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We describe an efficient algorithm to compute a conformally equivalent
metric for a discrete surface, possibly with boundary, exhibiting prescribed
Gaussian curvature at all interior vertices and prescribed geodesic curvature
along the boundary. Our construction is based on the theory developed in
[Gu et al. 2018a,b; Springborn 2020], and in particular relies on results on
hyperbolic Delaunay triangulations. Generality is achieved by considering
the surface’s intrinsic triangulation as a degree of freedom, and particular
attention is paid to the proper treatment of surface boundaries. While via
a double cover approach the boundary case can be reduced to the closed
case quite naturally, the implied symmetry of the setting causes additional
challenges related to stable Delaunay-critical configurations that we address
explicitly in this work.

1 INTRODUCTION
Let𝑀 be a triangle mesh, equipped with a discrete Euclidean metric,
i.e., an assignment of length to edges, satisfying triangle inequality,
forming a surface with or without boundary. Under this metric, let
𝛼𝑖
𝑗𝑘

be the angle at vertex 𝑣𝑖 in the triangle 𝑇𝑖 𝑗𝑘 . Let Θ𝑖 =
∑
𝑇𝑖 𝑗𝑘 𝛼

𝑖
𝑗𝑘

be the total angle at vertex 𝑣𝑖 . Define ^𝑖 as the angle deficit at a
vertex 𝑣𝑖 , defined as 2𝜋−Θ𝑖 for interior vertices and 𝜋−Θ𝑖 for bound-
ary vertices. This quantity can be viewed as the discrete Gaussian
curvature if 𝑣𝑖 is an interior vertex and the geodesic curvature of
the boundary if 𝑣𝑖 is on the boundary.

Given target curvatures ˆ̂𝑖 (respecting the discrete Gauss-Bonnet
theorem) one may ask for a discrete metric that exhibits exactly
these curvatures. This is of practical interest, for instance, to obtain
flattenings, i.e., surface parametrizations over the plane (by pre-
scribing ^𝑖 = 0 in the interior [Ben-Chen et al. 2008]) or so-called
seamless maps for quadrilateral remeshing (by prescribing ˆ̂𝑖 = 𝑘𝑖

𝜋
2

with 𝑘𝑖 ∈ Z [Campen et al. 2019; Myles and Zorin 2012]). Such a
metric always exists, and when restricting to metrics conformally
equivalent to the original metric, it is unique (up to scale) 1.

The conformal case is of particular relevance because, in principle,
such a metric can be found via solving a convex optimization prob-
lem [Springborn et al. 2008]. For a fixed triangulation, however, the
triangle inequality limits how much ˆ̂ may differ from ^ before the
problem becomes infeasible [Springborn et al. 2008]. By treating the
surface’s triangulation as variable, the problem can be made feasible
in general, as shown in [Gu et al. 2018a,b; Springborn 2020]. The
vertex set 𝑉 can be kept fixed, i.e., no refinement is necessary and
intrinsic edge flips are sufficient to facilitate all required adjustments.
A bijection between the original and the modified triangulation can
easily be kept track of [Fisher et al. 2007], so as to, e.g, in the end
extend the computed conformal parametrization from the modified
triangulation to (a refinement of) the original mesh.

Recent results [Gu et al. 2018a,b; Springborn 2020] indicate how
these triangulation changes can be performed in a systematic man-
ner. We discuss the relevant background (Section 3) and describe an
1For surfaces of non-trivial topology, the more general prescription of the metric’s
associated holonomy or monodromy is of interest. For this case similar statements hold
for metrics with scale jumps (so-called similarity structures) [Campen and Zorin 2017b].

implementation of these ideas, with particular attention to practi-
cal aspects (Section 4), as well as a generalization to surfaces with
boundary, which poses remarkable additional challenges (Section 5).

2 RELATED WORK
The problem of computing conformally equivalent metrics or, by im-
plication, conformal maps of discrete surfaces has been considered
in a variety of works before. As there is no useful natural notion
of conformality in the discrete (non-smooth) setting, a range of
discrete counterparts of the continuous concept of conformality
have been proposed and used.

Static Triangulation. Prominent examples of works addressing the
computation of conformal metrics or maps, based on various defini-
tions of discrete conformality, on discrete surfaces while considering
their triangulation fixed are: [Ben-Chen et al. 2008; Desbrun et al.
2002; Gu and Yau 2003; Jin et al. 2007; Kharevych et al. 2006; Lévy
et al. 2002; Sawhney and Crane 2017; Soliman et al. 2018; Springborn
et al. 2008].

Dynamic Triangulation. A fixed triangulation restricts the space
of metrics that can be achieved. For instance, a vertex 𝑣𝑖 of valence
𝑘 cannot, under any (Euclidean) metric, exhibit a discrete curvature
^𝑖 ≤ (2 − 𝑘)𝜋 , as inner angles are bounded by 𝜋 . By adjusting the
triangulation depending on the prescribed target curvature, this
limitation can be remedied. Two systematic approaches have been
proposed to that end, both conceptually considering a continuous
metric evolution from initial state to target state. [Luo 2004] pro-
poses to adjust the triangulation by an intrinsic edge flip whenever
an edge becomes triangle inequality critical (Figure 1 left). Imple-
mentation variants are described in [Campen et al. 2019; Campen
and Zorin 2017a,b]. Differently, [Gu et al. 2018a,b; Springborn 2020]
effectively consider the case of flipping an edge when it becomes
Delaunay-critical (Figure 1 right).

3 BACKGROUND
We begin by considering the case of surfaces without boundary, i.e.,
we are given a closed manifold triangle mesh𝑀 = (𝑉 , 𝐸, 𝐹 ); this is
the setting considered in [Gu et al. 2018b] and other related work.
The case of surfaces with boundary can be reduced to the closed
surface case with an additional symmetry structure, as we show in
Section 5.
The mesh 𝑀 is equipped with an input metric defined by edge

lengths ℓ : 𝐸 → R>0, satisfying the triangle inequality.

3.1 Conformal Equivalence
A conformally equivalent discrete metric is defined by means of
logarithmic scale factors 𝒖 : 𝑉 → R associated with vertices 𝑉 =

(𝑣1, . . . , 𝑣𝑛), by defining new edge lengths as

ℓ𝑖 𝑗 (𝒖) = ℓ𝑖 𝑗 𝑒
𝑢𝑖+𝑢𝑗

2 (1)
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Ω

Ω

Δ

𝒖

Fig. 1. Left: flip-on-degeneration. Right: flip-on-Delaunay-violation. Along-
side a conceptual illustration of the valid region Ω (light blue) and Delaunay
region Δ (white) is shown (cf. Section 3.2), containing the current point 𝒖
(cross mark) and changing due to the flip.

per edge 𝑒𝑖 𝑗 [Luo 2004]. Given per-vertex target angles Θ̂𝑖 a con-
formally equivalent metric exhibiting these is characterized by, for
all 𝑖:

𝑔𝑖 (𝒖) := Θ̂𝑖 − Θ𝑖 (𝒖) = Θ̂𝑖 −
∑︁
𝑇𝑖 𝑗𝑘

𝛼𝑖𝑗𝑘 (𝒖) = 0, (2)

where the inner angle 𝛼𝑖
𝑗𝑘
(𝒖) is computed under the metric defined

by 𝒖 via Eq. (1) (i.e. from edge lengths ℓ (𝒖)).
It is known that 𝒈(𝒖) = (𝑔1 (𝒖), . . . , 𝑔𝑛 (𝒖)) is the gradient of

a twice-differentiable convex function [Springborn et al. 2008].
Hence, one may constructively yield factors 𝒖 satisfying Eq. (2)
using (second-order) convex optimization methods, starting from
arbitrary initializations (e.g. 𝒖 ≡ 0). This is true, however, only as
long as 𝒖 stays in the feasible region Ω ⊂ R𝑛 where ℓ (𝒖) respects
the triangle inequality for each triangle 𝑇𝑖 𝑗𝑘 ; otherwise it does not
well-define a Euclidean surface metric on𝑀 .

3.2 Dynamic Triangulation
The feasible region Ω can be altered by choosing a different triangu-
lation of the same surface. Theremay not be a common triangulation,
though, on which both ℓ ≡ ℓ (0) and ℓ (𝒖∗) for the sought 𝒖∗ (satisfy-
ing Eq. (2)) are valid. Rather, the triangulation needs to be adjusted
dynamically during the evolution of 𝒖 from 0 towards 𝒖∗.
Note that a change of triangulation is possible without intrin-

sically changing the surface. 𝑀 together with given edge lengths
defines a surface 𝑆𝑉 with a metric which is flat everywhere except
at𝑉 . There are many triangulations (besides𝑀) with vertices𝑉 and
their own associated edge lengths, defining the same surface 𝑆𝑉
(cf. [Sharp et al. 2019]); hence the differentiation between𝑀 and 𝑆𝑉 .
In particular, an edge flip replacing a pair of triangles (𝑇𝑖 𝑗𝑘 ,𝑇𝑗𝑖𝑚)
sharing an edge 𝑒𝑖 𝑗 , with triangles (𝑇𝑘𝑖𝑚,𝑇𝑚𝑗𝑘 ) sharing edge 𝑒𝑘𝑚
can be performed without intrinsically changing the surface 𝑆𝑉 , by
setting the length of the new edge 𝑒𝑘𝑚 to the length of the diagonal

of the planar quadrilateral obtained by unfolding 𝑇𝑖 𝑗𝑘 ,𝑇𝑗𝑖𝑚 [Fisher
et al. 2007]. This is referred to as intrinsic flip.

Delaunay Flips. [Gu et al. 2018b; Springborn 2020] propose to
dynamically adjust the triangulation such that it is (intrinsically)
Delaunay at all times as 𝒖 evolves.

Definition 1 (Intrinsic Delaunay). A triangulation is intrinsic

Delaunay if any two triangles𝑇𝑖 𝑗𝑘 and𝑇𝑗𝑖𝑚 sharing an edge 𝑒𝑖 𝑗 satisfy
the Delaunay condition:

cos𝛼 ′𝑘𝑖 𝑗 + cos𝛼 ′𝑚𝑖 𝑗 ≥ 0 (3)

where 𝛼 ′𝑘𝑖 𝑗 and 𝛼 ′ℓ𝑖 𝑗 are triangle angles opposite edge 𝑒𝑖 𝑗 . Expressed
directly in terms of edge lengths this condition is equivalent to

ℓ ′2
𝑗𝑘
+ ℓ ′2

𝑘𝑖
− ℓ ′2𝑖 𝑗

ℓ ′
𝑗𝑘
ℓ ′
𝑘𝑖

+
ℓ ′2𝑗𝑚 + ℓ ′2𝑚𝑖 − ℓ ′2𝑖 𝑗

ℓ ′𝑗𝑚ℓ ′𝑚𝑖

≥ 0. (4)

In the context at hand these angles or lengths are to be understood
as dependent on 𝒖; we use short-hands 𝛼 ′ = 𝛼 (𝒖) and ℓ ′ = ℓ (𝒖).

Generically (iff these weak inequalities hold strictly), the intrinsic
Delaunay triangulation is unique, but for special configurations
(four or more intrinsically co-circular vertices resulting in equality
in Eq. (4)) it is not.
For a given triangulation, let Δ ⊂ R𝑛 (referred to as Penner cell)

denote the region of factors 𝒖 such that the triangulation is intrinsic
Delaunay. Clearly, Δ ⊂ Ω, and when 𝒖 ∈ 𝜕Δ the Delaunay triangu-
lation is not unique. Whenever 𝒖 reaches the boundary of Δ, we can
switch to another Delaunay triangulation by means of an intrinsic
flip, thereby changing the region Δ (and Ω), enabling 𝒖 to evolve
further without leaving Δ. Figure 1 right illustrates this behavior.
Remarkably, these cells form a partition of R𝑛 .
This can be formalized by the following definition of discrete

conformal equivalence of two metrics [Gu et al. 2018b]:

Definition 2 (Discrete Conformal Eqivalence). Two metrics

(𝑀1, ℓ1) and (𝑀𝑚, ℓ𝑚) are discretely conformally equivalent, if there
is a sequence of meshes with the same vertex set, (𝑀𝑠 , ℓ𝑠 ), 𝑠 = 1, . . . ,𝑚,

such that, for each 𝑠 ,𝑀𝑠 is an intrinsic Delaunay triangulation for the

metric ℓ𝑠 and either

• (𝑀𝑠 , ℓ𝑠 ) and (𝑀𝑠+1, ℓ𝑠+1) are different metrics with the same

triangulation (i.e.,𝑀𝑠 =𝑀𝑠+1) and the edge lengths are related
by Eq. (1) for a choice of 𝑢𝑠 : 𝑉 → R.
• (𝑀𝑠 , ℓ𝑠 ) and (𝑀𝑠+1, ℓ𝑠+1) are different Delaunay triangulations
for the same metric.

Degeneration Flips. The alternative of performing a triangulation
change only when 𝒖 reaches the boundary 𝜕Ω of the currently feasi-
ble regionwas considered by [Luo 2004]. This occurs when a triangle
becomes a degenerate cap. An intrinsic flip of this triangle’s longest
edge yields a non-degenerate triangulation, effectively changing
the valid region Ω such that 𝒖 lies strictly in its interior. Figure 1
left illustrates this. An implementation of this approach is described
and applied in [Campen and Zorin 2017b].
At first sight, the approach based on maintaining an intrinsic

Delaunay triangulation may seem inefficient in comparison. Due
to Δ ⊂ Ω, at least as many, but often many more cells Δ need
to be traversed. Practically, this suggests a large number of small
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steps between flips in the process of optimizing 𝒖, compared to,
e.g., the use of (less frequent) degeneration flips, and much smaller
steps compared to typical unconstrained optimization. Remarkably,
however, this Delaunay approach permits an implementation that
is in general more efficient and more robust (see Section 6.2 for a
comparison). In essence, exploiting a relation to hyperbolic Delaunay
triangulation, arbitrarily large steps can be made, beyond Δ and
even beyond Ω (unconstrained by Euclidean triangle inequalities).
Flips can be performed collectively after the fact and in arbitrary

order. This is detailed in Section 3.4.

3.3 Evolution Step
Assume we are given a triangulation𝑀 that is intrinsic Delaunay
under the metric defined by some 𝒖⊢. Consider a linear evolution of
𝒖 from 𝒖⊢ to 𝒖⊣:

𝒖 (𝑡) = (1 − 𝑡)𝒖⊢ + 𝑡𝒖⊣, 𝑡 ∈ [0, 1] .
As we move along the interval [0, 1], whenever four vertices form-
ing triangles 𝑇𝑖 𝑗𝑘 and 𝑇𝑗𝑖𝑚 become co-circular under the metric
defined by ℓ (𝒖 (𝑡)), an intrinsic flip of edge 𝑒𝑖 𝑗 is performed. Due
to the special configuration (the two triangles forming an inscribed

quadrilateral, see Figure 2) the length that the new edge 𝑒𝑘𝑚 needs
to take can be computed following Ptolemy’s theorem as

ℓ ′𝑘𝑚 =
1
ℓ ′𝑖 𝑗
(ℓ ′𝑗𝑘 ℓ ′𝑖𝑚 + ℓ ′𝑘𝑖 ℓ ′𝑚𝑗 ), (5)

where we use ℓ ′ as a shorthand for ℓ (𝒖 (𝑡)). For ℓ ′
𝑘𝑚

= ℓ𝑘𝑚 (𝑢 (𝑡)) =
ℓ𝑘𝑚 𝑒

𝑢𝑘 +𝑢𝑚
2 to take this value for the current 𝒖 (𝑡), we need to set

ℓ𝑘𝑚 accordingly. If we plug Eq. (1) into Eq. (5),

ℓ ′𝑘𝑚 =
1
ℓ𝑖 𝑗
(ℓ𝑗𝑘 ℓ𝑖𝑚 + ℓ𝑘𝑖 ℓ𝑚𝑗 )𝑒 (𝑢𝑘+𝑢𝑚)/2,

we see that we need to set

ℓ𝑘𝑚 := 1
ℓ𝑖 𝑗
(ℓ𝑗𝑘 ℓ𝑖𝑚 + ℓ𝑘𝑖 ℓ𝑚𝑗 ). (6)

Notice that this is Ptolemy’s formula, Eq. (5), applied to the original
metric. In other words: applying the formula in the current (𝒖 (𝑡)-
scaled) metric ℓ ′ is equivalent to applying it in the original metric ℓ ,
followed by scaling. Remarkably, this holds even though the vertices

are not co-circular under the original metric in general. Moreover,
the edge lengths ℓ set in this way may not even satisfy the triangle

inequality. This is no issue, though, as certainly the relevant scaled
lengths ℓ ′ = ℓ (𝒖 (𝑡)) do, by construction.
It was shown that the number of flip events along the path is

finite [Wu 2014], which means that after a finite number of flips we
will obtain the triangulation and edge length assignment needed
for the target 𝒖 (1) = 𝒖⊣.
One practical downside of this procedure, in which the neces-

sary flips along the evolution path are detected and performed
one-by-one sequentially, is that it requires solving precisely for the
sequence of flips. This makes it inefficient as well as potentially
numerically challenging. The following hyperbolic approach, whose
correctness can be shown based on an interpretation of the involved
edge lengths as defining hyperbolic metrics instead of Euclidean
metrics, improves on this.

ℓ𝑖 𝑗
ℓ𝑘𝑚

ℓ𝑗𝑘
ℓ𝑘𝑖

ℓ𝑖𝑚
ℓ𝑚𝑖

ℓ𝑗𝑘
ℓ𝑘𝑖

ℓ𝑖𝑚
ℓ𝑚𝑖

𝑣𝑖

𝑣𝑗

𝑣𝑘

𝑣𝑚

𝑣𝑖

𝑣𝑗

𝑣𝑘

𝑣𝑚

Fig. 2. Ptolemy flip of an edge 𝑒𝑖 𝑗 shared by two triangles forming an
inscribed quadrilateral, i.e., a Delaunay-critical edge.

3.4 Hyperbolic Metric Approach
Instead of moving 𝑡 along the interval [0, 1], determining the se-
quence of flip events and executing them in order, let us directly
consider 𝑡 = 1. The initial triangulation 𝑀 may not be Delaunay
under 𝒖 (1), and the edge lengths ℓ (𝒖 (1)) may not even respect the
triangle inequality. Nevertheless, we can test each edge for violation
of the Delaunay criterion using Eq. (4) applied to ℓ (𝒖 (1)), and in-
crementally flip (using Eq. (6)) all violating edges in arbitrary order
following the classical flip algorithm until a Delaunay triangulation
is reached [Bobenko and Springborn 2007]. While in case of triangle
inequality violations this criterion lacks the geometric justification
via Eq. (3) (the involved quantities are no longer cotangents of Eu-
clidean angles), this algorithm succeeds anyway; this is based on
a remarkable relation between conformal metric equivalence and
hyperbolic isometries used in the constructions of [Gu et al. 2018b]
and [Springborn 2020].

In summary, instead of performing flips following an expensive-
to-compute sequence required to maintain a valid Euclidean metric
on triangles at all times, the algorithm performs the flips in arbitrary
order, yielding edge lengths ℓ ′ satisfying the triangle inequality only
in the end.

Hyperbolic Delaunay. The reasons for applicability of Eq. (4) and
use of Eq. (6) are direct consequences of an elegant correspondence
between hyperbolic and conformal metric structures used in the
proofs of [Gu et al. 2018b; Springborn 2020] and introduced in [Rivin
1994]. We refer the readers to the detailed explanations in these
papers and to the overview given in [Crane 2020, §5, §6]. Here,
we state only three essential properties of the hyperbolic metric,
without defining it explicitly, to provide some intuition for the
algorithm’s validity.

(1) For a given triangulation, a suitable hyperbolic metric is de-
fined for any choice of edge lengths, not just choices of lengths
satisfying the Euclidean triangle inequality.

(2) The Delaunay property is well-defined for hyperbolic met-
rics, and can be tested using Eq. (4). A flipped edge’s length
preserving the metric is given by the Ptolemy relation, and
the classical flip algorithm is guaranteed to terminate.

(3) If a triangulation is Delaunay in a hyperbolic metric, the
corresponding Euclidean edge length assignment satisfies the
triangle inequality and is also Delaunay.
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4 ALGORITHM
As shown in [Gu et al. 2018b], assuming an intrinsic Delaunay trian-
gulation, 𝒈(𝒖), see Eq. (2), is the gradient of a twice-differentiable,
convex function 𝐸 (𝒖) : 𝑉 → R, defined for arbitrary values of
factors 𝒖 ∈ 𝑉 . Moreover, the Hessian 𝐻 (𝒖) of 𝐸 (𝒖) is given by

Algorithm 1: FindConformalMetric
Input : triangle mesh𝑀 = (𝑉 , 𝐸, 𝐹 ), closed, manifold

edge lengths ℓ > 0 satisfying triangle inequality
target angles �̂� > 0 respecting Gauss-Bonnet

Output : triangle mesh𝑀 ′ = (𝑉 , 𝐸 ′, 𝐹 ′)
edge lengths ℓ ′ > 0 satisfying triangle inequality
such that ∥𝚯(𝑀′,ℓ ′) − �̂�∥∞ ≤ Ytol

Function FindConformalMetric(𝑀, ℓ, �̂�):
𝒖 ← 0
(𝑀, ℓ) ←MakeDelaunay(𝑀, ℓ, 𝒖)
while not converged(𝑀, ℓ, 𝒖) do

𝒈 ← 𝑔(𝑀, ℓ, 𝒖) // gradient

𝐻 ← 𝐻 (𝑀, ℓ, 𝒖) // Hessian

𝒅 ← −𝐻−1𝒈 // Newton direction

(𝑀, ℓ, 𝒖) ← LineSearch(𝑀, ℓ, 𝒖, 𝒅) // Newton step

ℓ ′ ←ScaleConformally(𝑀, ℓ, 𝒖)
return (𝑀, ℓ ′)

Function LineSearch(𝑀, ℓ, 𝒖, 𝒅):
while true do
(𝑀, ℓ) ←MakeDelaunay(𝑀, ℓ, 𝒖 + 𝒅)
if ⟨𝒅, 𝑔(𝑀, ℓ, 𝒖 + 𝒅)⟩ ≤ 0 then

return (𝑀, ℓ, 𝒖 + 𝒅)
𝒅 ← 1

2𝒅 // backtracking line search

Function converged(𝑀, ℓ, 𝒖):
return ∥�̂� − Θ(𝑀, ℓ ′)∥∞ ≤ Ytol

Function 𝑔 (𝑀, ℓ, 𝒖):
return �̂� − Θ(𝑀, ℓ ′) // Eq. (2)

Function 𝐻 (𝑀, ℓ, 𝒖):
return CotanLaplacian(𝑀, ℓ ′)

Function Θ(𝑀, ℓ, 𝒖): // angle computation

for 𝑣𝑖 ∈ 𝑉 do // Eq. (2)

Θ𝑖 ←
∑
𝑇𝑖 𝑗𝑘 ∈𝑀′ arccos

(
(ℓ ′2𝑖 𝑗 + ℓ ′2𝑘𝑖 − ℓ ′2𝑗𝑘 )/(2ℓ ′𝑖 𝑗 ℓ ′𝑘𝑖 )

)
return (Θ0, . . . ,Θ𝑛)

Function MakeDelaunay(𝑀, ℓ, 𝒖):
while NonDelaunay(𝑀, ℓ, 𝒖, 𝑒𝑖 𝑗 ) for any edge 𝑒𝑖 𝑗 do
(𝑀, ℓ) ← PtolemyFlip(𝑀, ℓ, 𝑒𝑖 𝑗 )

return (𝑀, ℓ)
Function NonDelaunay(𝑀, ℓ, 𝒖, 𝑒𝑖 𝑗 ):

return (ℓ ′2
𝑗𝑘
+ ℓ ′2

𝑘𝑖
− ℓ ′2𝑖 𝑗 )/(ℓ ′𝑗𝑘 ℓ ′𝑘𝑖 )

+ (ℓ ′2𝑗𝑚 + ℓ ′2𝑚𝑖 − ℓ ′2𝑖 𝑗 )/(ℓ ′𝑗𝑚ℓ ′𝑚𝑖 ) < 0 // Eq. (4)

Function PtolemyFlip(𝑀, ℓ, 𝑒𝑖 𝑗 ):
𝑀 ← Flip(𝑀, 𝑒𝑖 𝑗 )
ℓ𝑘𝑚 ← (ℓ𝑗𝑘 ℓ𝑖𝑚 + ℓ𝑘𝑖 ℓ𝑚𝑗 )/ℓ𝑖 𝑗 // Eq. (6)

return (𝑀, ℓ)

the standard discrete Laplacian (cotangent matrix, positive semi-
definite) computed in the scaled metric given by ℓ ′ = ℓ (𝒖). Hence,
the problem of finding the desired solution 𝒖∗ reduces to the prob-
lem of minimization of a convex function, for which many methods
with guaranteed convergence are known.

Newton’s Method. Newton’s second-order optimization method is
one suitable example. In Algorithm 1 we spell it out, tailored to our
purpose. Most noteworthy is the fact that whenever 𝒖 is updated (as
initialization and during the line search), the triangulation is turned
into a Delaunay triangulation with respect to the metric defined
by 𝒖 through edge flipping. As discussed in Section 3, this yields
the same result as if one had performed edge flips in the specific
sequence encountered during a continuous evolution of 𝒖 from the
previous to the updated state. Only then, values such as 𝒈(𝒖) or
𝐻 (𝒖) are computed on the mesh.

Note that while the function 𝐸 (𝒖) is known explicitly, we entirely
avoid using it in the algorithm. This is because the expressions
that need to be evaluated for 𝐸 (𝒖) happen to be more complex and
numerically less stable than the simple angle expressions needed
for the gradient 𝒈(𝒖). Note that the use of 𝒈(𝒖) in the line search
condition is possible due to the convexity of 𝐸 (𝒖).
Numerics. The accuracy with which the target angles �̂� can be
matched of course depends (in a non-trivial manner) on the preci-
sion of the employed number type. If tolerance Ytol is chosen too
low relative to this, Algorithm 1 may never terminate. For practical
purposes therefore additional stopping criteria can be taken into
account: an upper bound on the number of Newton steps and the
number of line search halvings, a lower bound on the Newton decre-
ment ⟨𝒅, 𝑔(𝑀, ℓ, 𝒖)⟩. Information about the practically achievable
accuracy can be found in Section 6.3.

5 BOUNDARIES
In the above we assumed𝑀 to form a closed surface. For surfaces
with boundary, we can reduce the problem to the case of closed
surfaces.

5.1 Double Cover
This reduction is achieved by means of a double cover approach:

(1) we attach a mirrored copy 𝑁 ′ of the input mesh 𝑁 along the
boundary (merging boundary vertices and edges), as illus-
trated below, yielding a closed mesh𝑀 ,

(2) we transfer the edge lengths ℓ and the target curvatures ^𝑖 of
interior vertices 𝑣𝑖 from 𝑁 to 𝑁 ′,

(3) we prescribe Θ̂𝑖 = 2𝜋 − 2 ˆ̂𝑖 at each (former) boundary vertex
𝑣𝑖 , where^𝑖 is the target discrete geodesic boundary curvature
at vertex 𝑣𝑖 .

The double cover mesh𝑀 built this way
exhibits an obvious reflectional symmetry,
i.e., there is a map 𝑅 with 𝑅2 = 𝐼 that takes
vertices to vertices, edges to edges, and faces
to faces. It maps an element stemming from
the interior of 𝑁 to its copy in 𝑁 ′ and vice
versa; on the merged (former) boundary ver-
tices and edges, 𝑅 is the identity.
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Conformal Metric Symmetry. Due to symmetry (invariance with
respect to 𝑅) of the mesh 𝑀 , the metric ℓ , and the target angles
�̂�, the symmetrically initialized factors 𝒖 will remain symmetric
after each iteration of the optimization process (up to round-off
error). This can be seen by observing that the function 𝐸 (𝒖) is
the sum of per-triangle terms 𝐸𝑇 (𝒖𝑇 ), where 𝒖𝑇 is the restriction
of 𝒖 to vertices of the triangle 𝑇 . Given the above symmetry, its
gradient 𝒈(𝒖) = ∇𝒖𝐸 therefore is invariant with respect to 𝑅. As a
consequence, the metric symmetry is maintained as 𝒖 evolves, and
the triangulation remains symmetric during evolution. Therefore
the resulting conformal metric will be symmetric, i.e., identical on
the two copies, as well. Consequently, if we cut the mesh along the
symmetry line (the former boundary) in the end, so as to discard one
copy, a boundary vertex 𝑣𝑖 will have exactly half the prescribed angle,
1
2 Θ̂𝑖 = 𝜋 − ˆ̂𝑖 , and therefore exhibit a discrete geodesic boundary
curvature of ˆ̂𝑖 , just as intended. The fact that 𝒖 (and thus all vertex-
associated attributes) evolve symmetrically furthermore implies that
we can use a tufted double cover as in [Sharp and Crane 2020], where
not only boundary vertices but all vertices are shared between the
two symmetric halves of𝑀 . This reduces the number of variables in
the optimization problem. This symmetry does not mean, however,
that computations could trivially be restricted entirely to one half
of the double cover only: edge flips may, and commonly will, create
edges and faces spanning both halves of the double cover, crossing
the symmetry line. Even more importantly, the symmetry leads
to co-circular vertex configurations that are stable, i.e., for a given
triangulation these remain co-circular independent of the evolution of
𝒖. These configurations need to be handled specially, as we explain
in more detail below.

5.2 Symmetric Meshes
We begin by making precise the notion of combinatorially symmetric

polygon mesh. In this, rather than using edges, we use halfedges,
each associated with a unique face (or boundary loop, which can be
treated exactly like a face). Specifically, each edge corresponds to
two halfedges. Wewill make use of this abstract notion of symmetric
meshes to ensure that our subsequent considerations of edge flips
and related aspects cover all combinatorial cases that may occur.

Definition 3 (Combinatorial Mesh). A combinatorial polygon

mesh is a triple (𝐻,N ,O) of a set of halfedges 𝐻 , a bijective function

N : 𝐻 → 𝑁 (next-halfedge function), and a bijective function O
(opposite-halfedge function) with the property

O2 (ℎ) = ℎ; O(ℎ) ≠ ℎ (7)

i.e., all orbits of O have size 2.

Definition 4 (Mesh Elements). Define the bijective circulator
function C : 𝐻 → 𝐻 to be N−1 (O(ℎ)). Then the mesh has the

following implied elements:

• Faces are the orbits of the next-halfedge function N .

• Vertices are the orbits of the circulator function C.
• Edges are the orbits of the opposite-halfedge function O.

Collectively we refer to them as (mesh) elements. A halfedge belongs
to an element if it is part of the respective orbit.

Amesh with boundary is a mesh with a subset of its faces marked
as boundary loops. The halfedges of these loops form the set 𝐻𝑏𝑛𝑑

of boundary halfedges.

Definition 5 (Reflection Map). A reflection map 𝑅 : 𝐻 → 𝐻
for a mesh (𝐻,N ,O) without boundary is an involution (𝑅2 = 𝐼 )
defined on the set of halfedges: each halfedge is mapped either to itself,

or forms a reflection pair with a distinct halfedge. It is required to

satisfy the following conditions:

(1) preservation of O relation: O(𝑅(ℎ)) = 𝑅(O(ℎ)),
(2) inversion of N relation: N(𝑅(ℎ)) = 𝑅(N−1 (ℎ)),
(3) preservation of boundary: ℎ ∈ 𝐻𝑏𝑛𝑑 ⇐⇒ 𝑅(ℎ) ∈ 𝐻𝑏𝑛𝑑

.

Note that conditions (1) and (2) correspond to the properties of
continuity and orientation-reversal of continuous reflection maps
[Panozzo et al. 2012]. They imply that 𝑅 maps orbits ofN , of O, and,
as a consequence, of C, to orbits of these functions, i.e., it is well-
defined for faces, edges, and vertices (via𝑅(𝑥) = 𝑥 ′ ⇐⇒ 𝑅(ℎ) ∈ 𝑥 ′
for any ℎ ∈ 𝑥). Furthermore, because 𝑅2 = 𝐼 , all orbits of 𝑅 have
length 1 or 2, whether it acts on halfedges, faces, edges, or vertices.
This implies the following partitioning.

Proposition 1 (Halfedge Sets). 𝐻 can be partitioned into dis-

joint sets 𝐻1
, 𝐻2

, 𝐻𝑠
so that the following conditions are satisfied:

• ℎ ∈ 𝐻𝑠 ⇐⇒ 𝑅(ℎ) = ℎ;
• ℎ ∈ 𝐻1 ⇐⇒ 𝑅(ℎ) ∈ 𝐻2

;

• for any face or edge 𝑥 either all belonging halfedges are in 𝐻1
,

or all are in 𝐻2
, or it is fixed by 𝑅 (i.e. 𝑅(𝑥) = 𝑥)

Proof. If 𝑥 is not fixed, by the well-definedness of 𝑅 on mesh
elements, for each ℎ ∈ 𝑥 we have 𝑅(ℎ) ∉ 𝑥 . Therefore for a non-
fixed individual face or edge 𝑥 all its halfedges can be assigned to
𝐻1 (or to 𝐻2) without contradicting the above conditions. It needs
to be shown that this can be done for all such elements consistently.

Let 𝐻𝑒 the set of halfedges whose edges are not fixed and 𝐻 𝑓 the
set of halfedges whose faces are not fixed. Let Q the relation that
is the union of O|𝐻𝑒 and N|𝐻 𝑓 on 𝐻 \ 𝐻𝑠 . Consider the connected
components 𝐻𝑖 of Q (intuitively: the mesh’s connected components
separated by fixed edges and fixed faces). Due to the properties of 𝑅
(preserving/invertingO andN ) it is well-defined on these connected
components via 𝑅(𝐻𝑖 ) = 𝐻 𝑗 ⇔ 𝑅(ℎ) ∈ 𝐻 𝑗 for any ℎ ∈ 𝐻𝑖 . Using
arguments analogous to [Panozzo et al. 2012, Prop. 2] one verifies
that the set of fixed elements necessarily forms a cycle; therefore
there are at least two such connected components.

As 𝑅 on 𝐻 \ 𝐻𝑠 has orbits of length 2 only, it allows a bipartition
of the connected components, i.e., they can be assigned to two sets
𝐻1 and 𝐻2 in accordance with the above conditions. □

This leads to the following partitioning of the sets of edges and
faces, where 𝑒 = (ℎ,ℎ′), 𝑓 = (ℎ0, . . . ℎ𝑚−1) denote the orbits of
belonging halfedges:
• 𝑒 ∈ 𝐸𝑖 ⇐⇒ ℎ,ℎ′ ∈ 𝐻 𝑖 , 𝑖 = 1, 2
• 𝑒 ∈ 𝐸⊥ ⇐⇒ ℎ,ℎ′ ∈ 𝐻𝑠

• 𝑒 ∈ 𝐸 ∥ ⇐⇒ ℎ = 𝑅(ℎ′)
• 𝑓 ∈ 𝐹𝑖 ⇐⇒ ℎ0 ∈ 𝐻 𝑖 , 𝑖 = 1, 2
• 𝑓 ∈ 𝐹𝑠 ⇐⇒ 𝑅(ℎ0) ∈ 𝑓
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The set 𝐸⊥ is the set of edges (perpendicularly) crossing the sym-
metry line between two halves of a symmetric mesh mapped to
each other (see Figure 3 right); the set 𝐸 ∥ is the set of edges on the
symmetry line; 𝐹𝑠 is the set of faces that cross the symmetry line,
and are mapped by the symmetry map to themselves.

5.2.1 Double Cover Construction. Using the terminology estab-
lished above, our construction from Section 5.1 can be formalized
as follows. Given a mesh 𝑁 = (𝐻0,N0,O0), with boundary and
interior halfedges 𝐻𝑏𝑛𝑑 ∪ 𝐻 𝑖𝑛𝑡 = 𝐻0, we discard 𝐻𝑏𝑛𝑑 and set
𝐻 = 𝐻1 ∪ 𝐻2 where 𝐻1 = 𝐻 𝑖𝑛𝑡 and 𝐻2 = 𝐻 𝑖𝑛𝑡 , where ·̄ denotes a
copy. The reflection map 𝑅 is defined via 𝑅(ℎ) := ℎ′ if ℎ′ ∈ 𝐻2 is the
copy ofℎ ∈ 𝐻1.O0 is adopted on both copies to defineO, except that
O(ℎ) := 𝑅(ℎ) if O0 (ℎ) ∈ 𝐻𝑏𝑛𝑑 ; this latter adjustment constitutes
the gluing of the two copies along their boundaries. Finally

N(ℎ) :=
{
N0 (ℎ) if ℎ ∈ 𝐻1,

𝑅(N0−1 (𝑅(ℎ))) if ℎ ∈ 𝐻2 .

This forms the symmetric double cover mesh 𝑀 = (𝐻,N ,O, 𝑅)
with triangle faces and map 𝑅. Note that 𝑅 is a reflection map: it
satisfies the conditions of Def. 5 (where condition (3) is void as𝑀
has no boundary). It is easy to see that this construction implies
𝐸⊥ = ∅ and 𝐹𝑠 = ∅, i.e., no element crosses the symmetry line (the
former boundary). 𝐸 ∥ contains the edges lying on the symmetry
line, i.e., those for whose halfedges the O relation was adjusted to
glue the two copies.
This initially simple situation can change, however, when edge

flips are performed on the double cover mesh.

5.3 Symmetric Flips
When an edge 𝑒 in a symmetric mesh 𝑀 = (𝐻,N ,O, 𝑅) shall be
flipped, the edge 𝑅(𝑒) needs to be flipped as well (unless 𝑅(𝑒) = 𝑒),
so as to be able to maintain a symmetric mesh. The simultaneous
flip of 𝑒 and 𝑅(𝑒) (as well as the single flip of 𝑒 if 𝑅(𝑒) = 𝑒) is referred
to as symmetric flip. As discussed in Section 5.1, in the algorithm
from Section 4 the metric evolves symmetrically. This implies that
whenever the algorithm intends to flip an edge 𝑒 , it simultaneously
intends to flip 𝑅(𝑒) as well. The algorithm is therefore compatible
with the restriction to symmetric flips.

While for an edge 𝑒 ∈ 𝐸𝑖 with incident faces 𝑓 , 𝑔 ∈ 𝐹𝑖 the process
is obvious, special care needs to be taken when elements from 𝐸 ∥ ,
𝐸⊥, or 𝐹𝑠 are involved. We will exhaustively distinguish different
types of symmetric flips based on the membership of the involved
edges and faces in these sets.

Flip Types. For a triple (𝑓𝑎, 𝑒, 𝑓𝑏 ) of an edge 𝑒 with incident faces 𝑓𝑎 ,
𝑓𝑏 , the triple of labels denoting their set memberships, e.g., (1, ∥, 2),
is called flip type of the edge 𝑒 .

Consistent Flip Types. We say that a type is consistent if it may
occur in a symmetric mesh. For instance, (1,⊥, 1) is not a consistent
type, as edges from 𝐸⊥ necessarily have incident faces from 𝐹𝑠 by
definition. The following statements help ruling out combinations
of labels for a triple (𝑓𝑎, 𝑒, 𝑓𝑏 ) in a symmetric mesh (up to exchange
of 𝑓𝑎 and 𝑓𝑏 ):

Proposition 2 (Label Compatibility).
(a) 𝑒 ∈ 𝐸⊥ ⇒ 𝑓𝑎, 𝑓𝑏 ∈ 𝐹𝑠 .
(b) 𝑒 ∈ 𝐸 ∥ ⇒ 𝑓𝑎 ∈ 𝐹 1, 𝑓𝑏 ∈ 𝐹 2

or 𝑓𝑎 = 𝑓𝑏 ∈ 𝐹𝑠 .
(c) 𝑒 ∈ 𝐸1 ⇒ 𝑓 ∉ 𝐹 2

, 𝑒 ∈ 𝐸2 ⇒ 𝑓 ∉ 𝐹 1
.

(d) 𝑒 ∈ 𝐸𝑖 , 𝑓𝑎, 𝑓𝑏 ∈ 𝐹𝑠 ⇒ 𝑅(𝑒) ∈ 𝑓𝑎, 𝑓𝑏 .

Proof. Part (a) follows immediately from the definition of 𝐹 𝑖 , as
faces from 𝐹 𝑖 cannot have edges from 𝐸⊥.
Suppose a face 𝑓𝑎 is incident at an edge 𝑒 from 𝐸 ∥ . For these

edges 𝑅(𝑒) = 𝑒 . Suppose 𝑓𝑎 ∈ 𝐹 1, then 𝑅(𝑓𝑎) is incident to 𝑅(𝑒) = 𝑒 ,
therefore 𝑓𝑏 = 𝑅(𝑓𝑎). As 𝑅(𝑓𝑎) ∈ 𝐹 2 by definition of 𝐹 2, this proves
the first part of (b). Suppose 𝑓𝑎 ∈ 𝐹𝑠 , and let ℎ a halfedge ℎ ∈ 𝑒 ,
ℎ ∈ 𝑓𝑎 . Then 𝑅(ℎ) ∈ 𝑓𝑎 by the definition of 𝐹𝑠 ; but, by definition of
𝐸 ∥ , 𝑅(ℎ) ∈ 𝑒 , so 𝑓𝑎 = 𝑓𝑏 , i.e., a face is adjacent to itself along 𝑒 .

Part (c) directly follows from the definitions of 𝐸𝑖 and 𝐹 𝑖 .
In part (d), suppose 𝑓𝑎 and 𝑓𝑏 are incident at 𝑒 ∈ 𝐸1, 𝑓𝑎, 𝑓𝑏 ∈

𝐹𝑠 , and 𝑒 = (ℎ𝑎, ℎ𝑏 ). Then 𝑅(ℎ𝑎) ∈ 𝑅(𝑓𝑎) = 𝑓𝑎 , 𝑅(ℎ𝑏 ) ∈ 𝑓𝑏 , and
O(𝑅(ℎ𝑎)) = 𝑅(ℎ𝑏 ) by the properties of 𝑅, i.e., (𝑅(ℎ𝑎), 𝑅(ℎ𝑏 )) is an
edge. By definition of 𝐸𝑖 , it has to be in 𝐸2, i.e., faces 𝑓𝑎 and 𝑓𝑏 share
a second edge, and this edge is from 𝐸2. □

Prop. 2 leaves the following six possibilities, up to a 1 ↔ 2 ex-
change. It is easy to construct examples proving that all of them are
consistent, i.e., may occur in a symmetric mesh:
• Edge in 𝐸1: Set 1a: (1, 1, 1), (1, 1, 𝑠) Set 1b: (𝑠, 1, 𝑠)
• Edge in 𝐸 ∥ : Set 2a: (1, ∥, 2) Set 2b: (𝑠, ∥, 𝑠)
• Edge in 𝐸⊥: Set 3: (𝑠,⊥, 𝑠)

Relevant Flip Types. Among these types, only four are also rel-

evant; we show in Section 5.4.1 that the two types in the sets 1b

(1, ∥, 2)
↔
(𝑡,⊥, 𝑡 )

(1, 1, 𝑡 ) + (2, 2, 𝑡 )
↔

(𝑡,⊥, 𝑞)

(1, 1, 𝑞) + (2, 2, 𝑞)
↔

(𝑞,⊥, 𝑞)

Fig. 3. Symmetric edge flips involving faces from 𝐹𝑠 (light blue), crossing
the symmetry line (dashed). Faces from 𝐹 1 and 𝐹 2 are colored dark blue. The
configurations are shown with co-circular vertices, though combinatorially
flips can be performed in any state. Note that the light blue quads’ vertices,
however, are necessarily co-circular by symmetry, regardless of metric.
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Table 1. Combinatorial updates required to perform symmetric flips of all relevant consistent types. The change to N is given by listing the orbits (halfedge
cycles forming faces) of N created by the flip. The employed indexing is depicted in the figures left and right. Similarly, we define changes to 𝑅 viewing it as a
permutation with orbits of length 1 or 2, and listing the sets of orbits being replaced. Finally, rather than deleting and adding new halfedges on demand,
for implementational efficiency we can associate a superfluous pair of halfedges, eliminated by a quad-creating flip, with the quad (listed behind the bar).
Because a flip that requires a new pair of halfedges always eliminates a quad, this pair can then be reused.

(1, 1, 1) + (2, 2, 2) ↔ (1, 1, 1) + (2, 2, 2)
N : (ℎ𝑖0, ℎ𝑖1, ℎ𝑖2), (ℎ𝑖3, ℎ𝑖4, ℎ𝑖5), 𝑖 = 1, 2 N : (ℎ𝑖0, ℎ𝑖2, ℎ𝑖4), (ℎ𝑖1, ℎ𝑖3, ℎ𝑖5), 𝑖 = 1, 2
𝑅 : unchanged 𝑅 : unchanged

(1, ∥, 2) ↔ (𝑡,⊥, 𝑡 )
N : (ℎ0, ℎ1, ℎ2), (ℎ3, ℎ4, ℎ5) N : (ℎ0, ℎ2, ℎ4) , (ℎ1, ℎ3, ℎ5)
𝑅 : (ℎ0, ℎ3) 𝑅 : (ℎ0), (ℎ3)

(1, 1, 𝑡 ) + (2, 2, 𝑡 ) ↔ (𝑡,⊥, 𝑞)
N : (ℎ0, ℎ1, ℎ2), (ℎ3, ℎ4, ℎ5), (ℎ6, ℎ7, ℎ8) N : (ℎ0, ℎ2, ℎ4), (ℎ1, ℎ3, ℎ5, ℎ6) | ℎ7, ℎ8

𝑅 : (ℎ0, ℎ3), (ℎ7, ℎ8) 𝑅 : (ℎ0), (ℎ3)

(1, 1, 𝑞) + (2, 2, 𝑞) ↔ (𝑞,⊥, 𝑞)
N : (ℎ0, ℎ1, ℎ2), (ℎ3, ℎ4, ℎ5), (ℎ6, ℎ9, ℎ7, ℎ8) N : (ℎ0, ℎ2, ℎ7, ℎ4), (ℎ1, ℎ3, ℎ5, ℎ6) | ℎ8, ℎ9

𝑅 : (ℎ0, ℎ3), (ℎ8, ℎ9) 𝑅 : (ℎ0), (ℎ3)

and 2b are necessarily associated with edges that satisfy the Delau-
nay condition Eq. (4) irrespective of the choice of lengths of edges
involved. These are not relevant for the purpose of the algorithm
from Section 4, which exclusively flips non-Delaunay edges. This
leaves only sets 1a, 2a, and 3 for further consideration.

Triangles and Quadrilaterals. As we shall see, a flip of type (1, 1, 𝑠)
leads to a pair of triangles in 𝐹𝑠 that together form a quadrilateral
which is inscribed, i.e., the four vertices are intrinsically co-circular
(Figure 3). Remarkably, this statement holds regardless of metric,
as long as it is symmetric, i.e., invariant with respect to 𝑅. Instead
of randomly choosing a diagonal splitting this quadrilateral into
two triangles, we explicitly represent it as a quadrilateral face. This
avoids violating the symmetry by the diagonal, which would com-
plicate recovering the surface with boundary after the conformal
metric is computed, and avoids issues such as infinite sequences of
flips caused by stably (numerically nearly) co-circular points.
Faces in 𝐹𝑠 can therefore be triangular or quadrilateral. We ac-

cordingly partition 𝐹𝑠 = 𝐹 𝑡 ∪ 𝐹𝑞 , and further distinguish 𝑡-versions
and 𝑞-versions of flip types involving the label 𝑠 . This yields a total
of seven types that are consistent and relevant. They are related
as follows by the fact that a symmetric flip of one or two edges of
certain types reversibly yields a configuration of different type:

(1) (1, 1, 1) + (2, 2, 2) ↔ (1, 1, 1) + (2, 2, 2);
(2) (1, ∥, 2) ↔ (𝑡,⊥, 𝑡);
(3) (1, 1, 𝑡 ) + (2, 2, 𝑡 ) ↔ (𝑡,⊥, 𝑞);
(4) (1, 1, 𝑞) + (2, 2, 𝑞) ↔ (𝑞,⊥, 𝑞).

Case (1) is the standard case of flipping a configuration not involving
the symmetry line. (2), (3), and (4) are the special cases crossing the
symmetry line; they are illustrated in Figure 3. Table 1 details the
combinatorial changes to be performed on the symmetric mesh so
as to execute these symmetric flips.

5.4 Symmetric Metric
We now assume the symmetric combinatorial mesh𝑀 is equipped
with a metric, as in the algorithm from Section 4, and that this metric
is symmetric as well.

Delaunay Criterion. For edges with two incident triangles, the
Delaunay check needed for the algorithm is standard, via Eq. (4). If
one of the incident faces is a quad, due to symmetry it, regardless of
the metric, is an inscribed trapezoid. As a consequence, whichever
way we (virtually) split it into triangles we get the same angles
opposite any of its edges. Hence, we may perform the Delaunay
check based on arbitrary virtual diagonals in the quads.

Gradient and Hessian. For the same reason, the computation of
gradient𝑔(𝒖) andHessian𝐻 (𝒖) can be performed based on arbitrary
diagonals; the choice does not affect the result [Springborn 2020].

Ptolemy Formula. Note that each of the edges created by sym-
metric flips involving quads (Figure 3) can also be obtained by a
sequence of edge flips involving triangles (and split quads) only. In
this way the length of such edges can be computed using (multiple
instances of) the standard Ptolemy formula Eq. (6). As there are only
four types of flips involving quads, one can conveniently derive
closed form expressions for these cases in advance, rather than actu-
ally performing these sequences for each flip. Note that each quad
needs to store its diagonal length to enable these computations.

5.4.1 Irrelevance of Flip Types (𝑠, ∥, 𝑠) and (𝑠, 1, 𝑠).
Proposition 3. Types (𝑡, ∥, 𝑡), (𝑞, ∥, 𝑞), (𝑡, 1, 𝑡), (𝑡, 1, 𝑞), and (𝑞, 1, 𝑞)

are associated with edges that are Delaunay regardless of metric.

Proof. Consider (𝑡, ∥, 𝑡). By Prop. 2(b), it corresponds to a config-
uration with a single face: (𝑓 𝑡 , 𝑒 ∥ , 𝑓 𝑡 ). As the triangle 𝑓 𝑡 is isosceles,
and both side edges of the triangle coincide with 𝑒 ∥ , angles opposite
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𝑒 ∥ are 𝜋/2 − 𝛼/2 if the apex angle is 𝛼 , i.e., their sum is guaranteed
to be less than 𝜋 and the edge is Delaunay. For (𝑞, ∥, 𝑞), to evaluate

𝑒 ∥

𝑒 ∥

the Delaunay criterion, we split 𝑓 𝑞 into triangles.
As 𝑓 𝑞 is inscribed the choice of diagonal does not
affect the angles; we can choose the diagonal that
connects a vertex of 𝑒 ∥ with a vertex with trapezoid
angles ≤ 𝜋/2 (see inset), from which we can see
that both angles opposite 𝑒 ∥ are less than 𝜋/2. For
cases (𝑡, 1, 𝑡), (𝑡, 1, 𝑞), and (𝑞, 1, 𝑞) the same logic
applies to each face incident at the shared edge 𝑒1.

□

5.5 Restriction to Single Cover
Once the algorithm from Section 4 has terminated and the desired
conformal metric has been computed, we finally need to discard
half of the double cover—or transfer the metric from half of it onto
the original surface, depending on implementation specifics. To
this end we effectively need to cut the symmetric surface along
the line of symmetry. While initially the entire symmetry line is
formed by a sequence of mesh edges, this may no longer be the case
due to flips, namely whenever 𝐹𝑠 and 𝐸⊥ are not empty in the end.
One simply needs to split all edges from 𝐸⊥ at their midpoint, and
split the triangles and quads from 𝐹𝑠 by connecting these inserted
split vertices. Alternatively, if an overlay data structure [Fisher et al.
2007] is used to keep track of a bijection between original mesh
and modified mesh, the restriction to one half of the double cover
is even easier, as the original edges are (as a whole or in parts) still
present in the overlay mesh.

6 EVALUATION
We have implemented Algorithm 1 (with support for boundaries
following Section 5) in C++. Due to the method’s solid theoretical
foundation, the only limitation is due to numerical precision limits;
to be able to assess this aspect, the implementation supports the
optional use of the MPFR multi-precision floating point number
type instead of standard double precision numbers, enabling the
variation of numerical precision (as done in Section 6.3).

6.1 Validation
Closed Surfaces. A dataset of mesh models together with angle
prescriptions �̂� > 0 has been released with [Myles et al. 2014]. We
applied our implementation to the closed models from this dataset;
the error decay in the course of the algorithm on these cases is
visualized in Figure 4.

As further test instances we use 1000 different random target
angle prescriptions �̂� (with Θ̂𝑖 ∈ (𝜋, 3𝜋) for all vertices 𝑣𝑖 ) on a
sphere mesh (1K vertices). The error decay is visualized in Figure 5.
Note that the overall behavior is very similar, whether the prescribed
angles are random or geometrically meaningful (as in Figure 4).
We consider the extreme scenario of concentrating the target

metric’s entire curvature in one point (i.e., prescribing a single cone
of angle 2𝜋 (2𝑔 − 1) in an otherwise flat metric). Results for surfaces
of increasing genus 𝑔 (procedurally generated 𝑔-tori) are shown in
Figure 6. A blow-up of the situation around the prescribed cone
vertex on the genus 10 example is shown in Figure 7.
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Fig. 4. Decay of maximum angle error ∥�̂� − 𝚯∥∞ over the iterations of the
Newton algorithm. Each graph represents one of the instances from the
dataset of [Myles et al. 2014].
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Fig. 5. Decay of maximum angle error ∥�̂� − 𝚯∥∞ over the iterations of the
algorithm. Each graph represents one of 1000 random test instances.

2 4 6 8 10 12 14

100

10−4

10−8

10−12

genus

er
ro
r

Fig. 6. Final residual angle error for the extreme case of concentrating all
curvature in a single cone on an 𝑔-torus surface (genus 𝑔). For the genus 11
case, where the residual error is still benign, the conformal scale factor spans
87 orders of magnitude. For the problematic genus 12 case it surpasses 100.
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Fig. 7. Triangulation around a vertex with prescribed angle Θ = 38𝜋 , before
and after executing the algorithm. The triangulation on the right, while
exhibiting bad angles under the depicted original metric, is Delaunay under
the computed conformal metric (with curvature −36𝜋 at the central vertex).

Surfaces with Boundary. Similar to the experiment for surfaces with-
out boundary, we generate 1000 different random target angle pre-
scriptions �̂� for a surface with boundary (a disk with 5K vertices). In
the interior we prescribe a flat metric, at the boundary we prescribe
a geodesic curvature, maximally in the range ±𝜋 , i.e., Θ̂𝑖 ∈ (0, 2𝜋)
for all boundary vertices 𝑣𝑖 . Figure 8 shows the number of the differ-
ent types of symmetric flips that are performed in the course of the
algorithm on these cases. As expected, the number of flips is larger
for cases with a prescribed curvature spanning a larger range.
The above mentioned dataset from [Myles et al. 2014] also con-

tains meshes with one or more boundary loops, together with angle
prescriptions �̂� > 0 for interior and boundary vertices. The error
decay on these cases is shown in Figure 9.

6.2 Comparison
We demonstrate the advantages of the Delaunay flip approach over
the degeneration flip approach (Section 3.2) in terms of efficiency
as well as numerical robustness. To this end we apply an imple-
mentation of the described method and an implementation of the

0 ±𝜋2 ±𝜋100

101

102

103

boundary curvature range

fli
ps

(1, 1, 1) + (2, 2, 2) ↔ (1, 1, 1) + (2, 2, 2)
(1, ∥, 2) ↔ (𝑡,⊥, 𝑡 )

(1, 1, 𝑠) + (2, 2, 𝑠) ↔ (𝑠,⊥, 𝑠)

Fig. 8. Scatter plot showing the numbers of different types of symmetric
flips during the algorithm relative to the range of prescribed random bound-
ary curvatures. Each dot represents one type of flips for one of 1000 test
instances.
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Fig. 9. Decay of maximum angle error ∥�̂� − 𝚯∥∞ over the iterations of
the Newton algorithm. Each graph represents one of the instances with
boundary from the dataset of [Myles et al. 2014].

algorithm described by [Campen and Zorin 2017b] (both using stan-
dard double precision floating point numbers) to the same set of
inputs.

Efficiency. The main differences between the two methods lie in
the number of linear system solves (to compute the descent direc-
tion 𝒅) and the number of intrinsic flips. In the proposed method,
the number of flips is often significantly higher (see the discussion
in Section 3.2), while the number of system solves is lower. As a flip
is a cheap local operations, while a system solve is an expensive
global operation, a run time benefit can be conjectured.
The scatter plot in Figure 10 shows that this is the case on av-

erage. As test instances we use 1000 different random target angle
prescriptions �̂� (with Θ̂𝑖 ∈ (𝜋, 3𝜋) for all vertices 𝑣𝑖 ) on a sphere
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Fig. 10. Scatter plot showing the number of flips and the run time (to reach
Ytol = 10−10), for the described Delaunay-flip method (blue) and the degen-
eration flip method (red). Each dot represents one of 1000 test instances.
Dashed lines mark the average run time, 1.2s and 26.2s, respectively.
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Fig. 11. Final residual angle error ∥�̂� − 𝚯∥∞ for extreme cases (one very
small or very large target angle), comparing the Delaunay-based algorithm
(blue) and the degeneration flip algorithm [Campen and Zorin 2017b] (red).

mesh (10K vertices). Only for relatively simple cases, where the
target curvature can be matched without degeneration flips, the
number of system solves may be similar such that the non-Delaunay
method has a (relatively small) run time benefit due to the lower
number of flips. On average, though, run time is 22× lower with the
Delaunay-based method on these examples.

Robustness. Differences in robustness can best be observed by con-
sidering extreme cases. In Figure 11 we show the residual error of
the two methods when prescribing one very small or very large
target angle (while distributing the remaining curvature). For small
angles it becomes apparent that the degeneration flip algorithm is
numerically more fragile.

6.3 Accuracy
While the method is theoretically guaranteed to yield the desired
result, in practice numerical inaccuracies limit how closely the target
curvature will be matched. As the method involves exponential and
trigonometric functions (Eqs. (1) and (2)), it cannot be implemented
in a numerically exact manner using adaptive precision rational
or integer number types. Using extended precision floating point
number types (such as MPFR), the method’s accuracy can, however,
be increased arbitrarily. We evaluate the effect of this choice on
result accuracy in Figure 12. As test instances we use 1000 different
random target angle prescriptions �̂� (with Θ̂𝑖 ∈ (𝜋, 3𝜋) for all
vertices 𝑣𝑖 ) on a sphere mesh (1K vertices).

As can be observed, the remaining error that does not vanish due
to numerical limitations decreases consistently as the number of
bits used for the floating point computations is increased. Due to
dependence on many factors (input mesh and edge lengths, target
angles, choice of linear system solver for the Newton direction) a
simple bound on the error cannot be given, but Figure 12 gives an
empirical idea of the behavior. Note that some correlation can be ob-
served to the conformal scale distortion (the range [𝑒min𝒖 , 𝑒max𝒖 ])
that is required to match the target curvature.
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Fig. 12. Scatter plot showing residual angle error ∥�̂�−𝚯∥∞ (after at most 50
Newton steps) relative to the range of logarithmic conformal scale factors𝑢.
Each dot represents one test instance, run using floating point numbers
with a mantissa of 53 bits (double), 75 bits, 100 bits, 125 bits, 150 bits (MPFR).
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