N

N

Duocast for Wireless Industrial Networks: an
Experimental Study
Fabrice Theoleyre

» To cite this version:

Fabrice Theoleyre. Duocast for Wireless Industrial Networks: an Experimental Study. International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), 22-26
novembre 2021, Alicante, Espagne, Nov 2021, Alicante, Spain. 10.1145/3479239.3485696 . hal-
03402838

HAL Id: hal-03402838
https://hal.science/hal-03402838
Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03402838
https://hal.archives-ouvertes.fr

Duocast for Wireless Industrial Networks: an Experimental Study

Fabrice Theoleyre
ICube Lab, CNRS / University of Strasbourg
Illkirch, France
theoleyre@unistra.fr

ABSTRACT

Many Internet of Things (IoT) applications have increasingly strin-
gent requirements: messages have to be delivered to the destinations
before a given deadline. Unfortunately, radio networks are known
to be lossy, and retransmissions and acknowledgements help to
improve the end-to-end reliability. To provide high-reliability, most
wireless industrial networks schedule the transmissions to reduce
the collisions, and to make the medium access deterministic. In
these conditions, duocast helps to improve both the reliability and
the fault-tolerance: two receivers are associated with one trans-
mission, so that the transmission fails only if both receivers fail to
decode the packet. While anycast has been widely used in simula-
tions, we provide here a thorough experimental evaluation. Indeed,
radio links present practically variations, may be asymmetrical,
and the hidden receiver problem may practically reduce the gain
of duocast. We demonstrate in our experimental evaluation that
duocast is really efficient to provide high-reliability while limiting
the number of (re)transmissions. It also helps the network to be
fault-tolerant: even if a device crashes, or if a given link quality
degrades, an alternative path exists to forward the packets, without
any additional delay.

CCS CONCEPTS

« Networks — Link-layer protocols; Network experimenta-
tion; Network measurement; Network reliability; Network
dynamics; Wireless personal area networks; Packet scheduling.

KEYWORDS

1IoT; 6TiSCH; IEEE802.15.4-2015-TSCH; Duocast; Experimental
analysis;

ACM Reference Format:

Fabrice Theoleyre. 2021. Duocast for Wireless Industrial Networks: an Ex-
perimental Study. In Proceedings of the 24th ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM
"21), November 22-26, 2021, Alicante, Spain. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3479239.3485696

1 INTRODUCTION

Industry 4.0 is the next industrial revolution, that aims to enable
smart factories, making them more flexible and reconfigurable [1].
In this context, Internet of Things (IoT) is a key enabler: devices use
a radio chipset to communicate, removing the needs for expensive,

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

MSWiM 21, November 22-26, 2021, Alicante, Spain

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9077-4/21/11...$15.00
https://doi.org/10.1145/3479239.3485696

fixed cables [2]. Machines may also comprise mobile parts, where
cables are prone to breakdowns. In particular, sensors and actuators
may use wireless transmissions, even if they are exploited by a
critical application.

5G may help to setup a reliable infrastructure for industrial ap-
plications [3]. However, it relies on an expensive infrastructure,
operating in the licensed band. Moreover, it implies long range
transmissions, that limit the scalability: the radio capacity has to be
shared among a possibly very large number of devices. Thus, we
consider in this paper wireless industrial sensor networks, where
strict guarantees have to be respected, but operating in the unli-
censed band.

Unfortunately, radio networks are known to be lossy. Depending
on the radio channel, a packet may or may not be decoded by the
receiver. Even worse, the link quality is time-variant: a burst of
packets may be lost because e.g. external interference. In these
conditions, providing high reliability and low delays, as required
by most industrial applications, is particularly challenging.

To be battery powered, the devices must implement a low duty-
cycling strategy, turning off their radio most of the time. Short-
range communications reduce also the energy consumption, but
multihop topologies may be the rule to limit the deployment costs.
In these conditions, providing end-to-end reliability is even more
challenging since enough radio resource have to be provisioned all
along the path. We may handle the reliability problem at the routing
layer with routing diversity. In particular, multipath routing [4]
constructs several disjoint paths from the source to the destination.
Thus, the network is then fault-tolerant: the packet is lost only if
all the paths are broken. However, to handle unreliable radio links,
we have still to rely on retransmissions: for each path, the packet
needs to be retransmitted if no acknowledgement is received.

Most industrial wireless networks rely on scheduling to avoid
collisions, and to make the network predictive. In that situation,
multipath routing requires to provision many radio resources for
all the different paths. Braided paths provide the highest degree of
redundancy, but we have to allocate carefully the cells to minimize
the end-to-end delay since a packet may follow any sequence of
nodes in these partially overlapping paths [5].

We may choose rather to improve the robustness directly at
the link layer. DUO-CAST in ISA100.11a-2011 [6] schedules two
receivers: the transmission fails only if none of the receivers is
able to acknowledge a data packet. Such technique improves the
end-to-end reliability, and enables the network to be fault-tolerant.
Even better, it does not consume additional radio resources: the
two receivers are scheduled during the same timeslot.

However, it assumes implicitly that packet losses are indepen-
dent: if both receivers fail to decode the packet, duocast has no
practical benefit. Teles et al. already demonstrated that some radio
links are sufficiently independent [7]. However, they only exploit

an experimental dataset, and do not implement anycast at the link
layer. Practically, we need the mechanisms to negotiate anycast
cells, and to select relevant parents (for braided paths). Moreover,
we should quantify the hidden receiver effect: when the second
receiver fails to receive the ack of the first receiver, a ack collision
arises, and the data packet has to be uselessly retransmitted.

To the best of our knowledge, anycast was never implemented
to be evaluated experimentally. The contributions of this paper are
as follows:

(1) we provide here a link-layer implementation of duocast (i.e.
anycast with two ordered receivers). The secondary receiver
will send an acknowledgement only if the primary receiver
fails to decode a data packet, and to send an ack. The whole
transmission (data and ack) fits in a single timeslot;

(2) we detail how we can modify the 6TISCH stack to enable
duocast. In particular, we exploit 6P [8] to be able to negotiate
point-to-multipoint cells, and modify RPL to exploit two
parents;

(3) we quantify experimentally the gain of duocast, focusing
both on the packet loss independency, and the hidden re-
ceiver problem;

(4) we provide a full open dataset, as well as the implementation
of the duocast feature, for the sake of reproducibility.

2 BACKGROUND & RELATED WORK

We will first expose how IEEE 802.15.4-TSCH and the 6TiSCH
stack operate, and then detail the solutions proposed to make the
forwarding process fault-tolerant in wireless sensor networks.

2.1 IEEE 802.15.4-TSCH & 6TiSCH overview

To allow high reliability in industrial networks, IEEE 802.15.4-2015
has proposed the TSCH mode. It combines slow channel hopping
(per packet) to combat external interference with a scheduled access
to avoid collisions.

TSCH is scheduled-based: each device is allowed to access the
medium during specific timeslots, organized in a slotframe, that
repeats over time (cf. Fig. 1). More specifically, the network allo-
cates to each device a collection of cells, defined by a timeslot and
a channel offset. To enable channel hopping, the channel offset
is in reality translated in a different frequency at the beginning
of each timeslot, according to the number of timeslots since the
network has bootstrapped. This number of timeslots, or Absolute
Sequence Number (ASN), defines a global clock in the network. It
is worth noting that if the length of the slotframe and the number
of frequencies are mutually prime numbers, the same cell uses a
different frequency in consecutive slotframes.

The standard defines two types of cells:

dedicated cells do not implement any contention resolution
algorithm (e.g. cell for the link (BE) in Fig. 1). The transmitter
just starts its transmission without any random backoff. Op-
tionally, a clear channel assessment (CCA) may be triggered
by the transmitter, but just to detect external interference.
Thus, dedicated cells have to be allocated to non-interfering
transmitters, else their transmissions will collide for sure,
and repetitively.

Link with broadcast timeslot
parent (shared cell) <—»
° ... <—— Slotframe —»

A
DE
A T
Ll channel
A T

1
.

radio link |
' offsets
!

|

Figure 1: Simple TSCH schedule mixing anycast and unicast
cells

Anycast cells .
unicast cells

shared cells implement a contention resolution for unicast
packets. When an acknowledgement is required but not re-
ceived, the transmitter assumes a collision occurred. In that
case, it chooses a random backoff value and skips the corre-
sponding number of shared cells. If a collision occurs, the
timeslot is wasted. Thus, the contention resolution is quite
expensive, and the amount of traffic to be forwarded through
shared cells should be kept to very reasonable values [9].

TSCH supports both centralized and distributed scheduling algo-
rithms [10]. Centralized approaches need to know the link quality,
the topology, and the traffic generated by each device to allocate
enough cells to each node. Inversely, distributed algorithms are
executed locally by each device. Because of the reliability issue,
the shared cells [11] are often used to exchange only control pack-
ets to bootstrap the network. Thus, most of the solutions rely on
allocating distributively non colliding dedicated cells.

In particular, the protocol 6P [8] defines how to modify the sched-
ule. A pair of nodes typically negotiates the cells to use to exchange
later data packets. The scheduling algorithm is let unspecified in
the standard.

2.2 Opportunistic and anycast forwarding

Opportunistic forwarding has received much attention in the past.
Kulkarni et al. [12] propose to combine MAC and routing, so that
a packet is forwarded to the first neighbor which wakes up, in
direction of the sink. Preamble-sampling is also particularly rele-
vant, since the first receiver which wakes-up can acknowledge the
preamble to start the reception [13]. However, industrial networks
rely on a scheduled access: nodes do not wake up randomly. In
other word, opportunistic forwarding has no interest when the
transmitter knows exactly when the receivers are awake.

Multipath may help to improve the end-to-end reliability [4]: if
the primary path is broken, another backup path is automatically
present. Mozafari et al. [5] try to reduce the cost of such multipath
scheduling. They allocate different links of the same multipath
flow to the same cell while avoiding collisions: only one path is
practically followed by a given packet. However, retransmissions
are still required, and the transmitter has to switch to the backup
path after it detects a failure. This has an impact on the bandwidth
usage, as well as the end-to-end delay.

PAREO [14] rather exploits multiple paths by introducing repli-
cating points: the corresponding nodes forward a given packet to
several nodes. This redundancy helps to improve the reliability.

We rather propose to exploit anycast at the link layer, scheduling
several receivers concurrently.

ISA100.11a-2011 exploits DUO-CAST, when two receivers are at-
tached to the same cell [6] (cf. anycast cell in Figure 1). The receiver
with the lowest priority waits for the ack of the first receiver: it
will send an acknowledgement only if nothing is captured. Thus,
DUO-CAST enables fault-tolerance: a second receiver automati-
cally takes the lead. However, this feature is not entirely specified,
and was to the best of our knowledge not evaluated practically.
Huynh et al. [15] demonstrate the efficiency of anycast scheduling
to reduce the energy consumption with the same level of reliability.

Harms et al. [16] implemented an opportunistic routing approach
in TSCH. A centralized scheduler allocates both the transmission
opportunities and the rank of each node. The receiver with the
highest rank acknowledges each correctly decoded transmission.
However, they do not describe how the contention among acknowl-
edgements is handled (i.e. timing inside a timeslot).

Surprisingly, anycast scheduling was not evaluated experimen-
tally. Hosni et al. [17] propose a routing solution, so that k different
receivers can be selected (k-cast), based on their Packet Delivery
Ratio of the link with the transmitter. However, the solution is
evaluated by simulations, where packet loss probabilities are inde-
pendent for all the links. More recently, Teles et al. [7] investigate
the efficiency of anycast by exploiting an experimental dataset
(Packet Loss/Reception for a collection of multipoint links). They
emulate a wireless network, by replaying the experimental dataset.
However, the real anycast is not implemented, and the authors do
not emulate the channel between the receivers, which is however
fundamental to quantify the anycast gain.

3 PROBLEM STATEMENT

In IEEE 802.15.4-TSCH, duocast consists in associating two different
receivers to the same (anycast) cell. Let us consider the simple
schedule illustrated in Figure 1. In particular, A transmits its packets
that may be acknowledged by either B or D, by using an anycast
cell. In our example, the nodes B and D are neighbors of the dagroot
(E) and do not have an alternative parent. That is typically the case
if the link quality is very close to 100%.

At a first glance, anycast is always relevant: if several receivers
are awake to receive a packet, less packets are lost. However, several
characteristics may deeply impact the efficiency.

3.1 Link quality

Obviously, anycast does not increase the reliability with perfect
links, i.e. a Packet Delivery Ratio close to 100%. However, it helps
the network to be fault-tolerant: a second path to the destination is
automatically available. To improve the reliability, the two receivers
should be independent, i.e. the packet losses for the two receivers
should be independent. Fortunately, Teles et al. [7] already studied
experimentally a smart building environment, and highlighted that
independent receivers often exist.

3.2 Energy Consumption vs. Reliability

Without anycast, we can choose to increase the number of retrans-
missions to provide the same end-to-end reliability. In that situation,
the energy consumption is different:

104 @
=084
R4
3]
L
k)
T 4 .
& 06
> .
@ ° . ©
2
8 044
° ° o0
£
3 o .
o 0.2 °

0.0 4 . @

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Packet Delivery Ratio (data)

Figure 2: Ack vs. Data packet reliability

TX (retx): the transmitter consumes a quantity of energy pro-
portional to the number of retransmissions;

TX (anycast): the transmitter needs less retransmissions, and
consumes on average less energy;

RX (retx): additional cells have to be provisioned for retrans-
missions. While the transmitter will not wake-up during
these additional cells, the receiver must wake-up at the be-
ginning of the timeslot, and will go sleeping only if no Start
of Frame Delimiter (SFD) is detected;

RX (anycast): with anycast, all the receivers are awake for the
whole timeslot when a packet is transmitted. If additional
cells are used for retransmissions, the receivers have also to
listen to the beginning of the timeslot to detect a SFD.

3.3 Unidirectional vs. Bidirectional Reliability

Expected Transmission Count (ETX) is a popular metric to estimate
the link quality [18]. Practically, it counts the expected number of
transmissions before the packet is decoded correctly by the receiver.
More precisely, with acknowledgements, ETX is often the quantity
of packets to transmit before receiving an acknowledgement. The
difference is often very reduced since the data packet had already
captured the medium: the ack is transmitted just after the data
packet. However, the Wi-Fi backoff may be shorter, and external
interference may arise in practice. The problem is even exacerbated
in anycast since the secondary receiver has first to capture the ack
of the primary receiver, before sending its own ack. Collisions in
IEEE 802.15.4-TSCH are reduced since the access is timeslotted,
but other colocated IEEE 802.11 or IEEE 802.15.4 networks may
negatively impact the performance.

We run in the FIT IoT-Lab experiments a sequence of preliminary
experiments to quantify this impact. Our experimental setup is
described in details in section 5. We have very diverse link qualities
in the testbeds: the Packet Delivery Ratio is mostly comprised
between 5% and 100% for data packets. However, when the data
packet is correctly decoded, the probability to not be able to decode
the acknowledgement is for most links very low. This means that
the second receiver will also be probably able to decode the ack.

This property typically differs greatly from the default propa-
gation model implemented in the simulation mode of openwsn,
that uses the Pister-Hack Model [19]. While it predicts well the
reliability for data packets, it tends to highly over-estimate the
losses for ack packets: it has not been designed for this purpose.
Thus, we definitely need an experimental evaluation for duocast
transmissions.

3.4 Hidden Receiver Problem

Finally, the hidden terminal problem is well known in wireless
networks: two transmitter cannot detect their mutual transmissions
(carrier sense is inefficient), while they create a collision at the
receiver. RTS/CTS has been typically proposed to limit the impact:
short reservation packets help to limit the duration of the collision.

Unfortunately, creating additional control frames to just send an
acknowledgement for anycast is inappropriate. Since the network
is synchronized, we would have to schedule the acknowledgements
back-to-back to avoid collisions, which would increase the timeslot
duration. Besides, both receivers would forward the packet since
the second receiver cannot know if the primary receiver decoded it:
this replication increases the resource consumption. We expect here
to quantify this hidden receiver problem in an indoor environment:
can the probability to miss the ack of the primary receiver be
neglected?

4 DUOCAST FOR THE 6TISCH STACK

We proceed to the following modifications to support efficiently
duocast in IEEE 802.15.4-TSCH:

o detection of the ack of the primary receiver by the secondary
one. Indeed, only one acknowledgement must be transmitted
to avoid duplicates and collisions. The secondary receiver
implement both a Start of Frame Delimiter (SFD) detection,
and triggers a Clear Channel Assessment (CCA) before trans-
mitting its ack to avoid false negatives;

e timing in a timeslot to support multiple receivers: the sec-

ondary receiver must capture first the transmission of the

primary receiver. If nothing is detected, it transmits an ack.

Since we have also to consider the delay to load the packet in

the radio chipset, the CCA duration, etc. we have modified

the timing of the timeslot, as well as the finite state machine
for the secondary receiver;

in a duocast cell, three different devices are involved: the

transmitter and the two receivers. We have re-used the proto-

col 6P so that the transmitter can interleave the negotiations
with the two receivers, to support a consistent 3-tiers reser-
vation.

to handle possible control packet losses, exacerbated by the

fact that three different nodes are involved in the negotiation,

and that unreliable links may be exploited, we modify the
maintenance of the schedule to avoid inconsistency, without
relying on sequence numbers;

modification of the routing plane to take benefit of duocast.

In unicast, each device selects a preferred parent, and all its

packets are forwarded to this single next hop. With duocast,

we are able to take benefit of unreliable links, to forward
the packets farther (and thus reduce the route length). More

precisely, a device selects as primary receiver a neighbor
which is closer to the DAG root, even if the reliability metric
is quite low. However, it selects as secondary receiver its
preferred parent, with a high link quality. In that way, the
packet will be forwarded by the referred parent if the primary
receiver fails to decode (and acknowledge it).

4.1 Acknowledged duocast transmissions

Since we target high reliability, we consider only dedicated cells to
implement duocast. Besides, duocast is used only for data packets.
Thus, one transmitter sends a frame simultaneously to two different
receivers. We may use overhearing for the second receiver, or even
unacknowledged broadcast layer-2 transmissions [20]. But this
technique presents to our mind two major limits:

(1) if both receivers decode correctly the transmission, they for-
ward both the packet, consuming more resources. Duplicated
packets should be eliminated along the path, which is not
an easy task if paths are disjoint;

(2) with overhearing, the transmitter cannot know if the packet
has been correctly decoded. To provide high-reliability, the
transmitted needs to retransmit packets, with a number of
retransmissions designed for the worst-case. It consumes
unnecessary radio and energy resources.

Thus, we propose rather to use acknowledged duocast transmis-
sions. The second receiver must detect the acknowledgement of
the first one. For this purpose, we have two possible options:

Clear Channel Assessment (CCA): the second receiver trig-
gers a CCA when the first acknowledgement is expected (the
offset from the frame’s reception is fixed). We propose to
use an energy detection threshold-based CCAL: if the recep-
tion power is above a threshold value, the second receiver
assumes an ack is already in transmission;

Start of Frame interruption is triggered in listen mode when
the preamble of a frame is detected. Thus, when the second
receiver receives a start of frame interrupt after the reception
of the data packet, it assumes that the first receiver started
the ack transmission.

It is worth noting that to minimize the probability of the hidden
receiver problem, we may implement both techniques: the second
receiver stops the transmission if any of these two events occur.

4.2 Timeslot organization

Obviously, we have to change the timing of the timeslot for both
the transmitter and the receiver:

e the transmitter needs to stay awake longer to wait for the
second ack;

o the second receiver must change slightly its finite state ma-
chine to capture the ack transmission.

We finally obtain the timeline described in Fig. 3. We can note
that the first part of the timeslot remains unchanged: the packet is
transmitted to the two receivers, that may decode it if no error is
present. In particular, if the Frame Check Sequence (FCS) is invalid,
the packet is dropped by the receiver.

wdAck Duration+CCAduration

CCAduration .
b N
i TTxAckDelay 1SSnortGT
TXDATA TXDATA TXDATA | TXDATA RXACK RXACK RXACK | RXACK
TX OrFSET PREPARE READY DAY I - OFTSET PREPARE READY LISTEN
wdRadioTx+wdAck Duration
TsTxAckDelay —— >
; maxTxAckPrepare delayTx
—_———— >
RXDATA RXDATA RXDATA | RXDATA TXACK TXACK TXACK | TXACK
RX1 | OFFSET PREPARE READY | DELAY B OFFSET PREPARE READY DELAY s RXPROC
CCAduration
CCAduration
TsTxAckDelay X
RXDATA RXDATA RXDATA | RXDATA CCAT TXACK TXACK TXACK | TXACK
RX2 OFFSET PREPARE READY | DELAY R CCATRIGGER R‘;(é(;E OFFSET PREPARE READY | DELAY e RXPROC
startOfFrame() | | CCA_IDLE(
SLEEPING
Figure 3: Timeline of a duocast cell.
The second part of the timeslot changes: the transmitter has to req1 (first part) req2 rep2 rep1
. . << DE><i<t B o>
stay awake longer, to receive possibly the ack from the second re-
ceiver, shifted in time. This offset corresponds to the CCA duration.)
. . . T 1.0 1,{16/5,19/4} 3,{16/5} install: 16/5
The state machine for the first receiver remains also unchanged, >

and the ack is transmitted in the same way in unicast and in duocast.
The second receiver has to detect the first ack before transmitting
its own ack. Thus, it stays in CCATRIGGER state after having
received the data frame. Just before the expecte time of arrival of
the ack, the second receiver triggers a CCA by the radio chipset
and changes its state to CCATRIGGERED. If either a start of frame
interrupt is received, or the CCA returns a busy state, the second
receiver goes directly in sleeping mode. Else, it has to load its ack
to the radio, and to trigger its transmission. In our implementation,
we had first to trigger the CCA, and then to load the ack frame in
the radio chipset.

Finally, because of the margin, we exploit a timeslot of 25 ms,
instead of the original timeslot of 20ms when duocast is not enabled.
This corresponds to a overhead of 25% at most. Practically, the
transmitter and the two receivers are often asleep before the end
of the timeslot: 25 ms corresponds to the worst case, i.e. the second
anycast receiver was really needed, and another retransmission
would have been required in unicast.

4.3 Cell negotiation

Duocast implies that three devices (the transmitter and the two re-
ceivers) need to agree on a common dedicated cell to use. Practically,
this negotiation is time consuming since they must use shared cells
to negotiate, prone to collisions. This corresponds to the reason
why we focus here on duocast: increasing the number of receivers
involved in the negotiation increases the volume of control packets
for the reservation, with a small gain in reliability.

We re-use here 6P [8] for negotiating duocast cells. For this
purpose, we mix the two-way and three-way handshakes of 6P,
originally tailored for unicast, transmitter vs. receiver oriented
negotiation.

|)
/ VN
R1 / “ \

N
\\\ .
4

A} 7 ¢ >
2,(12/516/5,19/4) | / | ¢ 5
\ / \ install: 16/5
R2 Loy L] .
2,{16/5}
install: 16/5

1.{y Three-way handshake
1st step, empty list

Two-way handshake
2_'{1%} 2nd step, cell 16/5

----» Link layer ack

(> Install in the schedule

install: 16/5 Cell 16/5

Figure 4: 6P negotiation of a duocast cell.

We proceed in six steps, interleaving the two-way and three-way

handshakes (Fig. 4):

(1) the transmitter T sends a three-way handshake (req1) to the
first receiver R1. By definition, the list of cells is empty;

(2) if R1 accepts the request reql, it piggybacks a list of available
cells to the 6P request, replied to T;

(3) T extracts the list of cells from req1, and removes from the
list the cells that are already busy in its schedule. If not
enough cells remain in the list, the negotiation stops here.
Else, T engages a two-way handshake (req2) with the second
receiver R2, with the modified list;

(4) R2 extracts the list in req2 and selects the cells that are
available in its schedule. It finally sends a 6P reply to T (cor-
responding to rep2). These duocast cells are now reserved

in its schedule;

(5) T receives the reply of rep2 from R, and sends the reply rep1
(last handshake) to R1. As soon as it receives the ack for the
repl, the anycast cells are installed in its schedule;

(6) R1 installs the cells of rep1 in its schedule.

A device piggybacks in its 6P requests a list which is larger than
the number of cells to insert really in the schedule (by default 3
cells are present in the list). We force our distributed scheduling
function to reserve the cells one by one, so that the probability that
all the cells of the lists are already reserved is very low. Besides, we
also modify (MSF) [21] to reserve only duocast cells when a device
has multiple parents.

Control packet may be lost, leading to inconsistencies in the
schedule of the three involved motes. Thus, we chose a timeout-
based maintenance scheme, as described in the next section. In
particular, a TX cell is inserted in the schedule only if both negoti-
ations were successful. Formulated differently, a transmitter can be
sure that the cells are present in the two receivers (cf. Fig. 4). When
any other control packet is lost, some receivers may have modified
their schedule while the transmitter didn’t. We will explain in the
next section how such situation is handled without creating any
data packet loss because of schedule inconsistency.

4.4 Schedule Maintenance

6P exploits sequence numbers when exchanging requests to detect
inconsistencies in the schedule. A device maintains a 6P sequence
number per neighbor. When a 6P negotiation terminates success-
fully, the sequence number is incremented. Different sequence num-
bers reflect a schedule inconsistency: the two nodes then reset their
schedule (i.e. they flush all the mutual dedicated cells). However,
such approach is very agressive and the schedule has to be recon-
structed from scratch when an inconsistency arises (e.g. an ack is
not received) [22].

This problem is exacerbated by duocast: the transmitter must
flush the schedules with the two receivers when a difference of 6P
sequence number is detected. Thus, similarly to [22], we prone a
timeout-based maintenance: when a cell is not used for a while, the
cell is simply removed silently from the schedule. The timeout in
reception is larger than in transmission to guarantee that no packet
is lost, i.e. the cell is removed first from the transmitter, and then
from the receivers. A cell is considered unused by the transmitter
if no ack is received, and by the receiver if no frame is received.

We also modified MSF to reflect this behavior. When not enough
cells are present in the schedule, additional duocast cells are in-
serted, negotiated as detailed in the previous section. If too many
cells are reserved, the transmitter picks the cell which was not
used for the longest time (i.e. no ack received), and removes it
silently from its schedule. The receivers will remove it later asyn-
chronously, after the timeout. While the receivers will wake-up for
this cell in the next slotframes, they will not detect any reception,
and will sleep early. We consider this is much less expensive than
the number of control packets to generated to update explicitly the
schedule.

4.5 Routing: Preferred / Secondary parent
selection

We consider here a convergecast network: the packets are generated

and transmitted to the Internet though a single node, the dagroot.

In that situation, a device must select two parents to implement

duocast. We could measure the independency of transmissions [7],

Table 1: Parameters

#devices | [5,15]

Period for CoAP packets | 800ms * nbDevices
Queue length | 20 packets
Queue reserved for control packets | 5 packets

Sixtop timeout | 65,535s
Slotframe length | 101 slots
Duration of each experiment | 60min

but this estimation is very expensive in practice: we would need
probes packets, sent periodically to all neighbors.

We propose here rather a greedy solution, so that we can mix
the link qualities:

o we select the preferred parent with the orignal RPL version,
using the ETX metric. In that way, we privilege a parent with
a good link quality;

o the second parent is the neighbor with the smallest rank in
our neighborhood table, except the preferred parent. The
second parent MUST have a lower rank than ourself to avoid
routing loops.

Duocast represents an opportunity to exploit efficiently medium
link qualities without impacting too much the reliability. Thus, the
primary receiver is the parent with the lowest rank (i.e. largest
progress toward the dagroot), and the secondary receiver is the
other parent. Practically, the preferred parent (with a good link
quality) is often the secondary receiver. That is an advantage: if the
transmission to the primary receiver (with the greatest progress)
fails, we fallback automatically without any additional cost to a
good neighbor. In that way, we reduce the risk to exploit long, and
possibly worse, radio links [23].

5 EXPERIMENTAL EVALUATION

We implemented the duocast feature using the openwsn" project.
We modified the schedule to be able to account for anycast cells,
attaching two receivers to a single cell. The packets that need to
be forwarded upward (to the sink) are stamped with the specific
anycast multicast link layer destination address. Thus, a device that
receives a packet considers it valid in any of the two following
cases:

(1) its link layer address is present in the destination field,

(2) the destination is the anycast address, and the source address
of the packet is the neighbor attached to the current anycast
cell.

We consider a convergecast traffic: each device (except the sink),
generates a CoAP packet, forwarded to the sink (i.e. RPL border
router). We rely on RPL already implemented in openwsn, modified
to choose a secondary parent as described in section 4.5. All the
parameters are described in Table 1, and are detailed exhaustively
in the configuration file of openwsn-iotlab,

When selecting a set of motes on the platform, we select ran-
domly the first mote. Then, we select randomly a novel mote at each

“http://www.openwsn.org
*https://bit.ly/:”Bthcb

Table 2: Timing of a duocast timeslot

Offset ‘ Duration
TsTxAckDelay | 5,521 us
CCAduration 3,200 ps
wdAckDuration | 3,000 ps
delayTx 549 us
TsShortGT 700 ps

step. If the closest id in the selected set differs by at most 9 from
the mote id of the novel mote, we keep it. Else, we select randomly
another mote. Since motes with a close id are located close geo-
graphically, we maintain a connected network topology. The same
topology is used to compare all the different protocols/variants to
limit the possible bias.

Table 2 regroups the timing for a timeslot (cf. Fig. 3), for our
specific hardware (Cortex M3, with the STM32F103REY MCU, that
includes 64 KB of RAM and 256 KB of ROM).

We measure the following metrics:

Packet Delivery Ratio (PDR): we measure the ratio of the
number of packets received and the number of packets gen-
erated. We make the distinction between:

per link: we consider the link layer transmissions (each
frame). Thus, each link layer retransmission counts for
one generated packet;

end-to-end: we consider application layer messages. While
the message is delivered to the sink, it may have been
retransmitted en route.

Number of (link layer) transmissions: the ratio of the num-
ber of link layer (re)transmissions and the number of mes-
sages generated by the source. A large value means typically
that many motes have to forward and retransmit the packet
before it reaches the sink.

Ratio of false negatives (acks): ratio of acks actually detected
by the secondary receiver, and the number of acks transmit-
ted by the primary receiver. Because of the hidden terminal
problem or because of a different radio channel state, the
secondary receiver may not be able to detect the ack. This sit-
uation is detrimental since the two acks will cause a collision:
their transmission will overlap.

5.1 Dataset and Implementation

For the sake of reproducibility, we provide a full access to all our
implementation, experiments plan, and data analysis:
openwsn-iotlab [24]: experiment plan, and all the python
scripts to reserve a FIT IoT-Lab experiment, flash motes, run
the server part, store all the log files for post-processing;
openwsn-fw [25]: firmware in C that implements the CCA
feature (medium access, queue management, sixtop negocia-
tion, schedule management);
openvisualizer [26]: server (in Python) connected to the
motes, with a visualization part (for anycast cells), with a
customized library to retrieve all the statistics, and store
them in a sqlite3 database;

10°
.
» °
5}
2 -1
210 A %
= 3 °
z ° P
i"g ° < o .
©
.
% ®e 0‘.
2 107 1 ° ° Y °
© -
o .
o °
°
10-3 T T T T T
0.0 0.2 0.4 0.6 0.8

Packet Delivery Ratio (data)

Figure 5: Frequency of the hidden receiver problem (per link)

openwsn-data [27]: data analysis pipeline that extracts infor-
mation from the database.

dataset [28] is fully available for the community (packets
transmissions/receptions, sixtop events, schedule modifica-
tions, RPL changes, etc.)

5.2 Hidden Receiver Problem

We first quantify the impact of the hidden receivers problem. If the
secondary receiver fails to capture the ack of the primary receiver,
both will transmit an ack, that will collide. It is worth noting that
it does not impact the reliability: the packet will be retransmitted.
However, it is energy inefficient since such retransmissions will
be useless. We measured the ratio of acks that collide, considering
individually each anycast cell (Fig. 5). Practically, the number of
false negatives is very low: the worst situation (3%) comes from a
radio link with a very low reliability (30%). In most cases, the ratio
of false negatives is below 1%, which means a very limited increase
of the number of retransmissions. This efficiency is corroborated
when measuring the raw number of link layer transmissions (cf.
section 5.4).

5.3 CCA vs. Start of Frame

The secondary receiver may detect the ack from the primary re-
ceiver either with a Start of Frame Delimiter (the radio chipset
triggers an interruption after having detected the preamble), or
with a busy Clear Channel Assessment (the radio chipset reports
an energy detection above the threshold value). We measured for
all the anycast cells the ratio of time the ack is detected with a CCA
(Figure 6). It is worth noting that SFD interruptions are largely suf-
ficient to detect very accurately the transmission of the ack by the
primary receiver. Thus, we could reduce the implementation com-
plexity by removing the CCA detection: the transmission may be
scheduled just after the expected time of arrival of the ack preamble.
A SFD interrupt would just cancel the data transmission.

1.0

o =4 o
> o ©
1 1 1

Ratio CCA / Start of Frame interruptions
N
1

0.0 T T T T
0.0 0.2 0.4 0.6 0.8
Packet Delivery Ratio (data)

Figure 6: CCA vs. Start of Frame Delimiter Detection of ac-
knowledgements (per link)

1.0
0.8
k)
&
> 0.6
[
=2
©
o
T 0.4
X
[5}
©
o
0.2+
I without anycast
[with anycast
0.0 T T T T T T
3 5 8 10 12 15
Number of motes
(a) End-to-end reliability
I without anycast
® I with anycast
(o] 5
©
[
(%]
o}
S
o}
Q44
(2]
c
k)
2]
L
531
c
o
-
o
@ 2
Qo
€
3
=z
1+ &
T T T T T T
3 5 8 10 12 15

Number of motes

(b) Number of link layer transmissions

Figure 7: Efficiency of duocast for Constant Bitrate Traffic

5.4 Scalability

Figure 7 illustrates the performance at the application end-to-end
level. The end-to-end reliability is similar with and without duocast
(Fig. 7a): a packet is retransmitted until an ack is received. Since the
maximum number of transmissions at the link layer is sufficiently
high, most of the packets are correctly delivered. However, we can
note that the number of link layer transmissions is reduced with
duocast (Fig. 7b). More precisely, we combine two positive effects:

(1) apacket is retransmitted only if both receivers are unable
to decode the packet. The radio channel toward the two
receivers is sufficiently different to exhibit sufficiently in-
dependent links. This reduces on average the number of
transmissions;

(2) atransmitter has two receivers, including a neighbor with
the greatest progress toward the dagroot. This means that
with anycast, the route length is on average smaller to reach
the dagroot. Hopefully, with anycast, exploiting medium
link qualities does not impact negatively the reliability. In
other words, duocast limits the risk of selecting a bad quality
parent.

We can note that that the median number of transmissions is very
low, even in the 12-nodes topology. With duocast, we can exploit
unreliable links while still providing a high reliability.

5.5 Faut Tolerance

Finally, we focus on the fault-tolerance property of our duocast
solution. We focus on a fixed topology with 4 motes. We manually
emulate the crash of a neighbor of the dagroot that forwards all
the packets, and keep on measuring the delay all along the experi-
ment. When we turn off the mote after 20 minutes without anycast,
the packets stop to be delivered (Fig. 8a). Even worse, the devices
become unsynchronized, and are disconnected from the network,
searching for an alternative parent for a long time.

With anycast, a device is turned off after 26 minutes. However,
the packets keep on being delivered to the dagroot through the
second preferred parent (Figure 8b). We can note that the delay
increases, with a bimodal distribution: the secondary parent is
farther from the dagroot than the primary parent. This means that
the route is longer (1 hop), and that the delay mechanically increases.
However, the device uses the second parent to stay synchronized,
and it keeps on being able to forward its packets to the remaining
forwarding node. Besides, the end-to-end delay may change even if
the routes through the two parents are equal: the forwarding nodes
have different TX cells to forward the packets.

6 CONCLUSION & FUTURE WORK

We propose here an implementation of duocast in scheduled wire-
less networks. In a single timeslot are transmitted a data packet, and
an ack from either the primary receiver or the secondary receiver.
We also propose to enhance 6P to be able to negotiate a timeslot and
a channel offset to use for anycast cells, among a group of 3 devices
(the transmitter and the two receivers). We conducted a thorough
experimental evaluation in an indoor testbed to quantify the gain
of duocast to improve the reliability and to reduce the number of
link layer transmissions. In particular, the frequency of the hidden
receiver problem is very low, and false negatives do not impact

5000

4000 -

w
o
o
S]

Delay in ms

2000 A

1000 -

0 5 10 15 20 25 30
#of timeslots since the beginning

(a) Without anycast: crash at the 20" minute

5000 < %
° e °
° o® e % . ®© .
° %
° e®e% °
LY L]
4000 4 °

Delay in ms
w
o
o
o
"

N
=3
o
)
s

1000 A

#of timeslots since the beginning

(b) With anycast: crash at the 27" minute

Figure 8: Fault-tolerance

significantly the reliability. Besides, duocast helps to improve the
fault-tolerance: a secondary receiver is automatically here when
the primary receiver fails. Our whole dataset, our ducocast imple-
mentation, as well as our data analysis pipeline are freely available
for the sake of reproducibility.

In the future, we plan to investigate the relevance of anycast with
a centralized schedule: how could we optimize the choice of parents
to improve the reliability and the diversity? We also plan to port this
implementation with different hardware, to study the impact of the
SFED interruptions delay on the timing inside a timeslot. Finally, we
expect to investigate how to modify our implementation to support
other radio chipsets and to reduce the timeslot duration, removing
the unnecessary CCA for the secondary receiver.

ACKNOWLEDGMENT

This work was partly supported by the French National Research Agency
(ANR) project Nano-Net under contract ANR-18-CE25-0003.

REFERENCES

[1] Luis Moutinho, Paulo Pedreiras, and Luis Almeida. A real-time software defined

networking framework for next-generation industrial networks. IEEE Access,
7:164468-164479, 2019.

Georgios Z. Papadopoulos, Fabrice Theoleyre, Pascal Thubert, and Nicolas Mon-
tavont. letf reliable and available wireless (raw): Use cases and problem statement.
In Ad-Hoc, Mobile, and Wireless Networks, pages 303-314, Cham, 2020. Springer
International Publishing.

Jan Garcia-Morales, M. Carmen Lucas-Estai, and Javier Gozalvez. Latency-
sensitive 5g ran slicing for industry 4.0. IEEE Access, 7:143139-143159, 2019.
Mohammed Zaki Hasan, Hussain Al-Rizzo, and Fadi Al-Turjman. A survey on
multipath routing protocols for qos assurances in real-time wireless multimedia
sensor networks. IEEE Communications Surveys Tutorials, 19(3):1424-1456, 2017.
Erfan Mozaffari Ahrar, Mohammad Nassiri, and Fabrice Theoleyre. Multipath
aware scheduling for high reliability and fault tolerance in low power industrial
networks. Journal of Network and Computer Applications, 142:25-36, 2019.
Mark Nixon. A comparison of wirelesshart and isa100.11a. White Paper HCF-
SPEC, Emerson, Sept. 2012.

Rodrigo Teles Hermeto, Antoine Gallais, and Fabrice Théoleyre. Is link-layer
anycast scheduling relevant for ieee 802.15.4-tsch networks? In LCN Symposium
on Emerging Topics in Networking (LCN Symposium), pages 133-140, 2019.

Q. Wang, X. Vilajosana, and T. Watteyne. 6TiSCH Operation Sublayer (6top)
Protocol (6P). RFC 8480, IETF, November 2018.

Fabrice Theoleyre and Georgios Z. Papadopoulos. Experimental validation of
a distributed self-configured 6tisch with traffic isolation in low power lossy
networks. In ACM International Conference on Modeling, Analysis and Simulation
of Wireless and Mobile Systems (MSWiM), pages 102-110, 2016.

R. T. Hermeto, A. Gallais, and F. Theoleyre. Scheduling for IEEE802.15.4-TSCH
and slow channel hopping MAC in low power industrial wireless networks: A
survey. Computer Communications, 114:84 - 105, 2017.

X. Vilajosana, K. Pister, and T. Watteyne. Minimal IPv6 over the TSCH Mode of
IEEE 802.15.4e (6TiSCH) Configuration. RFC 8180, IETF, May 2017.

S. Kulkarni, A. Iyer, and C. Rosenberg. An address-light, integrated MAC and rout-
ing protocol for wireless sensor networks. IEEE/ACM Transactions on Networking,
14(4):793-806, Aug 2006.

Simon Duquennoy, Olaf Landsiedel, and Thiemo Voigt. Let the tree Bloom:
scalable opportunistic routing with ORPL. In SenSys, page 2. ACM, 2013.
Remous-Aris Koutsiamanis, Georgios Z. Papadopoulos, Tomas Lagos Jenschke,
Pascal Thubert, and Nicolas Montavont. Meet the pareo functions: Towards
reliable and available wireless networks. In International Conference on Commu-
nications (ICC), pages 1-7. IEEE, 2020.

Thong Huynh, Fabrice Theoleyre, and Won-Joo Hwang. On the interest of op-
portunistic anycast scheduling for wireless low power lossy networks. Computer
Communications, 104:55 — 66, 2017.

Oliver Harms and Olaf Landsiedel. (poster) overtake: Opportunistic routing and
concurrent transmissions for tsch. In International Conference on Distributed
Computing in Sensor Systems (DCOSS), pages 141-143, 2020.

1. Hosni and F. Theoleyre. Adaptive k-cast Scheduling for high-reliability and
low-latency in IEEE802.15.4-TSCH. In ADHOC-NOW, volume 11104 of LNCS,
pages 1-12. Springer, Sep 2018.

Simon Duquennoy, Joakim Eriksson, and Thiemo Voigt. Five-nines reliable
downward routing in rpl, 2017.

Esteban Municio, Glenn Daneels, Malida Vu¢ini¢, Steven Latré, Jeroen Famaey,
Yasuyuki Tanaka, Keoma Brun, Kazushi Muraoka, Xavier Vilajosana, and Thomas
Watteyne. Simulating 6tisch networks. Transactions on Emerging Telecommuni-
cations Technologies, 30(3):e3494, 2019. e3494 ett.3494.

Remous-Aris Koutsiamanis, Georgios Z. Papadopoulos, Xenofon Fafoutis, Julian
Martin Del Fiore, Pascal Thubert, and Nicolas Montavont. From best effort to de-
terministic packet delivery for wireless industrial iot networks. IEEE Transactions
on Industrial Informatics, 14(10):4468-4480, 2018.

Tengfei Chang, Malisa Vucini¢, Xavier Vilajosana, Simon Duquennoy, and
Diego Roberto Dujovne. 6TiSCH Minimal Scheduling Function (MSF). RFC
9033, May 2021.

Rodrigo Teles Hermeto, Antoine Gallais, and Fabrice Theoleyre. Experimental
in-depth study of the dynamics of an indoor industrial low power lossy network.
Ad Hoc Networks, 93:101914, 2019.

Tao Liu and Alberto E. Cerpa. Data-driven link quality prediction using link
features. ACM Trans. Sen. Netw., 10(2), January 2014.

Fabrice Theoleyre. Experiment plan for openwsn with durocast. https:
//github.com/ftheoleyre/openwsn-iotlab/tree/duocast, https://doi.org/10.5281/
zenodo.5499988, Sept. 2021.

Fabrice Theoleyre. Openwsn firmware with ducocast. https://github.com/
ftheoleyre/openwsn-fw/tree/duocast, https://doi.org/10.5281/zenodo.5499997,
Sept. 2021.

Fabrice Theoleyre. Openvisualizer for openwsn with duocast. https://github.com/
ftheoleyre/openvisualizer/tree/duocast, https://doi.org/10.5281/zenodo.5499993,
Sept. 2021.

Fabrice Theoleyre. Data processing pipeline. https://github.com/ftheoleyre/
openwsn-data/tree/duocast, https://doi.org/10.5281/zenodo.5499999, Sept. 2021.
Fabrice Theoleyre. Indoor wireless deterministic anycast transmissions data from
the fit iot-lab testbed. Zenodo dataset, https://doi.org/10.5281/zenodo.5341805,
August 2021.

