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Fig. 1. Results from our generative model of BRDF maps, assigned to a 3D object of a shoe. Circular insets show the diffuse, normal, roughness and specular

maps. Our model outputs a space of BRDF materials that can be sampled from, projected to, and interpolated across. The BRDF generative model is trained

exclusively from a set of (306) RGB flash images (example shown in the lower left inset) without any BRDF supervision, and shortly fine-tuned in the case of

material capture to best match the input picture.

We learn a latent space for easy capture, consistent interpolation, and ef-

ficient reproduction of visual material appearance. When users provide a

photo of a stationary natural material captured under flashlight illumina-

tion, first it is converted into a latent material code. Then, in the second

step, conditioned on the material code, our method produces an infinite

and diverse spatial field of BRDF model parameters (diffuse albedo, normals,

roughness, specular albedo) that subsequently allows rendering in complex

scenes and illuminations, matching the appearance of the input photograph.

Technically, we jointly embed all flash images into a latent space using a

convolutional encoder, and –conditioned on these latent codes– convert

random spatial fields into fields of BRDF parameters using a convolutional

neural network (CNN). We condition these BRDF parameters to match the

visual characteristics (statistics and spectra of visual features) of the input

under matching light. A user study compares our approach favorably to pre-

vious work, even those with access to BRDF supervision. Project webpage:

https://henzler.github.io/publication/neuralmaterial/.
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1 INTRODUCTION

Rendering realistic images for feature films or computer games

requires adequate simulation of light transport. Besides geometry

and illumination, an important factor is material appearance.

Material appearance has three aspects of variation: First, when

view or light direction change, reflected light changes. The physics

of this process is well-understood and can be simulated provided

the input parameters are available. Second, behavior changes across

materials. For example, leather reacts differently to light or view

changes than paper would, yet, different forms of leather clearly

share visual properties, i.e., form a (material) space. Third, appear-

ance details depend on spatial position. Different locations in the

same leather exemplar behave differently but share the same visual

statistics [Portilla and Simoncelli 2000], i.e., they form a texture.
Classic computer graphics captures appearance by reflection mod-

els, which predict for a given i) light-view configuration, ii) material,

and iii) spatial position, how much light is reflected. Typically, the

first variation (light and view direction) is covered by BRDF models,
analytic expressions, such as Phong [1975] which map the light and

view direction vector to scalar reflectance. The second variation

(material) is covered by choosing BRDF model parameters, such as

specularity or roughness. In practice, it can be difficult, given a

desired appearance, to choose those parameters e.g., how to make a

ar
X

iv
:2

10
2.

11
86

1v
2 

 [
cs

.G
R

] 
 1

0 
Se

p 
20

21

https://henzler.github.io/publication/neuralmaterial/


1:2 • Henzler et al.

leather look more like the one on a nice jacket. One can measure

BRDF model parameters, but it traditionally requires complex cap-

ture hardware for accurate results. The third variation (spatial) is

addressed by storing multiple BRDF model parameters in images

of finite size –often referred to as Spatially-varying Bi-directional

Reflectance Distribution Function (svBRDF) maps– or writing func-

tional expressions to reproduce their behaviour. It is even more

challenging to choose these parameters to produce something co-

herent like leather, in particular over a large to very large spatial

extent. Additionally, storing all these values requires substantial

memory and programming functional expressions to mimic their

statistics requires expert skills and time. Capturing the spatial vari-

ation of BRDF model parameters over space using sensors requires

even more complex hardware [Schwartz et al. 2013].

Addressing those issues, we provide a reflectance model to jointly

generalize across all of these three axes. Instead of using analytic pa-

rameters, we parametrize appearance by latent codes from a learned

space and our decoder weights, allowing for acquisition, interpo-

lation and generation. Without involved capture equipment, these

codes are produced by presenting the system a simple 2D flash im-

age, which is then embedded into the latent space. Avoiding to store

any finite image texture, we learn a second mapping to produce

svBRDF maps from the infinite random field (noise) on-the-fly, con-

ditioned on the latent material code and decoder weights. Instead of

using any advanced capture device for learning, flash images will be

the only supervision we use. This unsupervised approach allows us

to consider our decoder weights as part of the latent representation,

which we fine-tune at test time in a few minutes.

Fig. 2. BRDF space. From a flash image, which contains sparse observa-

tions across material, space and view-light (left) we map to a latent code z /
𝜃★ (middle) so that changes in these code can be decoded to enable (right)
material synthesis (holding material fixed and moving spatially), material

morphing (holding space and view/light fixed and changing material), or

classical shading and material generation (points in the latent space).

A use case of our approach is shown in Fig. 1. First, a user pro-

vides a “flash image”, a photo of a flat material sample under flash

illumination. This sample is embedded as a code into a latent space

using a CNN and used to fine-tune our decoders weights. This code

and weights can then be manipulated, e.g., interpolated with a differ-

ent material. Conditioned on this code, our fine-tuned decoder can

generate an infinite field of BRDF to be directly used in rendering.

For training, we solely rely on real flash images. The key insight,

inspired by Aittala et al. [2016], is that these flash images reveal the

same material at different image locations –they are stationary– but

under different view and light angles. Using this constraint, Aittala

et al. [2016] were able to decompose a small patch of a single input

image to capture the parameters of a material model that could

then be rendered under novel view or light directions. However, this

covers only part of the generalization we are targeting: it generalizes

across view and light, but not across location or material. Further,

they perform an optimization for every exemplar, requiring time in

the order of an hour, while ours takes minutes only.

In summary, our main contributions are

• a generative model of a BRDF material texture space;

• generation of maps that are diverse over the infinite plane;

• a flash image dataset of materials enabling our training with

no BRDF parameter supervision or synthetic data

Our implementation will be publicly available upon acceptance.

2 PREVIOUS WORK

Our work has background in texture analysis, appearance modelling

and design spaces as summarized in Tbl. 1 and discussed next.

Table 1. Comparison of features between different previousmethods.We dis-

tinguish methods producing RGB from those generating BRDF or svBRDF,
whether those can be Non-Stationary and Infinitely sampled. We also

distinguish if their results for one input can be Diverse, if they form a

Space which can be queried and how Fast direct sampling is.
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Classic texture synth RGB ✕ ✕ ✓ ✓ ✓ ✕ ✓
Matusik et al. [2005] RGB ✕ ✕ ✓ ✓ ✓ ✓ ✕

Matusik [2003] BRDF ✓ ✕ ✕ ✕ ✓ ✓ ✓
Georgoulis et al. [2017] BRDF ✓ ✕ ✕ ✕ ✕ ✓ ✓
Deschaintre et al. [2018] svBRDF ✓ ✓ ✕ ✕ ✕ ✕ ✓

Zhao et al. [2020] Flash image ✓ ✓ ✓ ✕ ✕ ✕ ✕

Aittala et al. [2016] Flash image ✓ ✓ ✓ ✕ ✕ ✕ ✕

Gao et al. [2019] svBRDF ✓ ✓ ✓ ✕ ✕ ✕ ✕

Guo et al. [2020b] svBRDF ✓ ✓ ✓ ✕ ✕ ✓ ✕

Ours Flash image ✓ ✓ ✕ ✓ ✓ ✓ ✓

2.1 Textures in Graphics

A classic definition of texture is defined by Julesz [1965]: a texture
is an image full of features that in some representation have the same
statistics. Portilla and Simoncelli [2000] have provided a practical

method to compute representations in which to do statistics on,

using linear filters on multiple scales.

Perlin [1985] was first to capture the fractal [Mandelbrot 1983]

stochastic variation of appearance in amodel applicable to Computer

Graphics. His approach is simple –a linear combination of noise at

different scales– yet extremely powerful, and has led to extensive

use in computer games and production rendering. Wavelet noise

[Cook and DeRose 2005] moved this idea further by band-limiting

the noise that is combined. Such methods can be used for materials,

e.g., gloss maps, bump maps, etc. It however does not provide a

solution to acquire a texture from an exemplar, which is left to

manual adjustment.
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To generate textures from exemplars, non-parametric sampling

[Efros and Leung 1999], vector quantization [Wei and Levoy 2000],

optimization [Kwatra et al. 2005] or nearest-neighbour field syn-

thesis (PatchMatch [Barnes et al. 2009]) have been proposed. They

however have issues in computational scalability and lack intuitive

control, limiting their adoption in production rendering or games.

The word “texture” can be ambiguous to mean stochastic varia-

tion, as well as images attached on surfaces to localize color features.

Here, we focus on stochastic variation in the sense of Julesz [1965]

or Portilla and Simoncelli [2000].

Our approach is inspired by deep learning-based texture synthe-

sis [Bergmann et al. 2017; Gatys et al. 2015; Johnson et al. 2016;

Karras et al. 2019; Sendik and Cohen-Or 2017; Shaham et al. 2019;

Simonyan and Zisserman 2014; Ulyanov et al. 2016, 2017; Zhou et al.

2018] which ideas we extend and apply to BRDFs. We detail their

background in Sec. 3.2

2.2 Material Modeling

Representing appearance in simulation-based graphics has been

an active research field for decades. The survey by Guarnera et al.

[2016] presents detailed discussion of the many different material

model and BRDF acquisition approach. In our method, we use a state-

of-the-art micro-facet BRDF model [Cook and Torrance 1982], and

focus on deep-learning based material modelling and acquisition.

Many methods have been proposed to acquire materials using

data-driven approaches. Matusik [2003] proposed a data driven

BRDF linear model. More recently, Rematas et al. [2016] extract re-

flectance maps from 2D images using a CNN trained in a supervised

manner. Materials and illuminations acquisition were further ex-

plored by Georgoulis et al. [2017]. Deschaintre et al. [2018] proposed

a rendering loss to capture svRBDFs from flash images. Nam et al.

[2018] jointly reconstructed svBRDF, normals, and 3D geometry in

an iterative inverse-rendering setup towards a practical acquisition

setup, while different methods relied on deep learning to estimate

object shape and svBRDF from one or multiple images [Boss et al.

2020; Deschaintre et al. 2021; Li et al. 2018b]. Li et al. [2019] propose

a weakly supervised learning-based method for generating novel

category-specific 3D shapes and demonstrate that it can help in

learning material-class specific svBRDFs from images distributions.

Ye et al. [2018] used a mixture of images and procedural material

maps to train a network for modeling svBRDFs. Hu et al. [2019]

developed a reduced svBRDF model, using only diffuse and normal

channels, towards solving inverse procedural textures matching

from reference, while Guo et al. [2020a] used Bayesian inference for

material synthesis. Recently, Shi et al. [2020] developed a differen-

tiable material graph nodes library to optimize material parameters

to match an input material, given material graphs.

U-net [Ronneberger et al. 2015] inspired many approaches for

image to image translation to translate RGB pixels to material at-

tributes [Deschaintre et al. 2018; Li et al. 2017, 2018a,b]. Most work

now includes a differentiable shading step [Deschaintre et al. 2018,

2019; Guo et al. 2020b; Li et al. 2018b; Liu et al. 2017] such as we

do here. Gao et al. [2019] and Guo et al. [2020b] propose to use a

post-optimization in an encoded latent space, improving an initial

material estimation, and comparing renderings of their results di-

rectly to their input pictures. Deschaintre et al. [2020] propose to fine

tune their material acquisition network on svBRDF parameter ex-

amples to transfer them to a larger scale. Zhou and Kalantari [2021]

propose a partially unsupervised training approach, allowing to use

additional real data without ground truth maps. With our approach,

we completely remove the need for ground truth maps as it solely

relies on real flash photographs. Guo et al. [2021] address the issue of

strong highlights baked into svBRDF maps through highlight-aware

convolutions and an attention-based feature selection module. Our

design, focused on stationarity of textures, inherently prevents any

flash residual to be left in the results.

All these approaches focus on capturing a single instance of a

svBRDF map, but with little or no editing options across materials

(space) or generalization across the spatial domain (diversity). For

rapid materials generation, Zsolnai-Fehér et al. [2018] propose to

use Gaussian process regression.

However, most of these methods require synthetic svBRDF super-

vision for training, while we focus on directly learning from flash

images without access to channel-level supervision. In particular

this removes the risk of domain gap between synthetic and real

materials and enables our fine-tuning approach.

We take inspiration from Aittala et al. [2016] who extended the

approach of Gatys et al. [2015] to generate svBRDF parameter maps

from a single picture of a stationary material exemplar and propose

an approach for improved diversity, generation and quality.

2.3 Spaces-of

Spaces of color [Nguyen et al. 2015], materials [Gao et al. 2019; Guo

et al. 2020b; Matusik 2003], textures [Matusik et al. 2005], faces

[Blanz et al. 1999], human bodies [Allen et al. 2003], and more have

been useful in graphics for content creation and edition. Matusik

et al. [2005] has devised a space of textures. Here, users can in-

terpolate combinations of visually similar textures. They warp all

pairs of exemplars to each other and constructs graph edges for

interpolation when there is evidence that the warping is admissible.

To blend between them, histogram adjustments are made. Conse-

quently, interpolation between exemplars does not take a straight

path in pixel space from one to the other, but traverses only valid

regions. Photoshape [Park et al. 2019] learns the relation of given

material textures over a database of 3D objects. Serrano et al. [2016]

allow users to semantically control captured BRDF data. They rep-

resent BRDFs using the derived principal component basis [Matusik

2003] and map the first five PCA components to semantic attributes

through learned radial basis functions. Similar to our method, Guo

et al. [2020b] and Gao et al. [2019] produce spaces of materials that

can be interpolated. We take inspiration from this body of work and

build a space allowing svBRDFs generation and interpolation.

3 BACKGROUND

3.1 Flash Images

Aittala et al. [2016] leveraged the fact that a single flash image

of a stationary material reveals multiple realizations of the same

reflectance statistics under different light and view angles. We will

now recall a simplified definition of their approach.
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A flash image is an RGB image of a material, taken in conditions

where a mobile phone’s flashlight is the dominant light source.

We write 𝐿(x) to denote the RGB radiance value at every image

location x. The illumination is expected to be an isotropic point light

collocated with the camera. Further, the geometry is assumed to be

flat and captured in a fronto-parallel setting, so that the direction

from light to every image location in 3D is known. Self-occlusion

and parallax are assumed to be negligible.

Reflectance is parameterized by a material, represented as a func-

tion 𝑓 (x) mapping image location x to shading model parameters,

including the shading normal. Under these conditions, the reflected

radiance is 𝐿 = R𝑓 , where R is the differentiable rendering operator,

mapping shading model parameters to radiance.

A material 𝑓 explains a flash image 𝐿 if it is visually similar to 𝐿
when rendered. Unfortunately, without further constraints, there

are many materials to explain the flash image. This ambiguity can

be resolved when assuming that the material 𝑓 is stationary. We

say a material is stationary, if local statistics of the shading model

parameters 𝑓 do not change across the image.

Putting both –visual similarity and stationarity– together, the

best material from a family 𝑓𝜃 of material mapping functions pa-

rameterized by a vector 𝜃 , can be found by minimizing a loss:

L′(𝜃 ) := T (𝐿,R𝑓𝜃 ) + 𝜆S(𝑓𝜃 ), (1)

where T (𝐿,R𝑓𝜃 ) is a metric of visual similarity between a flash

image 𝐿 and a differentiable rendering R𝑓𝜃 , and S(𝑓 ) is a measure

of stationarity of a material map 𝑓 .

Comparison, T , of two textures is not trivial. Pixel-by-pixel com-

parison is typically not suitable to evaluate visual statistical similar-

ity. Instead, images are mapped to a feature space in which images

that are perceived as similar textures, map to similar points [Portilla

and Simoncelli 2000]. Different mappings are possible here. Classic

texture synthesis [Heeger and Bergen 1995] uses moments of linear

multi-scale filters responses. Gatys et al. [2015] proposed to use

Gram matrices of non-linear multi-scale filters responses such as

those of the VGG [Simonyan and Zisserman 2014] detection net-

work. Such a characterization of textures was also used by Aittala

et al. [2016] and, without loss of generality, will be used and ex-

tended in this work as well.

While 𝑓 is stationary, 𝐿 is not –due to the lighting– and has features

at different random positions x which are compared as

T ′(𝐿1, 𝐿2) := Ex∼(0,1)2,𝑠∼(0,1) [|P(𝐿1, x, 𝑠) − P(𝐿2, x, 𝑠) |1], (2)

where P ′(𝐿, x) crops a patch of randomly chosen scale 𝑠 at the

location x and resamples it to the input resolution of VGG [Simonyan

and Zisserman 2014], computes the filter responses and their Gram

matrices:

P(𝐿, x, 𝑠) := gram(vgg(resample(crop(𝐿, x, 𝑠)))). (3)

Minimizing 𝜃 with respect to Eq. 1 for a given 𝐿 results in a ma-

terial. 𝑓𝜃 can represent different approaches. Aittala et al. [2016]

directly use the pixel basis and optimize discrete material maps

for 𝜃 using a single input flash image 𝐿. With their approach, opti-

mizing for both visual similarity and stationarity is challenging. In

particular, the reflectance stationarity term S, requires a “spectral

preconditioning” step as explained in their paper. Instead, we pro-

pose an approach in the form of a neural model 𝑓 that is (i) defined

on the infinite domain and (ii) stationary by construction. Thus, our

loss does not need to include a stationarity term.

Next, we describe how to generate RGB textures using deep learn-

ing (Sec. 3.2), before combining the two components (flash images

and NN texture (spaces)) into our approach (Sec. 4).

3.2 Deep Texture Synthesis

Julesz [1965] define textures by their feature statistics across space.

The choice of which features to use remains an important open

problem. With the advent of deep learning, Gatys et al. [2015] sug-

gested to use Gram matrices of activations of filters learned in deep

convolutional neural networks (e.g., VGG [Simonyan and Zisserman

2014]), for neural style transfer. Aittala et al. [2016] rely on the same

statistics to recover material parameters of stationary materials. By

optimizing directly over pixel values, their method can produce

images with the desired texture properties. These methods however

require a different long optimization to be ran for each material.

Another group of recent methods [Johnson et al. 2016; Ulyanov

et al. 2016] introduce neural networks capable of producing RGB

textures directly, in milliseconds. While these approaches use a net-

work to generate the textures, they are still limited to the input

texture exemplar, and do not show further variations in their results.

Ulyanov et al. [2017] introduced an explicit diversity term enforcing

results in a batch to be different. This diversity is however limited

and restrict the results quality. Indeed, they add a diversity term

to the loss, but the architecture is not modified to enable it. Alter-

natively, adversarial training has been used to capture the essence

of textures [Bergmann et al. 2017; Shaham et al. 2019], including

the non-stationary case [Zhou et al. 2018] or even within a single

image [Shaham et al. 2019]. In particular, StyleGAN [Karras et al.

2019] generates images with details by transforming noise using

adversarial training. As opposed to these approach we do not rely

on challenging adversarial trainings, by directly learning a Neural

Network to produce VGG statistics.

Instead of incentivizing stationarity in the loss, Henzler et al.

[2020] suggest a learnable texture representation that is built on

mapping an infinite noise field to a field that has the statistics of the

exemplar texture. Their method is a point operation, implemented by

an MLP that is fed exclusively with noise sampled at different scales

as done by Perlin [1985]. By explicitly preventing the network to

access any absolute position, this approach is stationary by-design.

Inspired by this approach our architecture enforces a convolutional

stationary by-design constraint.

4 NOISE TO BRDF TEXTURE SPACES

An overview of our approach is shown in Fig. 3. We train a neural

network which acts as a decoder 𝑓𝜃 (x|z) that generalizes across
spatial positions x as well as across materials, expressed as latent

material codes z. The material codes z are produced by an encoder

𝑔 with z = 𝑔(𝐿). Both encoder and decoder are trained jointly over

a set of flash images using the loss:

L(𝜃 ) := E𝐿 [T (𝐿,R𝑓𝜃 (·|𝑔𝜃 (𝐿)))] . (4)
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Fig. 3. Our architecture. Starting from an exemplar (top-left) our trained encoder encodes the image to a compact latent space variable 𝑧. Additionally, a

random infinite field is cropped with the same spatial dimensions as the flash input image. The noise crop is then reshaped based on a convolutional U-Net

architecture. Each convolution in the network is followed by an Adaptive Instance Normalization (AdaIN) layer [Huang and Belongie 2017] reshaping the

statistics (mean 𝜇 and standard deviation 𝜎) of features. A learned affine transformation𝑇 -s per layer maps 𝑧 to the desired 𝜇-s and 𝜎-s. The output of the

network are the diffuse, specular, roughness, normal parameters of an svBRDF that, when rendered using a camera colocated flash light, look the same as the

input. Our unsupervised setting allows us to fine-tune our trained network on materials to acquire.

This equation is an adapted version of Eq. 1 to fit our objectives. In

particular we propose a neural network-based 𝑓𝜃 , leveraging the

expectationE𝐿 over all flash images in our training set and removing

the stationarity term as it is enforced by construction in our network

architecture. We describe the flash image encoder 𝑔 (Sec. 4.1), the

material texture decoder 𝑓 (Sec. 4.2), the texture comparison model

T (Sec. 4.3) and our fine tuning approach (Sec. 4.5), next.

4.1 Encoder

The encoder 𝑔 maps a flash image 𝐿 to a latent code z. The flash
images used by our method are similar to those of recent svBRDF

acquisition papers [Aittala et al. 2016; Deschaintre et al. 2018]: we

use a phone with a flash collocated with the camera and capture

surface in a fronto-parallel way. Our encoder is implemented using

ResNet-50 [He et al. 2016]. The ResNet starts at a resolution of 512×
384 and maps to a compact latent code. Empirically, we find a 𝑛z =

64-dimensional latent space to work best for our data and present

all results using this number.

4.2 Decoder

The decoder 𝑓 maps location x, conditioned on a material code z
to a set of material parameter maps. The key idea is to provide

the architecture with access to noise, as previously done for style

transfer [Huang and Belongie 2017], generative modelling [Karras

et al. 2019] or 3D texturing [Henzler et al. 2020]. In particular, we

sample rectangular patches with edge length of 𝑛 ×𝑚 pixels from

an infinite random field and convert them to material maps using a

U-net architecture [Ronneberger et al. 2015]. The U-net starts at the

desired output resolution 𝑛 ×𝑚 and reduces resolution four times

using max-pooling before upsampling back to 𝑛×𝑚 through a series

of bi-linear upsampling and convolutions. Let 𝐹 be the array of input

features. For 𝑖 = 0, the first level, in full resolution, these features

are sampled from the random field at x. Then, output features are

𝐹 ′ := adaIN(conv𝜃 (𝐹 ), T𝜃 z), (5)

where adaIN is Adaptive Instance Normalization (AdaIN) [Huang

and Belongie 2017], conv a convolution (including up- or down-

sampling and ReLU non-linearity), 𝑧 is a latent material code and T

is an affine transformation. Components with learned parameters

are denoted with subscript 𝜃 .

We use AdaIN as defined by Huang and Belongie [2017] as

adaIN(𝝃 , {𝝁,𝝈2}) = 𝝈

𝝈𝐹
(𝝃 − 𝝁𝐹 ) + 𝝁 (6)

and remaps the input features with mean 𝝁𝐹 and variance 𝝈2

𝐹
to a

distribution with mean 𝝁 and variance 𝝈2
.

The affine mapping T is implemented as (𝑛z+1)× (2×𝑐𝑖 ) matrices

multiplied with the latent code 𝑧. Here 2 × 𝑐𝑖 represent a different

mean and variance for each channel dimension 𝑐𝑖 of a layer. It pro-

vides the link between the material code and the noise statistics.

Each material code z is mapped to a mean and variance to control

how the statistics of features are shaped at every channel on every

layer of the decoder.

Our control of noise statistics from latent codes is similar to Style-

GAN [Karras et al. 2019], with the key difference that we do not

sample noise at different scales, but learn how to produce noise with

different, complex, characteristics at different scales by repeatedly

filtering it from high resolutions.

4.3 Images Comparison

As mentioned in Sec. 3.1 (Eq. 2 and Eq. 3), we want to evaluate

visual similarity and stationarity. To this end, we propose to com-

pare images based on a loss that accounts both for the statistics of

activations [Gatys et al. 2015] and their spectrum [Liu et al. 2016]

on multiple scales across the infinite spatial field,

T (𝐿1, 𝐿2) := Ex∼R2,𝑠∼(𝑠min,𝑠max) [|P(𝐿1, x, 𝑠) − P(𝐿2, x, 𝑠) |1] . (7)

P(𝐿, x, 𝑠) := gram(𝑉 (𝐿, x, 𝑠)) + 𝜆 · powerSpectrum(𝑉 (𝐿, x, 𝑠))
(8)

𝑉 (𝐿, x, 𝑠) := vgg(resample(crop(𝐿, x, 𝑠))) (9)
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Spectrum. VGG Gram matrices capture the frequency of a feature

appearance, unless it forms a regular pattern [2016]. Liu et al. [2016]

proposed to include the L1 norm of the power spectra of RGB images

into the texture metric for texture synthesis. We combine both ideas

and use VGG, but do not limit ourselves to its Gram matrix statistics,

and also leverage its spectrum. We set 𝜆 = 1𝑒 − 3.

Scale. As VGG works at a specific scale of features it was trained

for, it behaves differently at different scales. As the material should

be visually plausible regardless of its scale we include multiple scales

𝑠 , ranging from 𝑠min = 0.1 to 𝑠max = 8 in the loss computation.

Infinity. Expectation over the infinite plane is implemented by

simply training with different random seeds for the noise field. This

results in the generation of statistically similar, but locally different

variations of materials. As, given a seed, every generated patch

is a coherent material, combinations of multiple patches remains

coherent as well. This allows to query an endless, seamless and

diverse stream of patches without repetition. It also prevents over-

fitting and is crucial to guarantee stationarity by-design.

4.4 Training

To enforce a generalizable material prior, we first train the system

as a Variational Auto-encoder (VAE) [Kingma and Welling 2013].

Instead of mapping to a single 64-D latent material code, the en-

coder 𝑔 maps to a 64-D mean and variance vector, from which we

sample in training. At test time we use the mean for each 64-D. We

have omitted the additional VAE terms enforcing z to be normally

distributed from Eq. 4 and Fig. 3 for clarity. We trained our model for

4 days and a batch size of 4 on a NVIDIA Tesla V100 using ADAM

optimizer with a learning rate of 1e-4 and weight decay 1e-5.

4.5 Fine-tuning

Using the trained encoder-decoder pair we can instantaneously com-

press a 2D RGB flash image to a latent code and decompress into

an infinite svBRDF field. The quality of the decoding can further be

improved by adapting the decoder weights to a specific exemplar

𝐿★ with a short one-shot training. To this end, all weights 𝜃 are

held fixed, except for the decoder weights 𝜃★ ⊂ 𝜃 , which are fur-

ther trained to reproduce a single flash image 𝐿★ at material code

z★ = 𝑔(𝐿★). This is made possible by our completely unsupervised

approach, allowing to fine-tune for any flash image, without requir-

ing ground truth maps. Note that unlike [Guo et al. 2020b] we use a

style loss rather than a pixel-wise loss for fine-tuning, preserving

the diversity properties of our results. In practice we fine-tune for

1000 steps with an increased learning rate by a factor of 10, for about

5 minutes.

Fine-tuning of two materials will result in two different decoders

𝑓1 and 𝑓2 as well as two latent codes z1 and z2 produced by the

same encoder. We show that despite being a more complex space,

interpolating both the latent code and decoder parameters, as in

lerp(𝑓1, 𝑓2) (lerp(z1, z1)) works well in practice, Unless otherwise

specified, we show fine-tuned results in the remainder of this paper

and ablate several variants in Sec. 5.4.

4.6 Material model

We use the Cook-Torrance [1982] micro-facet BRDF Model, with

Smith’s geometric term [Heitz 2014], Schlick’s [1994] Fresnel and

GGX [Walter et al. 2007]. Hence, parameters are diffuse RGB albedo,

monochromatic specular albedo, roughness and height, i.e., six di-

mensions. Instead of learning a normal map, a height field is gen-

erated from which normals are computed using finite differences.

During the our differentiable rendering step, we assume a FOV of

45
◦
to simulate smartphone cameras.

4.7 Alignment

Many flash images entail a slight rotation as it can be difficult to

take a completely fronto-parallel image. This was handled by Aittala

et al. [2016] by locating the brightest pixel and cropping, but we

found our, more abstract, training to struggle with such a solution.

Instead, we add a horizontal and a vertical rotation angle to the

parameter vector generated from the latent code (not shown in

Fig. 3 for clarity). During training, these are used to rotate the plane,

including the normals. During testing, these angles are not applied

meaning that the output is in the local space of the exemplar.

We use a branch of the encoder to perform the alignment task,

allowing to jointly align images based on their visual features.

A byproduct is that the encoder returns angular distance to fronto-

parallelity, which could be used to guide users during capture.

5 RESULTS

5.1 Dataset

We created an extended a dataset of flash images for testing and

training of our approach. It comprises of 356 images of various

types of materials we captured using four different smartphones.

We reserve 50 images for testing, augmented by all images from

Aittala et al. [2016]. Hence, no image from Aittala et al. [2016] was

used for training.

5.2 Quantitative Evaluation

For quantitative analysis we compare our approach to a range of

alternative methods with respect to different metrics.

Methods. We compare to five methods by (i) Aittala et al. [2016],

(ii) Deschaintre et al. [2018], (iii) Gao et al. [2019], (iv) Guo et al.

[2020b], and (v) Zhao et al. [2020]. All renderings of these methods

are done with the material model described in their respective paper.

While Gao et al. [2019] and Guo et al. [2020b] were designed to

be compatible with multiple image acquisition with known light

positions, in our comparisons we provide the same input as to our

method: a single input image and an approximate light position.

Metrics. We quantify style, diversity, and computational speed.
Style is captured by L1 difference of the VGG Gram matrices of

rendered images. A good agreement in style has a low number i.e.,

less is better. We also evaluate XYZ histogram L1 difference and find

that all methods have below 1% of difference with Ground Truth

renderings, indicating good color matching for all. Histogram differ-

ence does not however capture the complex visual difference when

comparing materials (as can be seen in Fig. 7). Diversity is captured

as the mean pairwise VGG L1 across all realizations [Henzler et al.
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Fig. 4. Infinite spatial extent. Top result is sampled at high resolution (256×4096) from our BRDF space while the bottom result is a result from Guo et al.

[2020b] at 256×256 resolution and horizontally tiled 16 times to achieve high resolution. The absence of repetitiveness in the top result demonstrates that our

learned BRDF space can be sampled at any query (x,y) location without producing visible repetition artifact. By construction, our network architecture does

not require any special boundary alignment to avoid tiling artifacts.

2020]. Here, more is better. The idea behind this diversity metric

is, that a for a diverse method, two realizations should have a high

difference. A direct pixel metric would be sensitive to noise which

generates small perturbations resulting in false-positive differences.

Hence, the choice of VGG features, which detects if realizations are

indeed perceivably different. Note that we do not evaluate pixel-

wise metrics such as L1 or SSIM as these enforce local coherence,

which is, by construction, not targeted by our method.

Comparisons. We use the described metrics to compare against

multiple state-of-the-art methods in material acquisition and report

the results on real (Flash) and synthetic materials (Relit) in Tbl. 2.

For real results, we only have access to the frontal flash-illuminated

material and therefore compare the picture to a rendering of each

method’s result also under frontal illumination.

This, however, does not evaluate well the appearance under novel

illumination, which is a key property of svBRDFs. To validate the

generalization across light directions, we acquire 30 random sta-

tionary synthetic svBRDFs from CC0 Texture and render them to

simulate a frontal-flash capture setup using Mitsuba2 [Nimier-David

et al. 2019]. All methods are then run with this simulated flash im-

age as input. We report the average of the re-lighting error, against

ground truth renderings, for all methods under 10 random point

light illuminations.

As shown in Tbl. 2, our approach is the only one to target diverse

results, i.e., we produce infinitely many realizations of a texture

while all other approaches produce only one. Thus, diversity (Div.)

is zero for compared methods, while our approach can generate

varied realizations for each material.

In terms of computational speed, Aittala et al. [2016] and Zhao

et al. [2020] both require long –between 1 and 3 hours– per-exemplar

optimization to produce a stationary texture. Our approach requires

around 500 ms to generate a material and a few minutes to fine-

tune it to a given input. This is in the same order of speed than

Deschaintre et al. [2018] for generation and Gao et al. [2019] and

Guo et al. [2020b] for the fine-tuning. Once fine-tuned, our method

can generate new realizations and high resolutions versions of the

targeted material in around 500 ms.

Table 2. We compare to recent material acquisition approaches on the L1

difference between VGG Gram matrices (VGG Style, lower is better) on both

real and synthetic results as described in Sec. 5.2. Additionally we evaluate

each method’s capacity to generate diverse realizations of a material with

the mean pairwise VGG L1 across all realizations (Div, higher is better).

We see that ours outperforms others on perceived similarity with the VGG

style metric. Additionally, ours is the only one generating diverse material

variations from a single image.

Method Style err. ↓ Div. ↑
Flash Relit

Aittala et al. [2016] 0.922 0.512 0.00

Deschaintre et al. [2018] 0.943 0.653 0.00

Gao et al. [2019] 0.738 0.556 0.00

Zhao et al. [2020] 0.545 0.618 0.00

Guo et al. [2020b] 0.843 0.582 0.00

Ours 0.597 0.439 2.08

5.3 Qualitative Evaluation

Decomposition. A qualitative example of our svBRDF decomposi-

tion (Normal, Diffuse Roughness and Specularmaps) and re-renderings

under different lights are depicted in Fig. 5. Please see our supple-

mental material for all results decomposition and comparison. We

see that our method captures best the material behaviour and does

not suffer from artefact in the over-exposed area of the input image

which can be seen in previous work. As our method uses mate-

rials statistics rather than direct pixel aligned image to material

transformation, it is immune to such artefacts.

Relighting. In Fig. 7 we show qualitative rendering comparisons

on real materials with illumination coming from the top. In this

more challenging setting, it is clear that existing work struggle to

remove the highlight from the center of the flash image, which does

not affect our method. As Aittala et al. [2016] reconstruct a small

(representative) patch of the large input picture, their method is also

immune to flash artefacts, but result in a very zoomed representation

of the material. To compensate for this "zoom factor", we tile the

results in each direction. We empirically found that 3 times works

best for most materials.

Seeds. In Fig. 8 we show the variation of our results when chang-

ing the seed. The overall appearance of the material remains the
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Fig. 5. Comparison with other methods. Each method (rows) decomposes an image into svBRDF parameters (columns). The first column shows the

flash image input and the second column the rendering of the results under a similar fronto-parrallel lighting. The third column is the material relit from the

top, showing the generalization capacity across light. Our method’s quality is particularly visible under a novel illumination (see also Fig. 7). This is because

other methods leave a trace of the flash in the svBRDF maps, as can be seen in the decomposed channels (four right-most columns). These results are obtained

with our single image setting, compared methods Gao et al. [2019] and Guo et al. [2020b] could benefit from additional aligned images or accurate light

calibration when available. Please see the supplemental material for similar results on many more materials.

same but the details (such as the rust or the leather normals and

color variation) vary.

Overall, we see in Fig. 5, Fig. 7 and Fig. 8 that our approach can

capture a large range of different stationary materials, reproduc-

ing their style, yet being diverse. This enables different properties

described next.

Infinite. We show in Fig. 4 the "infinite" resolution capacity of

our approach against the common approach of tiling. Our result

(top image) shows no sign of repetitiveness even for very large

resolution (4096×256).

Interpolation. We show results of interpolation between materi-

als, as described in Sec. 4.5, in Fig. 6 and Supplemental Material.

We compare against the linear interpolation baseline and Guo et al.
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Fig. 6. Interpolation of latent BRDF texture codes. In each row, a left and a right latent code and generator weights z1, z2, g1, g2 are obtained by encoding

two flash images, respectively. The intermediate, continuous field of BRDF parameters is computed by interpolating, in the learned BRDF space, from z1 & g1
to z2 & g2 and conditioning the decoder Convolutional Neural Network (CNN) with the intermediate codes. The result is lit with a fronto-parallel light source

to demonstrate the changes in appearance. For comparison, the first row shows image space linear interpolation, the second compares to Guo et al. [2020b].

The third row shows an ablation of our approach trained on a single material (without previous full dataset training). This lack of training prevents it from

creating a cohesive space in which to interpolate. Overall our approach allows for interpolation, progressively changing both structure and reflectance.

[2020b] which also allows interpolation. We find our method to

provide smoother interpolation than the Linear approach and to

better preserve intermediate material color than Guo et al. [2020b].

We additionally evaluate interpolation if we directly train on ma-

terial individually (without the training step described in Sec. 4.4).

This confirms that this pre-training forms a coherent latent space

in which we can navigate.

Texturing. Fig. 1 shows examples of applying maps produced by

our approach to a complex 3D shape. Thanks to our generative

model, we can easily texture many sneakers, without spatial or

material repetition. At any point, a user can randomize the gener-

ated material, generate new materials from pictures or interpolate

between new materials and old ones.

Generation. Our z space can be sampled to generate newmaterials

as shown in in Fig. 9 with a variety of examples

Interactive demo. The visual quality is best inspected from our

interactive WebGL demo in the supplemental material. It allows

exploring the space by relighting, changing the random seed and

visualizing individual BRDF model channels and their combinations.

The same package contains all channels of all materials as images

as well as compared methods. See the accompanying video for a

demonstration of our interactive interface.

Table 3. VGG style error for

ablations relative to our Full.

For reference, our full method

has an absolute score of 0.44.

Ablation Error ↓
Single −0.5 %

NonTuned +24.0 %

DecoderOnly +2.0 %

Fourier +0.9 %

Light +1.7 %

Fine-tuning. We show the re-

sults quality improvement when

using the proposed fine-tuning ap-

proach in Fig. 10. We can see that

the structure and details better

match the input picture.

5.4 Ablation Experiments

We study several variants of our

approach to evaluate the rele-

vance of individual contributions

to our Full method.

We report the results of these

evaluation in Tbl. 3 with VGG

Style error in Sec. 5.2. We did not find the diversity of our method

to be affected by these ablations.
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Fig. 7. Relighting of different materials (rows) using material maps extracted by different methods (columns). The first column shows the input flash image

where light is fronto-parallel. The light in all other images comes form the top. While no reference is available for this task, it is apparent that all the methods

except ours struggle to generalize to novel light conditions. Note that Deschaintre et al. [2018], Gao et al. [2019] and Guo et al. [2020b] leave a dark residual of

the flash in the material maps. Zhao et al. [2020] and Aittala et al. [2016] fare slightly better and avoid the residual, but the structures do not match. These

results are obtained with our single image setting, compared methods Gao et al. [2019] and Guo et al. [2020b] could benefit from additional aligned images or

accurate light calibration when available.

Single describes our method trained on a single example, with-

out the previous training step. The results are slightly better than

our Full method, but requires twice longer per material training

and does not generalize to a space, preventing interpolation and

generation of materials.

NonTuned is our method without the fine-tuning step from

Sec. 4.5, confirming that it significantly improves the match to the

acquired material. DecoderOnly describes the change of our gen-

erator to a decoder only architecture. We show that removing the

encoder part of the generator slightly degrades the results. Fourier

and Light respectively result from the removal of the Fourier com-

ponent (power spectrum) of our loss (Sec. 4.3) and the removal of

the light alignment branch of our encoder (described in Sec. 4.7),

which both lead to slightly worse results.
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Fig. 8. Seeds variation. We vary the seed for the generation of different

realizations for acquired materials, while preserving its overall appearance.

The zoomed-in insets all show the same region of the material, allowing to

better appreciate the variations.

Fig. 9. Generation. Random samples from our space. We generate new

materials by sampling the z space and render them with a frontal flash. See

supplemental materials for more generated materials.

6 USER EXPERIMENT

We perform a user study to better understand the capabilities of

different methods. Our main aim is to provide material maps that

robustly generalize to all light conditions so they can be deployed

in production rendering. Hence we study a relighting task: given a

the input image in one light condition, we ask humans to pick the

method that looks most plausible “in a different light”.

Methods. Subjects anonymously completed an online form with-

out time limit. At the start of the user study, participants were shown

two photos of a marble material taken under two different light-

ing conditions to exemplify what a valid relighting could look like.

They performed 10 trials, each corresponding to one material. In

each trial, they were presented a reference image rendered in one

Fig. 10. Fine-tuning. We show results on two results of real materials

reproduced using our pre-trained network (ours non-tuned) and the same

material using our fine-tuning approach. We can see that our fine-tuned

results match the input material appearance significantly better. Note that

fine-tuning is only with image supervision and does not have access to any

underlying BRDF supervision.

light conditions (“flash”) and six relit images in another light con-

dition (“top”). Relit images were displayed in a randomized spatial

2D layout. We consider six different methods: Aittala et al. [2016];

Deschaintre et al. [2018]; Gao et al. [2019]; Guo et al. [2020b]; Zhao

et al. [2020] and ours. Samples of those stimuli are seen in Fig. 7.

Participants were asked to pick the image (images were not named)

that, according to them, was the best faithful relighting of the source

(flash) image. Note that no relit reference was shown.

Table 4. User preferences per method.

Method Freq.

Aittala et al. [2016] 21

Deschaintre et al. [2018] 10

Gao et al. [2019] 4

Guo et al. [2020b] 11

Zhao et al. [2020] 30

Ours 314

Analysis. A total of 𝑁 = 39

participants completed the ex-

periment as summarized in

Tbl. 4. A 𝜒2 test rejects (𝑝 <

0.0001) the hypothesis that

choices were random. Pair-

wise binomial post-hoc tests

further show that our method

is different from any other

method, at the same signifi-

cance level. Most importantly,

subjects choose ourmethod in

314 out of 390 total answers 80.5 %). We did not analyze the relation

of other methods relative to each other.

7 LIMITATIONS

Our method relies on fronto-parallel flash acquisition. While we

propose a mitigation solution in Sec. 4.7, we show in Fig. 11 that we

are not completely invariant to large light and plane rotations. Our

approach is also limited to stationary isotropic materials and relies

on the planarity of the captured surface.
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Fig. 11. Flash acquisition assumption. We show example of how our

results degrade when fronto-parrallel, collocated flash assumptions are bro-

ken. The recovered material appearance varies (roughness, high frequency

normal) but maintains the overall appearance of the input image.

8 CONCLUSION

We have presented an approach to generate a space of BRDF textures

using a small set of flash images in an unsupervised way. Comparing

this approach to the literature shows competitive metrics for re-

renderings with the unique advantage of being able to generate an

infinite and diverse field of BRDF parameters.

In the future, it would be interesting to increase the complexity of

supported material whether in term of shading or non stationarity.

Also, not relying on fine-tuning to increase the network expressive-

ness would allow to create an even more cohesive space. Further,

more refined differentiable rendering material models could be used

to derive stochastic textures, including shadows, displacement, or

scattering as well as volumetric or time-varying textures. We be-

lieve that our framework will represent a stepping stone for more

complex infinite and diverse BRDFs acquisition.
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