
CS Education for the Socially-Just Worlds We Need
The Case for Justice-Centered Approaches to CS in Higher Education

Kevin Lin
Paul G. Allen School of Computer Science & Engineering

University of Washington
Seattle, WA, USA
kevinl@cs.uw.edu

ABSTRACT
Justice-centered approaches to equitable computer science (CS)
education frame CS learning as a means for advancing peace, an-
tiracism, and social justice rather than war, empire, and corpora-
tions. However, most research in justice-centered approaches in CS
education focus on K–12 learning environments. In this position
paper, we review justice-centered approaches to CS education, prob-
lematize the lack of justice-centered approaches to CS in higher
education in particular, and describe a justice-centered approach
for undergraduate Data Structures and Algorithms. Our approach
emphasizes three components: (1) ethics: critiques the sociopolitical
values of data structure and algorithm design as well as the under-
lying logics of dominant computing culture; (2) identity: draws on
culturally responsive-sustaining pedagogies to emphasize student
identity as rooted in resistance to the dominant computing culture;
and (3) political vision: ensures the rightful presence of political
struggles by reauthoring rights to frame CS learning as a force for
social justice. Through a case study of this Critical Comparative
Data Structures and Algorithms pedagogy, we argue that justice-
centered approaches to higher CS education can help all computing
students not only learn about the ethical implications of nominally
technical concepts, but also develop greater respect for diverse epis-
temologies, cultures, and experiences surrounding computing that
are essential to creating the socially-just worlds we need.

CCS CONCEPTS
• Social and professional topics → Computing education.

KEYWORDS
critical pedagogy; cultural competence; culturally responsive peda-
gogy; data structures; ethics; identity; political vision; social justice
ACM Reference Format:
Kevin Lin. 2022. CS Education for the Socially-Just Worlds We Need: The
Case for Justice-Centered Approaches to CS in Higher Education. In Proceed-
ings of the 53rd ACM Technical Symposium on Computer Science Education V.
1 (SIGCSE 2022), March 3–5, 2022, Providence, RI, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3478431.3499291

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2022, March 3–5, 2022, Providence, RI, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9070-5/22/03. . . $15.00
https://doi.org/10.1145/3478431.3499291

1 INTRODUCTION
Dominant approaches to CS education frame “equity as inclusion”
[4], emphasizing (for example) capacity, access, and participation in
CS education for all students [12]. This assumes that all students
want to learn CS the way we currently teach it. “However, are
we satisfied with everyone learning to code, if the end game is
to produce (admittedly more ‘diverse’) coders who will primarily
work to ensure the continued profitability of capitalist start-ups
and technology giants?” [6]. Are the more ‘diverse’ students we
wish to recruit and retain satisfied with this vision for CS?

Beyond capacity, access, and participation, Fletcher and Warner
describe student experience as the fourth component of the CAPE
framework for assessing equity in CS education. While student
performance measures such as course grades provide one means of
assessing equity in outcomes, they argue that “truly equitable expe-
riences must go beyond these simple outcome measures” in order to
“create an environment where all students feel they belong, instruc-
tion is inclusive, and diverse perspectives are valued explicitly” [12].
Proponents of critical CS education [18, 31] argue that teaching
computer science content knowledge alone is not enough “because
they do not consider the perspective of the group being served” [15].
Dominant approaches to CS educationmarginalize diverse students’
identities and political values by positioning CS education as a force
for reproducing social inequity—more interested in maximizing ef-
ficiency and profit than doing good [4, 7, 28, 31, 32, 34, 36–38].

Informed by critical theory, justice-centered approaches to CS
education complicate and challenge prior research efforts that “ex-
plain Black (and other minoritized) students’ motivations about
what to learn or not to learn as tied to their perceptions of what
is ‘geeky’ (or inversely what is ‘cool’),” instead emphasizing “more
complex dynamics underlying student resistance or interest” to-
ward learning CS such as students’ identities and political values
[37]. Justice-centered approaches are currently emphasized in K–
12 CS education through curricula such as Exploring Computer
Science [31], but they are relatively absent in higher CS education
research and practice. In this position paper, we argue for justice-
centered approaches to CS in higher education. Section 2 reviews
the literature on justice-centered approaches that center ethics,
identity, and political vision. Section 3 makes the case for attention
to justice-centered approaches in higher CS education. Section 4
problematizes dominant approaches to teaching undergraduate
Data Structures and Algorithms (CS2). Section 5 proposes a novel,
justice-centered approach for CS2 by applying critical pedagogy.
Our justice-centered CS2 presents a case study of how a course
that has traditionally marginalized all three of ethics, identity, and
political vision can be reauthored to center justice.

Session: Ethics — Proposals and Counternarratives SIGCSE ’22, March 3–5, 2022, Providence RI, USA

265

https://doi.org/10.1145/3478431.3499291
https://doi.org/10.1145/3478431.3499291
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3478431.3499291&domain=pdf&date_stamp=2022-02-22

2 JUSTICE-CENTERED CS EDUCATION
Vakil defines justice-centered approaches to CS education as attend-
ing to three features: the content of curriculum (centering ethics),
the design of learning environments (centering identity), and the
politics and purposes of CS education reform [36].

2.1 Ethics in the computing curriculum
Recent work in undergraduate computing ethics include standalone
ethics courses [9, 30]; integrated ethics across the curriculum [5, 14];
and integrated ethics modules or lessons in courses such as machine
learning [33], human-centered computing [35], and introductory
CS [8, 10]. Fiesler et al. analyzed 115 syllabi from tech ethics courses
and found that “many topics within tech ethics are high level and
conceptual when it comes to the impact of technology on society—
e.g., how human decisions are built into code, how technology can
reproduce and augment existing social inequalities, how data is
created by and directly impacts people, and how choices made at
both the level of companies and in small bits of code combine to
create large-scale social consequences” [11].

Critical approaches to tech ethics extend these ideas by empha-
sizing computing’s political power to reshape social structures and
hierarchies in the eye of the designer [9, 18, 24, 27, 32, 36, 37, 39].
Although Fiesler et al. argue that tech ethics “could be part of every
computing course” [11], the inclusion of tech ethics is challenged
by the hierarchy of knowledge in computing that prioritizes “tech-
nical” skills over “social” skills [27]. An analysis of 200 “technical”
artificial intelligence and machine learning courses by Saltz et al. re-
vealed only 12% of courses included some mention of ethics; and of
these 12% of courses, ethics-related topics were relegated to the last
two classes in the schedule and, in one course, left as a discussion
topic only “if time allows” [13].

The exclusion of ethics in computing courses produce a kind of
epistemic violence where dominant, “technical” ways of knowing
CS are reinforced while marginalized, “social” ways of knowing CS
are diminished. Malazita and Resetar observe this tension embedded
in the emphasis on abstraction: the fundamental concept that some
details or information are more relevant to a computational solution
than others. The absence of ethics combined with the emphasis on
abstraction defines CS education as not just apolitical (disregarding
political or ethical values) but rather anti-political: computing is
framed as a means of “solving” complex social problems by defining
abstractions to manage complexity [23].

But critical educators argue that this framing is problematic:
“quick ethics fixes, like modules largely developed for and within
computer science, are not a sufficient intervention to actually teach
CS students of how ethical challenges get resolved in real world
contexts” [27]. Rather, more interdisciplinary efforts are needed
to engage students with diverse stakeholders and collaborators
[27, 39]. In Design Justice, Costanza-Chock calls on us to “seek
more than ‘freedom from bias.’ For example, feminist and antiracist
currents within science and technology studies have gone beyond a
bias frame to unpack the ways that intersecting forms of oppression,
including patriarchy, white supremacy, ableism, and capitalism, are
constantly hard-coded into designed objects, platforms, and sys-
tems” [6]. Justice-centered approaches must teach students about
the relationships between computing, power, and identity.

2.2 Identity in the learning environment
Students have not only social identities such as race, gender, or
ethnicity, but also disciplinary identities that represent what they
might be able to do with computer science [37]. Although data on
social identity is often prominent in CS education research (e.g.
racial demographics), empirical or theoretical data on disciplinary
identity is often lacking [36] despite the importance of disciplinary
identity in shaping students’ sensemaking around the values of
CS [37]. For marginalized students who experience firsthand the
inequities in the social structures of schooling, their disciplinary
identity is inextricably linked to their political identity and their
commitment to issues of power and social justice [4, 36, 37]. Yet
dominant approaches to CS education that frame learning as anti-
political (where only the “technical” ideas count) emphasize that
CS has no space for students’ political identities.

Disciplinary identity is not only political, but also intersectional.
Just as Costanza-Chock emphasizes the intersecting oppressions
hard-coded in designed objects, students’ disciplinary identities are
also shaped by the “power dynamics that exemplifies racism, sex-
ism, socioeconomic status, homophobia, ableism, xenophobia, etc.”
[29]. To create more inclusive and anti-oppressive learning environ-
ments, Washington argues for cultural competence in computing
(3C): greater awareness, attitudes, knowledge, and skills toward
working effectively in cross-cultural situations [40]. To realize this,
Davis et al. define a framework for culturally responsive-sustaining
CS pedagogy to ensure that “students’ interests, identities and cul-
tures are embraced and validated, students develop knowledge of
computing content and its utility in the world, strong CS identi-
ties are developed, and students engage in larger socio-political
critiques about technology’s purpose, potential, and impact” [7].

2.3 Political vision for CS education
Given the importance of political identity toward students’ dis-
ciplinary identity and their understanding of tech ethics, justice-
centered approaches engage political identity by “collectively, clearly,
and unequivocally articulat[ing] a political vision for CS learning
anchored in principles of peace, antiracism, and justice” that “chal-
lenges the corporate technology sector on moral, epistemological,
and political grounds” [36]. Justice-centered approaches seek to
develop students’ sociopolitical consciousness: “the recognition
and desire to act upon societal inequities” through computing [22].

Integrating disciplinary identity and sociopolitical conscious-
ness, Calabrese Barton and Tan describe a framework of rightful
presence “towards making present the intersections of contempo-
rary (in)justices, while orienting towards new, just social futures”
[4]. Ko et al. argue for making injustices visible in CS education;
rightful presence does so by foregrounding social and political nar-
ratives as a core pedagogical practice. CS education’s commitment
to justice in the classroom and beyond can be enacted through polit-
ical activism in the classroom, such as “calls to action, practitioner
reflections, legislative engagement, and direct action” [24]. This po-
litical activism moves beyond narrow ethical critiques or modules
[27] and supports student agency to create the socially-just worlds
we need [6]. By articulating a just political vision for CS education,
ethics and identity “do not need to be ‘included’ in the curriculum”
because they will already be the center of inquiry [36].

Session: Ethics — Proposals and Counternarratives SIGCSE ’22, March 3–5, 2022, Providence RI, USA

266

3 WHY JUSTICE IN HIGHER CS EDUCATION
Recent research calls attention to the limitations of dominant and
epistemologically-exclusionary approaches to ethics in higher CS
education [5, 23, 27]. These critiques reveal problems arising from
the lack of attention to identity and political vision: CS educa-
tion that ultimately produces students whose anti-political val-
ues perpetuate injustice [4, 6, 23]; educators who feel the need
to avoid rather than address “political overtones” in ethics educa-
tion [5]; internship experiences that marginalize and oppress Black
women in computing [29]; and “well-intentioned” but culturally-
blind CS faculty [23, 40] whose resistance to critical interventions
and identity-centered instruction marginalizes students’ political
identities [25, 32, 36, 37, 39]. Ko et al. urge CS educators to make
injustices visible “through the problems we focus on in our class-
rooms; through who we choose to teach; in how we shape students’
career choices; and in how we conceptualize computing to journal-
ists, social scientists, and society” because “[t]he world has critical
questions about computing and it is time we started teaching more
critical answers” [18]. But much of the research on justice-centered
approaches to CS education focuses on K–12 learning environments
[4, 22, 31, 32, 34, 36, 38]; much less research focuses on higher edu-
cation. Ethics without identity or political vision is problematic.

We need justice-centered approaches to higher CS education
to support justice-centered K–12 CS education; to help programs
make progress toward diversity, equity, inclusion, and access (DEIA)
goals and broaden participation in computing (BPC); and to develop
student interest toward creating more socially-just worlds.

3.1 Support justice-centered K–12 CS education
Justice-centered approaches to higher CS education support the par-
allel and ongoing efforts in K–12 CS education across curricula such
as Exploring Computer Science [31], books such as Critically Con-
scious Computing: Methods for Secondary Education,1 and teacher
education programs such as the University of Washington’s STEP
CS.2 The current dominant approaches to higher CS education
place critically-conscious secondary educators in a difficult (and
potentially untenable) position. Given the need to make present
contemporary injustices, critical secondary educators must make
clear to their students that what awaits them in higher CS educa-
tion is an epistemologically-exclusive and anti-political experience
[23, 37]—one that often rejects ethics, marginalizes students’ social
and political identities, and envisions computing as a force for cor-
porate profit. Higher CS education risks not only undoing efforts in
K–12 CS education, but also subjecting undergraduate CS students
to epistemic, material, and physical harm [18, 25, 29, 36].

By making present these injustices, students are less likely to
put up with oppressive education systems. As justice-centered ap-
proaches become increasingly common, critically-conscious stu-
dents unsatisfied with dominant approaches to higher CS education
know to vote with their feet and enroll in programs that support
their CS identity. Institutions unresponsive to justice-centered ap-
proaches risk backsliding on recruiting and retaining diverse stu-
dents by failing to center marginalized students’ identities and
political values in computing.

1https://criticallyconsciouscomputing.org/
2https://criticalcsed.org/program/

3.2 Make progress toward DEIA goals and BPC
Justice-centered approaches to higher CS education can help under-
graduate computing programs realize diversity, equity, inclusion,
and access (DEIA) goals and broaden participation in computing
(BPC). These goals are not only initiated within institutions of
higher CS education, but also mandated by funding agencies for
certain research grants: the National Science Foundation Computer
and Information Science and Engineering directorate, for exam-
ple, recently began requiring principal investigators of proposals
submitted to selected programs to include a plan for broadening par-
ticipation in computing at the time of award.3 Fletcher and Warner
describe “CAPE: A Framework for Assessing Equity throughout the
Computer Science Education Ecosystem” that addresses capacity
for, access to, participation in, and experience of equitable CS edu-
cation [12]. Justice-centered approaches to CS education directly
affects student experience in the way they “explicitly address issues
of equity” and help “all students feel included and accepted” [12].

Attention to all three features of justice-centered approaches—
ethics, identity, and political vision—can help higher CS education
move “beyond equity as inclusion” [4] and address disparities in stu-
dent participation and experience by ensuring the rightful presence
of marginalized students’ interests in learning CS [4, 32]. Justice-
centered approaches can improve DEIA in programs and support
BPC efforts by centering the values, experiences, and purposes of
marginalized students through emphasis on computing’s social
responsibility [5, 18, 36], the disparate experiences of students with
dominant versus marginalized identities [28, 29, 34, 40], and the
political vision of computing toward realizing more socially-just
futures [6, 18, 36].

3.3 Reauthor CS for more just futures
Despite differences in curricula between institutions, higher CS
education shares common authors: the 1960s and 1970s academic
computer scientists whose dominant, European scientific values [2]
inspired a vision for computing that centered cognition and mathe-
matics [16, 27, 36] to the exclusion and marginalization of identity
and political vision [25, 32, 36, 37, 39]. Justice-centered approaches
to higher CS education enable teachers to engage students in a
process of reauthoring rights to value more diverse epistemologies
rather than expecting assimilation to dominant epistemologies [4].

The implications of reauthoring extend beyond the classroom
because they involve communication and learning not onlywith stu-
dents, but also with teachers as they navigate tensions between val-
ues and purposes for CS education. Reauthoring considers students’
cultural values, experiences, and ways of knowing as “integral to
disciplinary learning” [4]. To address today’s critical questions sur-
rounding social computation, dominant approaches that emphasize
an epistemological wall between the “technical” and the “social” are
not equipped to provide critical answers [18]. Reauthoring rights
through a process of political struggle and critical engagement—
involving both students and teachers—can move computing as a
discipline toward more critical perspectives that better appreciate
and understand the sociopolitical implications of computation for
all. In doing so, we develop student interest toward creating more
socially-just worlds.
3https://www.nsf.gov/cise/bpc/

Session: Ethics — Proposals and Counternarratives SIGCSE ’22, March 3–5, 2022, Providence RI, USA

267

https://criticallyconsciouscomputing.org/
https://criticalcsed.org/program/
https://www.nsf.gov/cise/bpc/

4 DATA STRUCTURES AND ALGORITHMS
In this section, we propose a justice-centered approach to teach-
ing undergraduate Data Structures and Algorithms, or “CS2” at
many institutions. While CS2 is a broad label representing the sec-
ond course in computer science, many CS2 courses emphasize the
design, implementation, and application of data structures and algo-
rithms. Through conversation with experienced instructors, Porter
et al. identified “two largely disjoint courses that are referred to in
the CS education community as CS2”—Basic Data Structures and
Advanced Data Structures [26]. They argue that, “At the end of a
course on Basic Data Structures, students should be able to:

(1) Analyze runtime efficiency of algorithms related to data
structure design.

(2) Select appropriate abstract data types for use in a given
application.

(3) Compare data structure tradeoffs to select the appropriate
implementation for an abstract data type.

(4) Design and modify data structures capable of insertion, dele-
tion, search, and related operations.

(5) Trace through and predict the behavior of algorithms (includ-
ing code) designed to implement data structure operations.

(6) Identify and remedy flaws in a data structure implementa-
tion that may cause its behavior to differ from the intended
design.

Advanced Data Structures extend these learning objectives to em-
phasize “topics that rely on earlier data structures (e.g., balanced
trees rely on BSTs, heaps rely on arrays)” as well as graph repre-
sentations and graph algorithms [26].

4.1 Dominant approaches to teaching CS2
Dominant approaches to teaching CS2 center the development of
cognitive skills toward relatively standardized data structures and
algorithms content knowledge: CS learning is ultimately about in-
creasing “individual comprehension of CS concepts and competent
programming performance” [16]. Although there is much to cri-
tique about dominant approaches, this cognitive framing for CS
learning does not necessarily imply that learning is decontextual-
ized or irrelevant to students. The persistent popularity of the “Nifty
Assignments” session at the annual ACM Technical Symposium on
Computer Science Education (SIGCSE) is a testament to CS1 and
CS2 educators’ desire to design and adapt assignments that connect
to students’ diverse interests for learning CS.

However, without justice-centered approaches, CS2 instructors
risk reproducing present-day oppressions. By teaching data struc-
tures as implementations for abstract data types, undergraduate
computing programs emphasize the dominant programming prac-
tice that uses abstract data types to free “a programmer from con-
cern about irrelevant details in his use of data abstractions” [21]—
the kind of content knowledge reinforcing the infrastructures of
abstraction that produce anti-political values [23]. By centering run-
time or space complexity analysis [26] as the primary (and some-
times only) method for evaluating data structure and algorithm
tradeoffs or design decisions, undergraduate computing programs
emphasize efficiency as the primary metric for determining the
quality of a computational solution. A more critical reading of
the CS2 learning goals reveals the limits of cognitive approaches

that frame algorithm design and implementation as “a means of
realizing a specification or abstract data type without critically
questioning the design of the abstraction” [6, 20, 23]. CS2’s con-
tent knowledge emphasis on implementations over abstractions
presents a unique challenge for critically-conscious and justice-
centered approaches. Sociopolitical values are encoded in the de-
sign of abstractions [6, 20], but CS2’s emphasis on implementations
avoids discussion of the difficult social contexts and instead focuses
on purely cognitive and mathematical analyses.

Justice-centered approaches are not necessarily mutually exclu-
sive to the dominant cognitive approach [16]. In the context of CS2,
undergraduate Data Structures and Algorithms content knowledge
is uniquely powerful: completion of a “Data Structures and Algo-
rithms” course offers a kind of limited certification to corporations
that a student meets some of the qualifications for software engi-
neering jobs. Completion of CS2 offers students easily-realizable
power afforded by social mobility because data structures and algo-
rithms content knowledge can prepare students for internships and
full-time work in computing industries. The financial opportuni-
ties afforded by access to high-paying jobs in computing research
and industry offers significant value to oppressed students who
might otherwise have few options to generate wealth, sustain their
communities, and escape poverty.

Where dominant approaches fail is in their inattention to the
participation and experience of marginalized students in comput-
ing. Dominant approaches to CS2 risk exacerbating inequity in
computing by creating and sustaining wealth for dominant stu-
dents and corporations overwhelmingly benefiting from higher CS
education’s production of anti-political programmers [6, 23, 36].
After all, anti-political programmers are good for maximizing profit:
they’re easy to control and unlikely to resist because they see their
design and engineering work as separate from the world. A justice-
centered approach to Data Structures and Algorithms not only
equips students with cognitive skills that unlock high-paying com-
puting jobs, but also teaches students how they might navigate the
tension around “selling out” their political commitments just to be
“a part of a huge unfeeling oppressive corporation that makes you
money sure, but never does something good” [37].

5 CRITICAL COMPARATIVE
DATA STRUCTURES AND ALGORITHMS

Critical Comparative Data Structures and Algorithms (CCDSA) is a
novel, justice-centered approach for teaching undergraduate Ad-
vanced Data Structures.

Ethics Critiques sociopolitical values of data structure and
algorithm design and dominant computing epistemologies
that approach social good without design justice.

Identity Centers students in culturally responsive-sustaining
pedagogies to resist dominant computing culture and value
Indigenous ways of living in nature.

Political vision Ensures the rightful presence of political strug-
gles through reauthoring rights and emphasizes the political
power of computing as a force for social justice in contrast to
dominant narratives around corporate profit and hegemony.

The approach relies on critical comparison as the primary method
of inquiry for centering ethics, identity, and political vision. The

Session: Ethics — Proposals and Counternarratives SIGCSE ’22, March 3–5, 2022, Providence RI, USA

268

method draws on traditions in critical pedagogy wherein structural
critiques are foregrounded in students’ education and injustices
are made present. Kafai et al. coined a more researcher-centered
view of the critical comparison approach: theory dialogue, which
is designed to engage the diversity of cognitive, situated, and criti-
cal framings for CS education by emphasizing “understanding of
key computational concepts, practices, and perspectives” (cognitive
framing); “stress[ing] personal creative expression and social en-
gagement” (situated framing); and respecting “the values, practices,
and infrastructure underlying computation as part of a broader goal
of education for justice” (critical framing) [16].

CCDSA does not strictly necessitate removing traditional, cog-
nitive content from CS2. Instead, the critical comparison method
enables learning of dominant knowledge to be framed from sev-
eral diverse epistemological perspectives—the situated and critical
framings often marginalized by dominant approaches. Although
foregrounding the critical framing does not completely erase the
tensions around “selling out,” it offers students “a new and exciting
possibility to be political while engaging in creating technology
within the context of [a] CS class” [37].

5.1 Ethics via epistemological comparison
The epistemological values of dominant approaches result in “eth-
ical and social interventions in CS education becom[ing] framed
as valuable in application-centered classes, like data visualization
or applied machine learning, but not in ‘core’ technical classes”
like CS2 [23]. CCDSA proposes countering the dominant narrative
by incorporating ethics as a type of algorithm analysis on equal
epistemological footing as runtime or space complexity analysis.

CCDSA engages ethics in CS2 with an affordance analysis of data
structures and algorithms [20]: a more critical algorithm analysis
that draws on critical methods from science and technology stud-
ies, philosophy of technology, and human-computer interaction in
order to evaluate the political consequences of data structures and
algorithms in social contexts and applications [20]. Unlike domi-
nant approaches to “algorithm analysis” that emphasize the internal
implementation of data structures and algorithms [26], affordance
analysis emphasizes the external interface of data structures and
algorithms as they are applied in real-world applications. While
dominant approaches to teaching abstraction risk producing “CS
students as knowers who organize the world through excision” and
abstraction [23], affordance analysis specifically problematizes the
affordances of abstract data types (e.g. priority queues) as they are
applied to problems (e.g. content moderation) by emphasizing how
the design of an abstraction encodes affordances that can have
political values [20]. While comparison between data structures
and algorithms on the basis of efficiency are important, CCDSA
emphasizes critical comparison between abstractions on the basis of
their sociopolitical implications.

However, CCDSA is not satisfied with affordance analysis alone.
Although affordance analysis makes space for sociotechnical cri-
tique of the design of computational solutions, “it is inherently
limited to the algorithmic components of a sociotechnical system”
and provides less instruction toward redressing harmful design
values [20], engaging epistemological limits [23], or reauthoring
the political purposes of CS [4, 37]. Costanza-Chock argues for

practices that move beyond the “universalizing assumptions behind
affordance theory” and instead attend to design justice that pushes
students to “think more critically about software, technology, and
design [. . .] in service of human liberation and ecological sustain-
ability” [6]. Echoing the centrality of ethics, identity, and political
vision in justice-centered CS education, design justice emphasizes
the design practices, design narratives, design sites, and design
pedagogies that create social conditions. Ethical analysis is not just
limited to the harmful computer technology itself, but also all of the
processes, infrastructures, and cultures that informed and enabled
its design, implementation, and deployment [6].

CCDSA engages design justice to move beyond affordance anal-
ysis toward critical comparison of computing epistemologies and
design narratives. Dominant approaches that center the software
designers/engineers are compared to justice-centered approaches
that position community members as the rightful designers. Design
justice highlights the need to reauthor relationships between “de-
signer” and “user” in order to give power back to people, rather than
corporations or governments that often design technologies with
little structural input from the people that they would most greatly
affect. “Design justice is interested in telling stories that amplify, lift
up, and make visible existing community-based design solutions,
practices, and practitioners” [6]. Design justice often manifests in
justice-centered approaches to K–12 CS education through projects
enable students to design for their own communities, needs, and
interests [7, 16, 32, 37]. In CCDSA, design justice counters the dom-
inant approach that emphasizes software design as elite, private,
and exclusionary; and instead centers community goals and values.

5.2 Identity via cultural comparison
CCDSA implements 5 of the 6 core components for culturally
responsive-sustaining CS pedagogy [7] to center student identity.
Although the framework emphasizes all three of ethics, identity,
and political vision, in this section we’ll focus on how it specifically
enables critical comparison of cultural approaches to computation.

5.2.1 Acknowledge racism in CS and enact antiracist practices. The
instructor leads fireside chats with teaching assistants (TAs) or
students to explore their social identities (e.g. race, gender, ethnic-
ity), their power and privileges, and how lived experiences have
shaped their worldviews. By calling-out sites of inequity in the CS
classroom and beyond, the teaching staff makes a commitment to
dismantling structural oppression and decenter whiteness [7, 29, 34].
Critical comparison is made between dominant European scientific
culture and Indigenous ways of living in nature [2] to engage the
limits of European scientific epistemology and knowledge.4

5.2.2 Create inclusive and equitable classroom cultures. Antiracist
practices are reinforced through course structure, assignments,
and policies. Instruction and assessment applies universal design
for learning to meet students’ diverse means of engagement, rep-
resentation, and action/expression [3] by valuing many reasons
to learn data structures and algorithms. A specifications-based
grading system enables creative assessments (e.g. self-reflections
and student-submitted video explanations) without assigning a de-
meaning, trivial percentage weight. The creative assessments give

4https://courses.cs.washington.edu/courses/cse373/22wi/

Session: Ethics — Proposals and Counternarratives SIGCSE ’22, March 3–5, 2022, Providence RI, USA

269

https://courses.cs.washington.edu/courses/cse373/22wi/

students full opportunity to collaborate on most of the work in
the course. Students are not only encouraged to collaborate but
also taught how to recognize, confront, and dispel stereotypes and
power imbalances that occur during teamwork [34].

5.2.3 Pedagogy and curriculum are rigorous, relevant, and encour-
age sociopolitical critiques. CCDSA recognizes the power afforded
to students by the cognitive framing (because CS2 offers social
mobility) but problematizes the applications of data structures and
algorithms toward social problems embedded in complex histor-
ical and sociopolitical context. Dominant approaches emphasize
programming implementation and asymptotic analysis, which ad-
mit little creativity and often leave students “subservient to the
micro-demands of the autograder” [23]. Critical comparison engages
students beyond programming and asymptotic analysis toward so-
ciopolitical critiques of technology in relation to people, places,
values, and hierarchies.5

5.2.4 Student voice, agency, and self-determination are prioritized
in CS classrooms. Evidence-based pedagogies such as POGIL [19]
offer a more structured approach to teamwork in order to ensure
equity and teach students process skills such as communication and
team management. POGIL classroom instruction is designed to am-
plify student voices rather than instructor voices. In particular, the
instructor never presents ideas on their own. Instead, they listen to
student teamwork on problems during class and amplify ideas gen-
erated during teamwork. Teaching assistants are specifically taught
to resist the dominant pedagogical culture of teacher-centered in-
struction. Problem sets previously handed out during recitations
are integrated into the main class and recitations are redesigned
around self-reflection, team reflection, and whole-recitation reflec-
tion. Cognitive ideas, process skills, and emotional experiences are
foregrounded through discussion with peers during recitations.

5.2.5 Family and community cultural assets are incorporated into
CS classrooms. Community and cultural engagement beyond the
scope of individual student experiences are not easily engaged by
the dominant approaches to higher STEM education—particularly
in large, research-oriented universities where impact is more largely
determined by national prestige than service to the local commu-
nity. Future work could examine the ways that higher CS education
can partner undergraduate students with local community organi-
zations in ways that are synergistic with the CS2 curriculum.

5.2.6 Diverse professionals and role models provide exposure to
a range of CS/tech careers. The teaching staff are often the most
visible people in the classroom, so effort is made to diversify in-
structors and TAs. TA recruitment and selection processes not only
emphasize “clarity, technical proficiency, use of whiteboard, and
responsiveness to student questions and needs” [17], but also cul-
tural competency [7, 40] and readiness to engage with culturally
responsive-sustaining CS pedagogy. Classroom and career advice
decenters dominant narratives around software engineering jobs
in order to highlight opportunities in academic research inside and
outside of CS, professional as well non-profit or volunteer opportu-
nities to teach CS in local communities, and roles for computing in
social change beyond critique [1].

5https://github.com/kevinlin1/huskymaps

5.3 Political vision via narrative comparison
The critical comparative approach to ethics and identity orients
CCDSA toward a political vision of CS for social justice: design
justice [6] and culturally responsive-sustaining pedagogy [7] go a
long way to making space for students to engage with sociopolitical
values in the computing classroom [32]. Implicit in all of this is a
vision of CS for social justice. CCDSA expands on this by explicitly
articulating a political vision of CS for social justice through critical
comparison of narratives and purposes for learning CS2.

From day one of class, teachers emphasize diverse end goals for
learning data structures and algorithms: not only the dominant
narrative around high-paying jobs in the tech industry, but also
marginalized narratives around how data structures and algorithms
content knowledge can support research, non-profit, and activist
work in revealing social inequities or enabling solutions for local
communities. By teaching identity via cultural comparison, teachers
break down normative barriers between students and teachers that
limit emotional communication—the idea of being distanced and
neutral STEM learners is rationalized by the dominant European
scientific culture. The establishment of this mutual trust and com-
mon understanding between students and teachers enables critique
of the “fraught histories” [4] of computing by connecting a thread
between the history of CS and present-day inequities. One such
thread spans (1) the invention of data structures and algorithms
for expressly military purposes, e.g. dynamic programming was
invented as a political cover for mathematics research given the
uncertainty around post-war US military research funding; into
(2) the authoring of computer science as an academic discipline
defined by post-war mathematics researchers seeking a new brand
for their cognitive mathematics work; finally leading to the (3)
the marginalization of many Black women computers who were
pushed out of programming once computing became perceived as
a profitable field for white men. By engaging this dialogue with
students through collaborative teamwork and creative assignments,
CCDSA develops students’ political vision through understanding
data structures and algorithms content knowledge not as a purely
“technical” and apolitical knowledge, but rather as a knowledge
situated in the political vision of the authors of the field.

6 CONCLUSION
The articulation of a political vision for CS centered in social justice
requires work not just in a single CS2 course but rather across all of
CS education. This is an ambitious project, one that will require us
to reprogram the defaults of CS education. But it’s also a project that
today’s CS educators do not need to solve alone: though today’s stu-
dents may be newcomers to CS, they are also precisely the people
whowill be the authors of our future worlds.Whenwe center ethics,
identity, and political vision in our culturally responsive-sustaining
pedagogy, we treat students as collaborators and co-creators of
education that works for them. Rather than seek assimilation of
diverse students into the dominant CS culture, justice-centered ap-
proaches ensure the rightful presence of students’ political struggles
for co-authorship in designing and imagining a new, more just CS
education. To create more socially-just worlds, we need to do more
than just teach students computer ethics. We need justice-centered
approaches to CS in higher education.

Session: Ethics — Proposals and Counternarratives SIGCSE ’22, March 3–5, 2022, Providence RI, USA

270

https://github.com/kevinlin1/huskymaps

REFERENCES
[1] Rediet Abebe, Solon Barocas, Jon Kleinberg, Karen Levy, Manish Raghavan, and

David G. Robinson. 2020. Roles for Computing in Social Change. In Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency. ACM, New
York, NY, USA. https://doi.org/10.1145/3351095.3372871

[2] Glen S. Aikenhead and Masakata Ogawa. 2007. Indigenous knowledge and
science revisited. Cultural Studies of Science Education 2, 3 (9 2007), 539–620.
https://doi.org/10.1007/s11422-007-9067-8

[3] Sheryl Burgstahler. 2011. Universal Design: Implications for Computing Ed-
ucation. ACM Transactions on Computing Education 11, 3 (10 2011). https:
//doi.org/10.1145/2037276.2037283

[4] Angela Calabrese Barton and Edna Tan. 2020. Beyond Equity as Inclusion:
A Framework of “Rightful Presence” for Guiding Justice-Oriented Studies in
Teaching and Learning. Educational Researcher 49, 6 (8 2020), 433–440. https:
//doi.org/10.3102/0013189X20927363

[5] Lena Cohen, Heila Precel, Harold Triedman, and Kathi Fisler. 2021. A New Model
for Weaving Responsible Computing Into Courses Across the CS Curriculum. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education.
ACM, New York, NY, USA, 858–864. https://doi.org/10.1145/3408877.3432456

[6] Sasha Costanza-Chock. 2020. Design Justice: Community-Led Practices to Build
the Worlds We Need. The MIT Press, Cambridge, MA, USA.

[7] Kalisha Davis, Shana V White, Becton-Consuegra Dinah, and Allison Scott. 2021.
Culturally Responsive-Sustaining Computer Science Education: A Framework. Tech-
nical Report. Kapor Center. https://www.kaporcenter.org/equitablecs/

[8] Stacy A. Doore, Casey Fiesler, Michael S. Kirkpatrick, Evan Peck, and Mehran
Sahami. 2020. Assignments that Blend Ethics and Technology. In Proceedings of
the 51st ACM Technical Symposium on Computer Science Education. ACM, New
York, NY, USA, 475–476. https://doi.org/10.1145/3328778.3366994

[9] Rodrigo Ferreira and Moshe Y. Vardi. 2021. Deep Tech Ethics: An Approach to
Teaching Social Justice in Computer Science. In Proceedings of the 52nd ACM
Technical Symposium on Computer Science Education. ACM, New York, NY, USA,
1041–1047. https://doi.org/10.1145/3408877.3432449

[10] Casey Fiesler, Mikhaila Friske, Natalie Garrett, Felix Muzny, Jessie J. Smith, and
Jason Zietz. 2021. Integrating Ethics into Introductory Programming Classes. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education.
ACM, New York, NY, USA, 1027–1033. https://doi.org/10.1145/3408877.3432510

[11] Casey Fiesler, Natalie Garrett, and Nathan Beard. 2020. What DoWe TeachWhen
We Teach Tech Ethics?. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education. ACM, New York, NY, USA, 289–295. https:
//doi.org/10.1145/3328778.3366825

[12] Carol L. Fletcher and Jayce R. Warner. 2021. CAPE. Commun. ACM 64, 2 (1 2021),
23–25. https://doi.org/10.1145/3442373

[13] Natalie Garrett, Nathan Beard, and Casey Fiesler. 2020. More Than "If Time
Allows": The Role of Ethics in AI Education. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society. ACM, New York, NY, USA. https://doi.org/
10.1145/3375627.3375868

[14] Barbara J. Grosz, David Gray Grant, Kate Vredenburgh, Jeff Behrends, Lily Hu,
Alison Simmons, and Jim Waldo. 2019. Embedded EthiCS. Commun. ACM 62, 8
(7 2019), 54–61. https://doi.org/10.1145/3330794

[15] Aleata Hubbard Cheuoua. 2021. Confronting Inequities in Computer Science
Education: A Case for Critical Theory. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education. ACM, New York, NY, USA. https:
//doi.org/10.1145/3408877.3432453

[16] Yasmin Kafai, Chris Proctor, and Debora Lui. 2019. From Theory Bias to Theory
Dialogue. In Proceedings of the 2019 ACM Conference on International Computing
Education Research. ACM, New York, NY, USA, 101–109. https://doi.org/10.1145/
3291279.3339400

[17] Amir Kamil, James Juett, and Andrew DeOrio. 2019. Gender-balanced TAs
from an Unbalanced Student Body. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education. ACM, New York, NY, USA. https:
//doi.org/10.1145/3287324.3287404

[18] Amy J. Ko, Alannah Oleson, Mara Kirdani-Ryan, Yim Register, Benjamin Xie,
Mina Tari, Matthew Davidson, Stefania Druga, and Dastyni Loksa. 2020. It is
time for more critical CS education. Commun. ACM 63, 11 (10 2020), 31–33.
https://doi.org/10.1145/3424000

[19] Clifton Kussmaul. 2012. Process Oriented Guided Inquiry Learning (POGIL)
for Computer Science. In Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education. ACM Press, New York, New York, USA. https:
//doi.org/10.1145/2157136.2157246

[20] Kevin Lin. 2021. DoAbstractions Have Politics? Toward aMore Critical Algorithm
Analysis. In 2021 Conference on Research in Equitable and Sustained Participation
in Engineering, Computing, and Technology (RESPECT). IEEE, 1–5. https://doi.
org/10.1109/RESPECT51740.2021.9620635

[21] Barbara Liskov and Stephen Zilles. 1974. Programming with abstract data types.
ACM SIGPLAN Notices 9, 4 (4 1974), 50–59. https://doi.org/10.1145/942572.807045

[22] Tia C. Madkins and Maxine McKinney de Royston. 2019. Illuminating political
clarity in culturally relevant science instruction. Science Education 103, 6 (11

2019), 1319–1346. https://doi.org/10.1002/sce.21542
[23] James W. Malazita and Korryn Resetar. 2019. Infrastructures of abstraction: how

computer science education produces anti-political subjects. Digital Creativity
30, 4 (10 2019), 300–312. https://doi.org/10.1080/14626268.2019.1682616

[24] Jared Moore. 2020. Towards a more representative politics in the ethics of
computer science. In Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency. ACM, New York, NY, USA, 414–424. https://doi.org/10.1145/
3351095.3372854

[25] Thomas M. Philip and Pratim Sengupta. 2021. Theories of learning as theories
of society: A contrapuntal approach to expanding disciplinary authenticity in
computing. Journal of the Learning Sciences 30, 2 (3 2021), 330–349. https:
//doi.org/10.1080/10508406.2020.1828089

[26] Leo Porter, Daniel Zingaro, Cynthia Lee, Cynthia Taylor, Kevin C. Webb, and
Michael Clancy. 2018. Developing Course-Level Learning Goals for Basic
Data Structures in CS2. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education. ACM, New York, NY, USA, 858–863. https:
//doi.org/10.1145/3159450.3159457

[27] Inioluwa Deborah Raji, Morgan Klaus Scheuerman, and Razvan Amironesei.
2021. You Can’t Sit With Us. In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency. ACM, New York, NY, USA, 515–525.
https://doi.org/10.1145/3442188.3445914

[28] Yolanda A. Rankin and Jakita O. Thomas. 2020. The Intersectional Experiences of
Black Women in Computing. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education. ACM, New York, NY, USA, 199–205. https:
//doi.org/10.1145/3328778.3366873

[29] Yolanda A. Rankin, Jakita O. Thomas, and Sheena Erete. 2021. Real Talk: Saturated
Sites of Violence in CS Education. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education, Vol. 12. ACM, New York, NY, USA,
802–808. https://doi.org/10.1145/3408877.3432432

[30] Rob Reich, Mehran Sahami, Jeremy M. Weinstein, and Hilary Cohen. 2020.
Teaching Computer Ethics. In Proceedings of the 51st ACM Technical Sym-
posium on Computer Science Education. ACM, New York, NY, USA, 296–302.
https://doi.org/10.1145/3328778.3366951

[31] Jean J. Ryoo. 2019. Pedagogy that Supports Computer Science for All. ACM
Transactions on Computing Education 19, 4 (11 2019), 1–23. https://doi.org/10.
1145/3322210

[32] Jean J. Ryoo, Tiera Tanksley, Cynthia Estrada, and Jane Margolis. 2020. Take
space, make space: how students use computer science to disrupt and resist
marginalization in schools. Computer Science Education 30, 3 (7 2020), 337–361.
https://doi.org/10.1080/08993408.2020.1805284

[33] Jeffrey Saltz, Michael Skirpan, Casey Fiesler, Micha Gorelick, Tom Yeh, Robert
Heckman, Neil Dewar, andNathan Beard. 2019. Integrating EthicswithinMachine
Learning Courses. ACM Transactions on Computing Education 19, 4 (11 2019),
1–26. https://doi.org/10.1145/3341164

[34] Niral Shah, Julie A. Christensen, Nickolaus A. Ortiz, Ai-Khanh Nguyen, Sungh-
wan Byun, David Stroupe, and Daniel L. Reinholz. 2020. Racial hierarchy and
masculine space: Participatory in/equity in computational physics classrooms.
Computer Science Education 30, 3 (7 2020), 254–278. https://doi.org/10.1080/
08993408.2020.1805285

[35] Michael Skirpan, Nathan Beard, Srinjita Bhaduri, Casey Fiesler, and Tom Yeh.
2018. Ethics Education in Context. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education. ACM, New York, NY, USA, 940–945.
https://doi.org/10.1145/3159450.3159573

[36] Sepehr Vakil. 2018. Ethics, Identity, and Political Vision: Toward a Justice-
Centered Approach to Equity in Computer Science Education. Harvard Educa-
tional Review 88, 1 (3 2018), 26–52. https://doi.org/10.17763/1943-5045-88.1.26

[37] Sepehr Vakil. 2020. “I’ve Always Been Scared That Someday I’m Going to
Sell Out”: Exploring the relationship between Political Identity and Learning in
Computer Science Education. Cognition and Instruction 38, 2 (4 2020), 87–115.
https://doi.org/10.1080/07370008.2020.1730374

[38] Sepehr Vakil and Maxine McKinney de Royston. 2019. Exploring Politicized Trust
in a Racially Diverse Computer Science Classroom. Race Ethnicity and Education
22, 4 (7 2019), 545–567. https://doi.org/10.1080/13613324.2019.1592846

[39] Sepehr Vakil and Jennifer Higgs. 2019. It’s about power. Commun. ACM 62, 3 (2
2019), 31–33. https://doi.org/10.1145/3306617

[40] Alicia Nicki Washington. 2020. When Twice as Good Isn’t Enough. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education. ACM, New
York, NY, USA, 213–219. https://doi.org/10.1145/3328778.3366792

Session: Ethics — Proposals and Counternarratives SIGCSE ’22, March 3–5, 2022, Providence RI, USA

271

https://doi.org/10.1145/3351095.3372871
https://doi.org/10.1007/s11422-007-9067-8
https://doi.org/10.1145/2037276.2037283
https://doi.org/10.1145/2037276.2037283
https://doi.org/10.3102/0013189X20927363
https://doi.org/10.3102/0013189X20927363
https://doi.org/10.1145/3408877.3432456
https://www.kaporcenter.org/equitablecs/
https://doi.org/10.1145/3328778.3366994
https://doi.org/10.1145/3408877.3432449
https://doi.org/10.1145/3408877.3432510
https://doi.org/10.1145/3328778.3366825
https://doi.org/10.1145/3328778.3366825
https://doi.org/10.1145/3442373
https://doi.org/10.1145/3375627.3375868
https://doi.org/10.1145/3375627.3375868
https://doi.org/10.1145/3330794
https://doi.org/10.1145/3408877.3432453
https://doi.org/10.1145/3408877.3432453
https://doi.org/10.1145/3291279.3339400
https://doi.org/10.1145/3291279.3339400
https://doi.org/10.1145/3287324.3287404
https://doi.org/10.1145/3287324.3287404
https://doi.org/10.1145/3424000
https://doi.org/10.1145/2157136.2157246
https://doi.org/10.1145/2157136.2157246
https://doi.org/10.1109/RESPECT51740.2021.9620635
https://doi.org/10.1109/RESPECT51740.2021.9620635
https://doi.org/10.1145/942572.807045
https://doi.org/10.1002/sce.21542
https://doi.org/10.1080/14626268.2019.1682616
https://doi.org/10.1145/3351095.3372854
https://doi.org/10.1145/3351095.3372854
https://doi.org/10.1080/10508406.2020.1828089
https://doi.org/10.1080/10508406.2020.1828089
https://doi.org/10.1145/3159450.3159457
https://doi.org/10.1145/3159450.3159457
https://doi.org/10.1145/3442188.3445914
https://doi.org/10.1145/3328778.3366873
https://doi.org/10.1145/3328778.3366873
https://doi.org/10.1145/3408877.3432432
https://doi.org/10.1145/3328778.3366951
https://doi.org/10.1145/3322210
https://doi.org/10.1145/3322210
https://doi.org/10.1080/08993408.2020.1805284
https://doi.org/10.1145/3341164
https://doi.org/10.1080/08993408.2020.1805285
https://doi.org/10.1080/08993408.2020.1805285
https://doi.org/10.1145/3159450.3159573
https://doi.org/10.17763/1943-5045-88.1.26
https://doi.org/10.1080/07370008.2020.1730374
https://doi.org/10.1080/13613324.2019.1592846
https://doi.org/10.1145/3306617
https://doi.org/10.1145/3328778.3366792

	Abstract
	1 Introduction
	2 Justice-Centered CS Education
	2.1 Ethics in the computing curriculum
	2.2 Identity in the learning environment
	2.3 Political vision for CS education

	3 Why Justice in Higher CS Education
	3.1 Support justice-centered K–12 CS education
	3.2 Make progress toward DEIA goals and BPC
	3.3 Reauthor CS for more just futures

	4 Data Structures and Algorithms
	4.1 Dominant approaches to teaching CS2

	5 Critical ComparativeData Structures and Algorithms
	5.1 Ethics via epistemological comparison
	5.2 Identity via cultural comparison
	5.3 Political vision via narrative comparison

	6 Conclusion
	References

