of specific nontrivial
algorithms and algorithm families. Because it has CSO1 as
a prerequisite, it discusses unclocked digital circuits as an
example of a realistic non-Turing-complete computational
model. DMT2 also serves as the course where students learn
how to design their own proofs.

5The exception is tightly-coupled course sequences, such as Introduction to Cyberse-
curity being a prerequisite to two advanced security courses.

Session: Reducing Curricular Barriers SIGCSE ’22, March 3–5, 2022, Providence RI, USA

457

Computer Systems and Organization 2 CSO2 is a second
systems course, covering concepts needed to understand
hardware-based exploits like Meltdown, crpytographic pro-
tocols like HTTPS, and performance optimizations like lock-
free concurrent and cache-aware data structures. Major top-
ics come from architecture (caches, out-of-order processors,
and virtualmemory), operating systems (kernel vs usermode,
atomic operations and synchronization, and permission lists),
and networking (sockets, TCP/IP, and HTTP).

Software Development Essentials SDE serves as an intro-
duction to software engineering and the development of
software projects. Topics include object-oriented design, the
development lifecycle, unit testing, data languages like XML
and JSON, and the basics of databases and SQL. SDE also
teaches tools including testing frameworks, source control
systems, and automated build tools.

9.2.3 Crosscutting Concerns. During the design of the new cur-
riculum, some topics were discussed and found most appropriate
to distribute across all foundations courses instead of putting them
in just one single course.

Ethical and social issues are essential for all CS students. To
ensure all students see these topics, even those who take only a
few CS courses, each foundation course has specific ethical and
social issues it covers. These topics are selected to be motivated by
and related to that course’s content; for example, CSO1 teaches the
command-line so one of its topics is the equity conflict inherent in
“power-user interfaces" (like command-lines) that give more power
to those who have the resources necessary to learn them.

We want students to gain proficiency in some programming
language at a level greater than they’d gain in a single semester.
Because of this, DSA1, DSA2, and SDE all have a non-functional
requirement that all of their programming be done in the same
language (currently Java).

9.3 Electives
Most computing elective courses in our old curriculum identified
one course – Program and Data Representation – as the only prereq-
uisite. With the new CS Foundation, we were able to create much
more fine-grained prerequisites for upper-level electives, allowing
students to potentially take them earlier in their program, while
simultaneously taking the enrollment pressure and potential stress
out of a perceived “weed-out course.” We also anticipate the new
structure will help faculty better understand what students come
in to their course knowing.

10 LESSONS LEARNED
In our eight-year (and still ongoing) experience with evaluating
and redesigning our curriculum, there are some key lessons that
we learned that we believe may aid other departments who want
to undertake a similar undertaking.

10.0.1 Listen to All of Your Stakeholders. As we began to engage
with faculty, students, accreditors, administration, staff, and in-
dustry partners, it became increasingly clear that every group of
stakeholders had their own needs and insights. If we had only
worked with just the computer science faculty, we would have

overlooked numerous potential opportunities and issues that could
arise from the new curriculum.

10.0.2 Take Your Time to Get it Right. There is a definite desire
when going through a curriculum change to just “get it done,” par-
ticularly if there is momentum from the faculty and students. How-
ever, there are numerous concerns that have to be addressed at
each phase of the process. Establish a timeline and goal for your
effort, identifying key dates for when the different phases should be
completed, and work toward those goals. Be realistic with yourself
with how long it will take to complete each phase. It is better to take
longer and ensure that all stakeholders are on board and invested
in the changes rather than to try to push through quicker.

10.0.3 Avoid Confusing or Controversial Naming. We learned early
on that small things, such as calling the set of required courses
“core” classes, can quickly become rallying points for those that are
resisting change. This problem also arose with the original names
and numbers selected for the new Foundation courses. When these
difficulties begin to appear, immediately work with the parties
involved to determine what they believe a proper name should
be. Not only will you hopefully avoid the problem, but the parties
involved may feel even more invested in the process.

10.0.4 Pilot New Courses. Piloting new courses is a major under-
taking, but one that is well worth it if you have the time and re-
sources. Since we were creating new courses, we wanted to make
sure that the structure and delivery of the material matched with
the expected learning outcomes. Piloting the courses also led to
positive word-of-mouth about the upcoming curriculum changes
and students asking when they could start the new courses. While
we encourage piloting new courses, departments need to consider
potential difficulties that will arise:

• What happens if a student fails a pilot course?
• How will exceptions in student records be handled?
• Who will do advising for these students?
• How will you gather feedback and use that to improve the
courses?

10.0.5 Plan for a Long Transition. Similar to taking your time while
designing the new curriculum, know that there is often not an
opportunity to just “switch over” all students into a new curriculum.
Plan out how many semesters you will need to teach previous
courses and how you will introduce the new courses. You will also
need to create new advising material to guide new students into
the new curriculum instead of starting to take older courses. Share
these plans with administration and, more importantly, any student-
facing staff members in the department and registrar’s office. These
individuals often take the brunt of student questions and will need
up-to-date information to aid them.

ACKNOWLEDGMENTS
While the authors led this effort, it would not have happened
without the support of more than 150 contributors, including fac-
ulty, students, and especially our long-suffering and infinitely-
accommodating student-facing staff. Thanks also to our department
leadership who remained committed even as our initial two-year
brainstorm turned into a ten-year process.

Session: Reducing Curricular Barriers SIGCSE ’22, March 3–5, 2022, Providence RI, USA

458

REFERENCES
[1] Ken Abernethy and Kevin Treu. 2014. Integrating Sustainability across the

Computer Science Curriculum. J. Comput. Sci. Coll. 30, 2 (Dec. 2014), 220–228.
[2] ACM/IEEE-CS Joint Task Force on Computing Curricula. 2013. Computer Science

Curricula 2013. Technical Report. ACM Press and IEEE Computer Society Press.
https://doi.org/10.1145/2534860

[3] Ismail Bile Hassan, Thanaa Ghanem, David Jacobson, Simon Jin, Katherine John-
son, Dalia Sulieman, and Wei Wei. 2021. Data Science Curriculum Design: A Case
Study. Association for Computing Machinery, New York, NY, USA, 529–534.
https://doi.org/10.1145/3408877.3432443

[4] Dianne P. Bills and Roxanne L. Canosa. 2007. Sharing Introductory Programming
Curriculum across Disciplines. In Proceedings of the 8th ACM SIGITE Conference on
Information Technology Education (Destin, Florida, USA) (SIGITE ’07). Association
for Computing Machinery, New York, NY, USA, 99–106. https://doi.org/10.1145/
1324302.1324324

[5] Jean R. S. Blair, Christa M. Chewar, Rajendra K. Raj, and Edward Sobiesk. 2020.
Infusing Principles and Practices for Secure Computing Throughout an Under-
graduate Computer Science Curriculum. In Proceedings of the 2020 ACM Confer-
ence on Innovation and Technology in Computer Science Education (Trondheim,
Norway) (ITiCSE ’20). Association for Computing Machinery, New York, NY,
USA, 82–88. https://doi.org/10.1145/3341525.3387426

[6] Deborah Boisvert, Robert Cohen, Oscar Gutierrez, and Joyce LaTulippe. 2006.
Achieving a Regional Process for Curriculum Development. In Proceedings of the
7th Conference on Information Technology Education (Minneapolis, Minnesota,
USA) (SIGITE ’06). Association for Computing Machinery, New York, NY, USA,
59–64. https://doi.org/10.1145/1168812.1168829

[7] James P. Cohoon, J. McGrath Cohoon, and Mary Lou Soffa. 2013. Educating
Diverse Computing Students at the University of Virginia. Computer 46, 3
(March 2013), 52–55. https://doi.org/10.1109/MC.2013.39

[8] James P. Cohoon and Luther A. Tychonievich. 2011. Analysis of a CS1 Approach
for Attracting Diverse and Inexperienced Students to Computing Majors. In
Proceedings of the 42nd ACM Technical Symposium on Computer Science Education
(Dallas, TX, USA) (SIGCSE ’11). Association for Computing Machinery, New York,
NY, USA, 165–170. https://doi.org/10.1145/1953163.1953217

[9] Ben Coleman and Matthew Lang. 2012. Collaboration across the Curriculum: A
Disciplined Approach Todeveloping Team Skills. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education (Raleigh, North Carolina,
USA) (SIGCSE ’12). Association for Computing Machinery, New York, NY, USA,
277–282. https://doi.org/10.1145/2157136.2157220

[10] UVA CS Undergraduate Curriculum Committee. 2014. Computer Science Curricula
2013 Evaluation Report. The University of Virginia. https://www.cs.virginia.edu/
~sherriff/papers/UVACS-CS2013Report.pdf

[11] Sebastian Dziallas and Sally Fincher. 2015. ACMCurriculum Reports: A Pedagogic
Perspective. In Proceedings of the Eleventh Annual International Conference on
International Computing Education Research (Omaha, Nebraska, USA) (ICER ’15).
Association for Computing Machinery, New York, NY, USA, 81–89. https://doi.
org/10.1145/2787622.2787714

[12] CC2020 Task Force. 2020. Computing Curricula 2020: Paradigms for Global Com-
puting Education. Association for Computing Machinery, New York, NY, USA.

[13] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., USA.

[14] Mikey Goldweber, Joyce Currie Little, Gerry Cross, Renzo Davoli, Charles
Riedesel, Brian R. von Konsky, and Henry Walker. 2010. Enhancing the So-
cial Issues Components in Our Computing Curriculum: Computing for the Social
Good. In Proceedings of the 2010 ITiCSE Working Group Reports (Ankara, Turkey)
(ITiCSE-WGR ’10). Association for Computing Machinery, New York, NY, USA,
117–133. https://doi.org/10.1145/1971681.1988996

[15] Jim Hoag. 2013. Evolution of a Cybersecurity Curriculum. In Proceedings of the
2013 on InfoSecCD ’13: Information Security Curriculum Development Conference
(Kennesaw GA, USA) (InfoSecCD ’13). Association for Computing Machinery,
New York, NY, USA, 94–99. https://doi.org/10.1145/2528908.2528925

[16] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Övergaard. 1992.
Object-Oriented Software Engineering: A Use Case Driven Approach. ACM Press.
Addison–Wesley, USA, 69–70.

[17] Reza Kamali, Samuel Liles, Charles Winer, Keyuan Jiang, and Barbara Nicolai.
2005. An Implementation of the SIGITE Model Curriculum. In Proceedings
of the 6th Conference on Information Technology Education (Newark, NJ, USA)
(SIGITE ’05). Association for Computing Machinery, New York, NY, USA, 15–17.

https://doi.org/10.1145/1095714.1095720
[18] M. R. K. Krishna Rao, S. Junaidu, T. Maghrabi, M. Shafique, M. Ahmed, and K.

Faisal. 2005. Principles of Curriculum Design and Revision: A Case Study in
Implementing Computing Curricula CC2001. SIGCSE Bull. 37, 3 (June 2005),
256–260. https://doi.org/10.1145/1151954.1067515

[19] M. Manny Lehman and Les A. Belady. 1985. Program evolution: processes of
software change. Academic Press, USA.

[20] Paul Leidig, Michael Goldweber, and Barbara Boucher Owens. 2012. Assess-
ing the Benefits of Integrating Social Issues Components in the Computing
Curriculum. In Proceedings of the 17th ACM Annual Conference on Innovation
and Technology in Computer Science Education (Haifa, Israel) (ITiCSE ’12). As-
sociation for Computing Machinery, New York, NY, USA, 367–368. https:
//doi.org/10.1145/2325296.2325382

[21] Joyce Currie Little, Richard H. Austing, Harice Seeds, JohnManiotes, and Gerald L.
Engel. 1977. Curriculum Recommendations and Guidelines for the Community
and Junior College Career Program in Computer Programming: A Working
Paper of the Association for Computing Machinery Committee on Curriculum
in Computer Sciences by the Sub Committee on Community and Junior College
Curriculum. SIGCSE Bull. 9, 2 (June 1977), 17–36. https://doi.org/10.1145/988948.
988951

[22] The University of Virginia Registrar. 2021. Computer Engineering. The University
of Virginia. http://records.ureg.virginia.edu/preview_program.php?catoid=52&
poid=6751

[23] The University of Virginia Registrar. 2021. Computer Science (B.S.). The University
of Virginia. http://records.ureg.virginia.edu/preview_program.php?catoid=52&
poid=6753

[24] The University of Virginia Registrar. 2021. Interdisciplinary Major in Computer
Science. The University of Virginia. http://records.ureg.virginia.edu/preview_
program.php?catoid=52&poid=6752

[25] ACM/IEEE-CS Joint Task Group on Computer Engineering Curricula. 2016. Com-
puter Engineering Curricula 2016: Curriculum Guidelines for Undergraduate Degree
Programs in Computer Engineering. ACM Press and IEEE Computer Society Press,
New York, NY, USA.

[26] ACM/IEEE-CS Joint Task Force on Computing Curricula. 2015. Software Engineer-
ing 2014: Curriculum Guidelines for Undergraduate Degree Programs in Software
Engineering. ACM Press and IEEE Computer Society Press, New York, NY, USA.

[27] Joint Task Force on Cybersecurity Education. 2018. Cybersecurity Curricula
2017: Curriculum Guidelines for Post-Secondary Degree Programs in Cybersecurity.
Association for Computing Machinery, New York, NY, USA.

[28] Krassie Petrova, Anne Philpott, Petteri Kaskenpalo, and Jim Buchan. 2004. Em-
bedding Information Security Curricula in Existing Programmes. In Proceedings
of the 1st Annual Conference on Information Security Curriculum Development
(Kennesaw, Georgia) (InfoSecCD ’04). Association for Computing Machinery, New
York, NY, USA, 20–29. https://doi.org/10.1145/1059524.1059529

[29] Charles W. Reynolds. 2006. Engineering the Information Technology Curriculum
with Pervasive Themes. In Proceedings of the 7th Conference on Information
Technology Education (Minneapolis, Minnesota, USA) (SIGITE ’06). Association
for Computing Machinery, New York, NY, USA, 141–148. https://doi.org/10.
1145/1168812.1168847

[30] Takayuki Sekiya, YoshitatsuMatsuda, and Kazunori Yamaguchi. 2015. Curriculum
Analysis of CS Departments Based on CS2013 by Simplified, Supervised LDA. In
Proceedings of the Fifth International Conference on Learning Analytics And Knowl-
edge (Poughkeepsie, New York) (LAK ’15). Association for Computing Machinery,
New York, NY, USA, 330–339. https://doi.org/10.1145/2723576.2723594

[31] Blair Taylor and Shiva Azadegan. 2006. Threading Secure Coding Principles and
Risk Analysis into the Undergraduate Computer Science and Information Systems
Curriculum. In Proceedings of the 3rd Annual Conference on Information Security
Curriculum Development (Kennesaw, Georgia) (InfoSecCD ’06). Association for
Computing Machinery, New York, NY, USA, 24–29. https://doi.org/10.1145/
1231047.1231053

[32] Allen B. Tucker. 1991. Computing Curricula 1991. Commun. ACM 34, 6 (June
1991), 68–84. https://doi.org/10.1145/103701.103710

[33] Luther A. Tychonievich. 2017. Training Course for Teaching Assistants in Com-
puting. https://www.cs.virginia.edu/luther/ta-training. Accessed 2021-07-29.

[34] Jaideep Vaidya, Basit Shafiq, David Lorenzi, and Nazia Badar. 2013. Incorporating
Privacy into the Undergraduate Curriculum. In Proceedings of the 2013 on InfoS-
ecCD ’13: Information Security Curriculum Development Conference (Kennesaw
GA, USA) (InfoSecCD ’13). Association for Computing Machinery, New York, NY,
USA, 1–7. https://doi.org/10.1145/2528908.2528918

Session: Reducing Curricular Barriers SIGCSE ’22, March 3–5, 2022, Providence RI, USA

459

https://doi.org/10.1145/2534860
https://doi.org/10.1145/3408877.3432443
https://doi.org/10.1145/1324302.1324324
https://doi.org/10.1145/1324302.1324324
https://doi.org/10.1145/3341525.3387426
https://doi.org/10.1145/1168812.1168829
https://doi.org/10.1109/MC.2013.39
https://doi.org/10.1145/1953163.1953217
https://doi.org/10.1145/2157136.2157220
https://www.cs.virginia.edu/~sherriff/papers/UVACS-CS2013Report.pdf
https://www.cs.virginia.edu/~sherriff/papers/UVACS-CS2013Report.pdf
https://doi.org/10.1145/2787622.2787714
https://doi.org/10.1145/2787622.2787714
https://doi.org/10.1145/1971681.1988996
https://doi.org/10.1145/2528908.2528925
https://doi.org/10.1145/1095714.1095720
https://doi.org/10.1145/1151954.1067515
https://doi.org/10.1145/2325296.2325382
https://doi.org/10.1145/2325296.2325382
https://doi.org/10.1145/988948.988951
https://doi.org/10.1145/988948.988951
http://records.ureg.virginia.edu/preview_program.php?catoid=52&poid=6751
http://records.ureg.virginia.edu/preview_program.php?catoid=52&poid=6751
http://records.ureg.virginia.edu/preview_program.php?catoid=52&poid=6753
http://records.ureg.virginia.edu/preview_program.php?catoid=52&poid=6753
http://records.ureg.virginia.edu/preview_program.php?catoid=52&poid=6752
http://records.ureg.virginia.edu/preview_program.php?catoid=52&poid=6752
https://doi.org/10.1145/1059524.1059529
https://doi.org/10.1145/1168812.1168847
https://doi.org/10.1145/1168812.1168847
https://doi.org/10.1145/2723576.2723594
https://doi.org/10.1145/1231047.1231053
https://doi.org/10.1145/1231047.1231053
https://doi.org/10.1145/103701.103710
https://www.cs.virginia.edu/luther/ta-training
https://doi.org/10.1145/2528908.2528918

	Abstract
	1 Introduction
	2 Related Work
	3 Curriculum History
	4 Why make a change?
	5 Requirements Elicitation (2014–2017)
	6 Design (2017–2018)
	7 Implementation and Testing (2018–2020)
	7.1 Piloting New Courses
	7.2 Updating Rules

	8 Delivery (2021 onward)
	9 New curriculum overview
	9.1 Introduction to Programming
	9.2 The CS Foundation
	9.3 Electives

	10 Lessons Learned
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 49.66, 79.61 Width 250.02 Height 80.49 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 49.6615 79.6149 250.0198 80.4858

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 7
 0
 1

 1

 HistoryList_V1
 qi2base

