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Abstract

Providing a high-quality real-time video streaming experience to mobile

users is one of the biggest challenges in cellular networks. This is due to the

need of these services for high rates with low variability, which is not easy to

accomplish given the competition among (usually a high number of) users for

constrained network resources and the high variability of their channel char-

acteristics. A way of improving the user experience is by exploiting their

buffers and the ability to provide a constant data rate to everyone, as one of

the features of 5G networks. However, the latter is not very efficient. To this

end, in this paper we provide a theoretical-analysis framework for resource

allocation in 5G networks that leads to an optimized performance for live

video streaming. We do this by solving three problems, in which the objec-

tives are to provide the highest achievable video resolution to all one-class

and two-class users, and to maximize the number of users that experience

a given resolution. The analysis is validated by simulations that are run on

trace data. We also compare the performance of our approach against other

techniques for different QoE metrics. Results show that the performance can

be improved by at least 15% with our approach.
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1 Introduction

LTE networks are unable to provide a high Quality of Experience (QoE) to

mobile users interested in increasingly popular applications/services, such as video

streaming [1], augmented reality [2], etc., because of their stringent service require-

ments [3]. A better solution to overcome this problem than increasing the density

of current (4G) network infrastructure [4], which comes at a considerable cost with

modest gains, is the deployment of the next generation of cellular networks, 5G.

The possibility of network slicing in 5G [5] enables assigning dedicated network

resources to the same type of service, e.g., users watching live the same event.

One of the services that poses serious strains on cellular network operation is

video streaming of live events. Providing a high-quality real-time video streaming

experience to mobile users, expressed through a consistently high video quality

with seldom rebuffering events and no (or a small number of) packets dropped, is

not straightforward. The reason for that is the need for high data rates with low

variability [3]. This requirement is particularly challenging to accomplish because

of the competition for limited network resources among the ever increasing number

of users running bandwidth-hungry applications on their smartphones, and their

channel characteristics that exhibit high variability.

According to [6], the variable playout rates cause up to 21% of users aban-

doning video streaming, which is the second leading cause; the main cause is the

rebuffering (outage) events. Furthermore, Mux (mux.com) conducted a survey with

more than 1000 US respondents [7] about their experiences with video streaming

services. According to that survey, the low picture quality (low video resolution)

was the most frustrating problem for 14.3% of the viewers, and 57% of respon-

dents had abandoned a video in the past due to low video resolution. Hence, it is

important to not only minimize the video outage due to rebuffering events, but also

to provide consistently a high video resolution.

A way of improving the user experience is by jointly exploiting their buffers on

end devices (that amortize the data rate variability), the ability to provide a constant

data rate to everyone in 5G [8], and the proper allocation of network resources.

While providing a constant data rate with a low outage in 5G, known as consistent

rate, can indeed mitigate the variations in video resolution, it has been shown [9]

that it is quite inefficient in terms of resource utilization and has been described as

an “expensive feature”. In this paper, we show that because of the nature of the

traffic in live video streaming, having even a small buffer (so that a given traffic

latency is not exceeded) mitigates the need for strict consistent data rates, and

even optimizes the performance with proper resource allocation, by allowing only

a small number of packets to be dropped. Hence, our focus in this work is to

efficiently allocate the resources so that the user’s QoE is optimized.

There are several questions that arise when dimensioning network slices or

when designing admission control policies for real-time video applications in 5G.

First and foremost, what is the maximum resolution at which a user can watch a

live event on her smartphone given her channel conditions and the number of other
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users in the cell? It is also of interest to know the amount of resources a user

needs in order to play the video at the lowest acceptable resolution. Next, given

the competition for the network resources, what allocation scheme enables all the

users to experience the same video quality, and what resolution is that? Another

important question is how to allocate resources so that the number of users with

ultimate video experience (or another video resolution) is maximized.

In this paper, to address the aforementioned issues, we formulate three prob-

lems whose solutions lead to efficient resource allocation policies to be followed by

the cellular operator, resulting in significant QoE improvements for mobile users.

Our study is particularly important because it can help cellular operators efficiently

allocate network resources depending on the optimization objective, while provid-

ing a constant playout rate throughout the entire streaming. Also, it shows that the

loss of information is very low even with very small buffers, thus maintaining a

small delay between the occurrence of the event and the time it is played out on the

smartphone. The approach is flexible enough to be implemented on top of any of

the proposed 5G architectures [10], [11].

Specifically, our main contributions are:

• We model the real-time video streaming on smartphones as a discrete-time

queueing process with finite buffer and fixed playout rate and derive the max-

imum constant playout rate (resolution) that a user can experience for 1 − ǫ
of the time with a maximum number of packets than can be dropped, given

its channel conditions and network resources available.

• We derive the resource allocation that maximizes the video resolution that

can be played out by all the users with the same outage and drop rate.

• We consider the problem of maximizing the number of users that can be

provisioned with a target video experience while providing the minimum

acceptable video resolution to all the other users, and derive the resource

allocation that provides that.

• We validate the analysis through simulations run on trace data and also

obtain several engineering insights, such as the need for very small user’s

buffers even for highly variable channel conditions.

• We show that our approach of constant playout rate provides a better user

experience than the adaptive bit rate (ABR) techniques for different QoE

metrics.

The remainder of this paper is organized as follows. The model and problem

formulation are presented in Section 2. This is followed by the theoretical analysis

in Section 3. We solve three problems in Section 4. We present a benchmark model

and the QoE metrics in Section 5. The performance evaluation together with some

engineering insights are presented in Section 6. We discuss some related work in

Section 7. Finally, Section 8 concludes the work.
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Figure 1: Illustration of the real-time video streaming process in a cell with n users.

2 Performance modeling

2.1 System model

We consider mobile users within the coverage area of a 5G macro base station

(gNodeB) in the sub-6 GHz band with the focus on the downlink (Fig. 1). We as-

sume that the users watch the same event live on their smartphones, e.g., a football

match, or a show.

As in LTE networks, the block resource allocation scheme is used in 5G as well,

with physical resource blocks (PRB) being the unit of allocation [12]. The frame

duration is ∆t. Within a frame, different blocks are assigned to different users. In

general, the assignment will change in every frame. So, there is a scheduling both

in time and frequency. The total nuFmber of blocks dedicated to this use case is

K .

Users will experience different channel characteristics in different blocks (dif-

ferent frequencies) even within the same frame, and hence a different per-block

Signal-to-Interference-plus-Noise Ratio (SINR). The latter is a function of the base

station transmission power of the cell where the users are, the transmission power

of neighboring cells transmitting on the same frequencies (inter-cell interference),

AWGN noise and the corresponding channel gains [9]. Due to user’s mobility and

time-varying channel characteristics, per-block SINR changes from one frame to

another even for the same block. This varying per-block SINR translates into a

varying per-block rate, which is obtained using a modulation and coding scheme

(MCS). In our system, we consider an MCS with m possible values (the typical

value of m is either 15 or 31) [13]. E.g., if the per-block SINR lies in the interval

[γj , γj+1], with γj and γj+1 being the thresholds of the MCS (j = 1, . . . ,m), the

per-block rate in that frame would be rj [14]. For every user, we assume flat chan-

nels (blocks) in a frame, i.e., the per-block rate does not change during the frame,

but it changes from one frame to another randomly1.

To maintain tractability, we make a simplifying assumption. We assume that

the base station transmission power and channel characteristics of a user are the

1In Section 6, we show that even when per-block rates of a user in contiguous frames are corre-

lated, the analysis provides a close match to actual results.
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same across all K blocks in a frame (flat fading). This way our problem reduces

to a one-dimensional scheduling (in time). So, instead of deciding how many and

which blocks to assign to every user, we use another parameter, which is defined

as:

Definition 1. The ratio of frame for which all the blocks are allocated to user i is

called frame ratio. It is denoted by Yi, and can take values in the interval [0, 1].

The blocks are assigned orthogonally during the frame, so that no two users

receive them simultaneously. This is a reasonable simplification as frame ratio can

be translated into the corresponding number of PRBs. Hence, from now on, we will

be considering only the frame ratio, with values in [0, 1], as the resource allocation

unit.

As a result of previous assumptions, in every frame user’s i per-block rate can

be modeled as a discrete random variable, Ri, with values in {r1, r2, . . . , rm}, such

that r1 < r2 < . . . < rm, with a probability mass function (PMF) pRi
(x), which

is a function of user’s i SINR over time.2

Number of users: The number of (mobile) users in the cell is n. The users have

different per-block rate distributions.

Video content: The content of the video, after being generated, “travels” through

the core of the network to the corresponding base station (Fig. 1). The video con-

tent of every user is associated with two buffers. The first is on the base station

side where the video packets3 arriving from the core of the network are temporar-

ily stored. These video packets are then transmitted to the user, and are to be stored

in the second buffer, from where they will be played out. The time interval between

the packet being generated and its playout is called streaming latency. It is well

known that the backhaul bandwidth is much larger than the bandwidth between the

base station and mobile users. Hence, the latter is the bottleneck of the network in

terms of delay, and that will be the part of network of our interest.

Playout rate: The rate at which the video content is played on the smartphone

of a user is called playout rate or bitrate, and is denoted by U . It should not

be confused with the data rate from the network. The former “plays” the packet,

whereas the latter “brings” it to the user. This is one of our QoE metrics of interest.

It is directly related to the video resolution. The higher the playout rate, the higher

the video resolution is. E.g., playing videos in the resolution range 144p-1080p

requires a playout rate of 0.1 − 5.8 Mbps [15]. The ultimate 4K UHD videos

require up to 40 Mbps [4].

Since, as mentioned in Section 1, most users are not happy when the resolution

of the video changes over time, we strive to provide a constant playout rate to every

user at all times. Therefore, in this work, we assume that every user will have a

constant playout rate.

2We assume that based on the history of changes in SINR for a user, the base station knows the

per-block rate probabilities for every user.
3Note that our model is general and instead of packets, the granularity level can be increased to

chunks, without affecting the theoretical analysis.
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Outage: When there are no packets in user’s buffer, the video will stall until

new packets arrive. This is known as a rebuffering event or as an outage, which is

one of the most important measures of QoE, and is our metric of interest too. The

probability of having an outage in a frame is ǫ. Obviously, this should be as low

as possible. Note that there is a tradeoff involved between the playout rate and the

outage. In general, allowing a higher outage may lead to higher playout rates. This

also depends on user’s buffer size.

Dropped packets: We assume that all the users have the same (finite) buffer

size. This assumption gives rise to another phenomena, that of information loss.

Namely, when the arriving packets to the user’s buffer find it full, they will be

dropped. That part of information will be lost for the user. To capture this effect

quantitatively, we use the parameter packet drop rate, δ, which denotes the ratio

of the lost packets4. It can also be interpreted as the probability for a packet to be

dropped. The goal is to provide as low a packet drop rate as possible. Obviously,

the higher the playout rate, the lower the drop rate is and vice versa.

The outage ǫ and drop rate δ are the main driving forces (together with the

network resources and the channel conditions of the users) that determine the value

of the playout rate. Namely, increasing the playout rate leads to a decrease in the

drop rate but also increases the outage.

2.2 Queueing model

The packet size is σ.5 The maximum number of packets in the buffer is B. If

in frame t the data rate of user i is Ci(t), the total number of packets that arrive

and are queued (if there is enough space) in the buffer of user i during that frame is

Ai(t) = ⌊Ci(t)∆t

σ
⌋. They are played out according to the First Come First Served

(FCFS) order of service. The earliest that the packets arriving during frame t can

be played out is in frame t+ 1. The rate Ci(t) is a function of channel conditions

(per-block rate) of user i and of the total number of users in the cell, and is i.i.d.

across frames, implying that Ai(t) is i.i.d. too. In case some of the arriving packets

find the buffer full, they will be dropped.

Since the model is adjusted for live video streaming, there are always packets

“circulating in the air”. We assume that at time t = 0, when streaming starts,

there are no packets in the buffer, i.e., Q(0) = 0. Packets “start” arriving at the

buffer during the first frame or later, and during that time, there is no video being

played out. The playout starts after the first packets have arrived at user’s buffer.

We assume that at the beginning of the frame the video playout is preceded by the

arrival of the packets in the buffer. Hence, our “point of interest” is the beginning

of every frame just after the arrival of the last packet from the previous frame and

4We will refer to this quantity simply as drop rate.
5As shown in [16], the packet sizes in video streaming applications exhibit very low variabil-

ity. Nevertheless, in Section 6 we relax this condition and show that our analysis can predict quite

accurately the performance even for variable packet sizes.
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just before the video resuming. We denote with QB(t) the number of packets in

the buffer at that moment.

As data rate changes over time, the number of packets arriving in the queue

varies over frames. The buffer amortizes the throughput variability while providing

a constant playout rate. Since the goal is to provide a high QoE to every user, we

strive to have as high a constant playout rate as possible with a very small outage

ǫ.6 If U is the playout rate, the total number of packets being played out during a

frame (while the streaming lasts) is S = ⌊U∆t
σ

⌋. We assume that the buffer size

is larger than any reasonable number of packets that can be played out during a

frame.

As already mentioned, the outage refers to the amount of stalling in the video,

which corresponds to the case when there are no packets to be played, i.e., the

buffer becomes empty during a frame. This is equivalent to the ratio of frames

during which there are fewer packets in the buffer than that can be played out.

Consequently, we are interested in the stationary probability that at the beginning

of the frame there are fewer than S packets in the buffer, in which case, based on

the model, at some point during the upcoming frame there would be no packets,

i.e., a stall in the video will occur.

As will become clear in the next section, besides the distribution of the state of

the finite buffer, we will also need the distribution of the infinite-buffer state. To

differentiate between the two, we use qi,B = P(QB = i) to denote the stationary

probability of finding i packets in the queue of the finite-size buffer just before

playout “resumes” at the beginning of the frame (and right after the packets from

previous frame have arrived at the queue), whereas qi = P(Q = i) does that for

that infinite-size buffer.

Summarizing, we are interested in finding S for which it holds
∑S−1

i=0 qi,B ≤ ǫ
and δ ≤ δ0.

Based on the above description, our system corresponds to a discrete-time

D[X]/D/1 [17] or GI/D/S [18] queue with finite buffers.

The important question that arises is: What is the maximum value of U that

can be guaranteed to a user so that the outage probability is not greater than ǫ
and that the drop rate is not higher than δ0? In the next section, we provide the

analysis that answers this question, i.e., that determines the maximum possible

value of the number of packets S that can be played out during a frame, resulting

in the maximum possible playout rate (video resolution) that can be guaranteed to

a mobile user for 1 − ǫ of the time, while not losing more than δ0 · 100% of the

packets.

Table 1 summarizes the notation used throughout this paper. In Section 3, to

ease the presentation, we remove the reference to user i.
Maintaining low playout delay: As the backhaul link capacities are usually

much higher than those of access network, we assume that the packets “appear”

instantly at the base station buffer. The buffer at the base station is much larger

6This means that the user will have the same playout rate while watching the entire video.
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Table 1: Definitions and Notation
n Number of users in the cell

Ri(t) Per-block rate of user i in frame t

m Number of levels in the MCS

K Total number of blocks

B Size of the buffer

qi Probability of having i packets in the infinite-size buffer

qi,B Probability of having i packets in the finite-size buffer

ǫ Outage probability

δ Packet drop rate

Ci(t) Data rate of user i during frame t

Ai(t) Number of packets arriving at user i during frame t

A(z) Probability generating function of the arrival process

Q(t) Number of packets in the buffer in frame t

Q(z) Probability generating function of the buffer state

U Playout rate

S Number of packets that can be played out during a frame

∆t Frame duration

σ Packet size

Yi Ratio of frame (frame ratio) resources are allocated to user i

than the user’s buffer. Hence, it can be assumed to be infinite. The playout delay,

i.e., the latency component on the user’s side is controlled by the size of its buffer.

To keep the information “fresh”, i.e., in order to prevent a packet to exceed the

maximum latency, it can be dropped from the BS buffer after a certain time. E.g.,

assume that the total latency allowed is 10 s. If the size of the buffer on the user’s

side is 3 s, then as soon as a packet in BS buffer spends more than 7 s it is discarded.

Nevertheless, this does not affect our analysis as we assume that the arrival process

is generic. Therefore, we consider only the queueing process at the user’s side.

3 Playout Rate Analysis

In our analysis we first derive the results under the assumption that the buffer

size at the user device is infinite, and then use those results to derive the analysis

for the finite-buffer case.

3.1 Infinite-size buffer

We solve the queue that corresponds to our system, where the arrival process

of number of packets is A(t). The probability generating function (PGF) for the

7



arrival process is

A(z) =
∞∑

i=0

aiz
i, |z| ≤ 1, (1)

where ai = P(A = i). The PGF for the number of packets in the queue (including

the one in service) is

Q(z) =

∞∑

i=0

qiz
i, |z| ≤ 1. (2)

The evolution of the number of packets in the queue is

Q(t+ 1) = max{S,Q(t)} − S +A(t), (3)

where Q(0) = 0. For the steady-state regime, which is of our interest, we have

Q = limt→∞Q(t). The sequence of the number of queued packets Q forms a

stationary Markov chain (A(t) is i.i.d.). This Markov chain is irreducible, positive

recurrent, and aperiodic (which means there is a stationary distribution qi = P[Q =

i]) if P[A ≤ S − 1] > 0, P[A ≤ S] < 1, and ρ = E[A]
S

< 1, which are compliant

with our system.

In equilibrium, Eq.(3) becomes Q = T − S + A, where T = max{S,Q}. As

A(t) is independent of Q(t) and S is constant, the PGF of the queue can be written

as

Q(z) = E
[
zQ
]
= E

[
zT−S+A

]
= E

[
zT
]
E
[
zA
]
E
[
z−S

]
. (4)

Since E[z−S] = z−S , E[zA] = A(z), and E[zT ] = T (z), we have

Q(z) = z−SA(z)T (z). (5)

The expression for T (z) can be further transformed into

T (z) =

S−1∑

i=0

qiz
S +

∞∑

i=S

qiz
i = zS

S−1∑

i=0

qi +

∞∑

i=0

qiz
i −

S−1∑

i=0

qiz
i,

or, equivalently into

T (z) = Q(z) +
S−1∑

i=0

qi(z
S − zi) = Q(z) +

S−1∑

i=0

qiz
i(zS−i − 1).

The expression zS−i − 1 in the above equation transforms into

zS−i − 1 = (z − 1)(zS−i−1 + zS−i−2 + . . .+ 1) = (z − 1)

S−i−1∑

l=0

zl.

Hence, for T (z) we obtain

T (z) = Q(z) + (z − 1)
S−1∑

i=0

qiz
i
S−i−1∑

l=0

zl,

8



which is equivalent to

T (z) = Q(z) + (z − 1)

S−1∑

i=0

qi

S−i−1∑

l=i

zi+l

because
∑S−i−1

l=0 zi+l =
∑S−1

l=i z
l. Denoting N(z) =

∑S−1
i=0 qi

∑S−1
l=i z

l, we get

T (z) = Q(z) + (z − 1)N(z). (6)

Finally, replacing Eq.(6) into Eq.(5), and rearranging we obtain

Q(z) =
(z − 1)N(z)A(z)

zS −A(z)
. (7)

Q(z) is an analytic function, i.e. differentiable, everywhere inside and on the unit

circle. Eq.(7) for z = 1 yields

Q(1) =
limz→1(z − 1)N(z)A(z)

limz→1 (zS −A(z))
=

limz→1
d
dz

((z − 1)N(z)A(z))

limz→1
d
dz

(zS −A(z))
. (8)

The RHS in the previous equation is obtained after applying L’Hopital’s rule to the

LHS (a ratio of the form 0
0 ). Applying some basic calculus to the numerator, we

get

lim
z→1

d

dz
((z − 1)N(z)A(z)) = lim

z→1

d

dz
(zN(z)A(z) −N(z)A(z)) =

lim
z→1

(
d

dz
(zN(z))A(z) + zN(z)A

′

(z) −N
′

(z)A(z) −N(z)A
′

(z)

)

=

lim
z→1

(

N(z)A(z) + zN
′

(z)A(z) + zN(z)A
′

(z)−N
′

(z)A(z) −N(z)A
′

(z)
)

,

resulting in the numerator being simply N(1)A(1). Since A(1) = 1, for the nu-

merator we have

lim
z→1

d

dz
((z − 1)N(z)A(z)) = N(1). (9)

When it comes to the denominator of the expression for Q(1),

lim
z→1

d

dz

(
zS −A(z)

)
= lim

z→1

(

SzS−1 −A
′

(z)
)

= S −A
′

(1).

Note that A
′

(1) =
∑

i iai = E[A], leading to the denominator being simply

lim
z→1

d

dz

(
zS −A(z)

)
= S − E[A]. (10)

From Eq.(2),Q(1) = 1, which combined with Eq.(9) and Eq.(10) into Eq.(8) yields

N(1) = S − E[A] = S

(

1−
E[A]

S

)

= S(1− ρ). (11)

As Q(z) is analytic in |z| ≤ 1, the zeros of zS − A(z) must be the same as the

zeros of (z − 1)N(z).
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Lemma 1. There are exactly S roots of zS − A(z) satisfying |z| ≤ 1, of which

exactly S − 1 in |z| < 1.

Due to space limitations and because of the fact that it is not of further technical

interest, we omit the proof of this lemma. It can be found in [18].

We use the S − 1 roots z1, . . . , zS−1 within |z| < 1 and one other root for

which it holds zS = 1 to form a system of S linear equations in the unknowns

q0, . . . , qS−1 from the expression forN(z). Namely, it holds thatN(zi) = 0, ∀i ∈ {1, . . . , S − 1},
and N(zS) =

∑S−1
i=0 qi(S − i) = S − E[A], where the latter is given in Eq.(11).

Applying Cramer’s rule, we solve this system of equations to obtain

qi =
Dqi

D
, ∀i ∈ {0, . . . , S − 1}, (12)

where

D =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑S−1
l=0 z

l
1

∑S−1
l=1 z

l
1 . . . zS−1

1
∑S−1

l=0 z
l
2

∑S−1
l=1 z

l
2 . . . zS−1

2

. . . . . . . . . . . .
∑S−1

l=0 z
l
S−1

∑S−1
l=1 z

l
S−1 . . . zS−1

S−1

S S − 1 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and Dqi is the same as the determinant D except for the ith column, which is

[0 . . . 0
︸ ︷︷ ︸

S−1

S − E[A]]tr .

Due to the structure of these determinants, we have only real numbers in (0, 1)
for qi. For a given S, we obtain as solutions qi,∀i = 0, . . . , S − 1, which is what

we need.

3.2 Finite-size buffer

We proceed with the analysis for the finite-size buffer. As already mentioned

in Section 2, we assume that B > S. We denote the state of the finite-size buffer

with QB(t).
The evolution of the number of packets in the buffer evolves according to

QB(t+ 1) = min{B,max{S,QB(t)} − S +A(t)}. (13)

Following the same reasoning as with infinite-size buffers, it can be shown that the

process Eq.(13) is a Markov chain, and that it is ergodic. Its transition probability

matrix is

Ψ = [ψi,j , 0 ≤ i, j ≤ B] . (14)

The individual transition probabilities depend on the state of the system. So, for

the elements of the transition probability matrix Ψ we have:

ψi,j = aj , i ∈ {0, . . . , S}, 0 ≤ j ≤ B − 1,
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ψi,j = 0, i ∈ {S + 1, . . . , B}, 0 ≤ j ≤ i− S − 1,

ψi,j = aj−i+S, i ∈ {S + 1, . . . , B}, i− S ≤ j ≤ B − 1,

ψi,B = 1−
B−1∑

k=0

ψi,k, 0 ≤ i ≤ B, j = B,

The state of the buffer in equilibrium is denoted as

QB = lim
t→∞

QB(t).

The probability of having i packets in the buffer is

qi,B = P [QB = i] , 0 ≤ i ≤ B.

Written in compact form, the probability mass function of the state of the buffer is

qB = [q0,B, . . . , qB,B ] .

The steady-state probabilities of the buffer state qi,B, i ∈ {0, . . . , B} are deter-

mined by solving the system of equations

qBΨ = qB,

B∑

i=0

qi,B = 1. (15)

The average number of packets being transmitted per frame is

βB =
S−1∑

i=0

iqi,B + SP [QB ≥ S] , (16)

where the first RHS term corresponds to the case when there are fewer packets in

the buffer than the packets that can be played out in a frame. The second term

denotes the instances when there are more packets in the buffer than packets that

are played out per frame. Equivalently, we have

βB =
S−1∑

i=0

iqi,B + S − SP [QB < S] . (17)

This is equivalent to

βB = S −

S−1∑

i=0

(S − i)qi,B. (18)

Given that we are dealing with an ergodic process, the probability of a packet being

dropped is

δ = 1−
βB
E[A]

, (19)
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where E[A] is, as mentioned in Section 3.1, the average number of packet arrivals

per frame. Further, we have

δ =

∑S−1
i=0 (S − i)qi,B −N(1)

S −N(1)
. (20)

Replacing N(1) from the previous section in the previous equation, we obtain

δ =

∑S−1
i=0 (S − i)qi,B −

∑S−1
i=0 (S − i)qi

S −
∑S−1

i=0 (S − i)qi
. (21)

After dividing both the numerator and denominator by S, we have

δ =

∑S−1
i=0 (1−

i
S
) (qi,B − qi)

1−
∑S−1

i=0 (1−
i
S
)qi

. (22)

Finally, we have the following result:

Result 2. The maximum playout rate with maximum outage ǫ and maximum al-

lowed packet drop rate δ0 for a user whose data rate C(t) corresponds to arrival

process A(t) is

U = max

{

Sσ

∆t

∣
∣
∣
∣
∣

S−1∑

i=0

qi,B ≤ ǫ,

∑S−1
i=0 (1−

i
S
) (qi,B − qi)

1−
∑S−1

i=0 (1−
i
S
)qi

≤ δ0

}

. (23)

The result can be obtained numerically. Note that as U , and hence S increases,

the probability mass function of the number of packets in the queue shifts towards

lower values, i.e., for higher playout rates there is a higher probability that fewer

packets will be encountered in the queue compared to the lower playout rates when

there is a tendency of having more packets queued. Consequently, since there is a

constraint of having less than S packets, the playout rate can only be increased up

to the point where it doesn’t violate the constraint
∑S−1

i=0 qi,B ≤ ǫ, and that is the

maximum achieved playout rate.

Having the buffer size expressed in seconds instead of data units can be cap-

tured by our model too. Namely, if the buffer size is L seconds, then B = ⌊
UpL

σ
⌋.

Hence, B is replaced by ⌊
UpL

σ
⌋ throughout the analysis in Section 3.2. Since Re-

sult 1 is obtained numerically, having Up on both sides of Eq.(23) is not an issue.

The value of S remains unchanged across all the frames, i.e., the playout rate Up is

fixed over time (it is not adjustable).

This model is very important as it also enables solving the inverse problem,

that of buffer dimensioning, i.e., determining the value of B, given Up, ǫ, and δ.
If the packet size is a function of the video resolution at which it is going to

be played out, our model can capture that intricacy too. Namely, if the packet

size is proportional to the resolution, we denote it as σf , then the playout rate

has to be proportional to the video resolution, Uf . We assume w.l.o.g. that the
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proportionality ratio on the resolution is the same for the packet size and the playout

rate. Hence, the time it takes to playout a packet, tf =
σf

Uf
= const, is constant

and independent of the video resolution. This results in a fixed number of packets

that can be played out per frame for any resolution. However, the arrival process is

a function of the packet size. The higher the resolution, the fewer packets arriving

to the user’s buffer. Therefore, this is a special case of our model, and can be

solved by determining the video resolution (from the arrival process) such that the

requirements on ǫ and δ are not violated.

4 Optimal Resource Allocation

We solve three problems in this section. First, we consider the problem of

providing the same achievable video resolution to everyone. Then, the problem of

maximizing the number of users that experience a given resolution is solved, while

providing a minimum guaranteed resolution to the others. Finally, we consider the

case of two classes of users.

4.1 Same experience to everyone

In this problem, the goal is to provide the same playout rate to all the users

with the same outage probability and drop rate. This leads to the natural question

of how to allocate the resources to these users to accomplish this objective, given

that they have different channel characteristics?

If Yi(t) denotes the frame ratio all the K blocks are allocated to user i in frame

t, where her per-block rate is Ri(t), the data rate that user receives in frame t is

Ci(t) = KYi(t)Ri(t). (24)

The problem reduces to determining the allocations Yi, for which it holds

U1(ǫ, δ0) = . . . = Un(ǫ, δ0). (25)

Given the different channel characteristics over time of the different users, a

way to provide the same highest achievable playout rate is by ensuring that all

users receive the same data rate (among themselves) in the frame. Of course, this

data rate will be different in different frames. If the per-channel rates of the n users

in frame t are R1(t), . . . , Rn(t), every user will receive the same rate if the base

station resources are allocated inversely proportionally to user’s per-block rate, i.e.,

users with good channel characteristics will receive fewer resources than users with

bad channel characteristics. Hence, user i will receive the following frame ratio of

network resources

Yi(t) =

1
Ri(t)

∑n
j=1

1
Rj(t)

. (26)

13



The data rate of user i in frame t with this policy is obtained substituting Eq.(26)

into Eq.(24), and is

Ci(t) = C(t) =
K

∑n
j=1

1
Rj(t)

. (27)

As can be seen from Eq.(27), all the users will receive the same data rate in the

frame.

4.1.1 The distribution of C(t)

Next, we need to determine the probability mass function (PMF) of C . It is

defined as

pC(x) = P(C = x) = P

(

K
∑n

j=1
1
Rj

= x

)

= P





n∑

j=1

1

Rj

=
K

x



 . (28)

This further leads to

P





n∑

j=1

1

Rj
=
K

x



 = P

(
1

R1
= y

)

∗ . . . ∗ P

(
1

Rn
= y

)

y=K
x

, (29)

where * denotes the convolution operation. The RHS of Eq.(29) is equivalent to

P

(

R1 =
1

y

)

∗ . . . ∗ P

(

Rn =
1

y

)

y=K
x

. (30)

Substituting Eq.(30) into Eq.(28), we obtain

pC(x) = pR1

(
1

y

)

∗ . . . ∗ pRn

(
1

y

)

y=K
x

. (31)

In Eq.(31), pRi
(x) is the PMF of user’s i per-block rate, which is expressed as a

sum of weighted Dirac delta functions δ(x):

pRi

(
1

y

)

=

m∑

ki=1

pRi
(rki) · δ

(

y −
1

rki

)

. (32)

As the convolution of a signal with a shifted Dirac delta function is just the shifted

signal itself [19], after some calculus operations on Eqs.(31) and (32), we obtain

pC(x) =
m∑

k1=1

· · ·
m∑

kn=1

pR1(rk1) . . . pRn(rkn)δ

(
K

x
−

1

rk1
− . . .−

1

rkn

)

. (33)

Further, the number of packets that arrive at the buffer of any user, following this

policy, is

A(t) =
C(t)∆t

σ
. (34)
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The PMF of the arrival process A(t) is

pA(i) = P

(
C∆t

σ
= i

)

= P

(

C =
σ

∆t
i
)

= pC

( σ

∆t
i
)

. (35)

After replacing Eq.(33) into Eq.(35), we get

pA(i) =

m∑

k1=1

. . .

m∑

kn=1

pR1(rk1) . . . pRn(rkn)δ

(
K∆t

σi
−

1

rk1
− . . .−

1

rkn

)

. (36)

The PGF of the arrival process A(z) can be determined by replacing pA(i) = ai
into Eq.(1).

Now that we have completely characterized the input process, using Eq.(23)

we can determine the maximum number of packets S that can be processed in a

5G frame, such that the outage and drop rate constraints are not violated. From

this, we obtain:

Result 3. The highest possible playout rate with maximum outage ǫ and maximum

drop rate δ0 that can be guaranteed to all the users in the cell is given by Eq.(23).

4.2 Maximum resolution to as many users as possible

In the second problem, the operator is interested in providing a given (high)

resolution, which may or many not be the ultimate video experience, to as many

users as possible, while ensuring that the rest of them will receive a minimum

guaranteed QoE with the same ǫ and δ0. So, the idea is to determine the amount

of resources needed to provide the guaranteed playout rate, and then to allocate the

rest of the resources to maximize the number of users with the maximum resolution

(from now on).

4.2.1 Providing the minimum playout rate

Let Umin be the minimum playout rate to be guaranteed to every user. The data

rate user i receives is Ci = KYiRi. Given that the output is Umin, what is the value

of Yi that provides that playout rate? Determining this value is possible only by

using the trial-and-error method for different values of Yi until we find the one that

as the output of our queueing system provides Umin. This is cumbersome. Instead,

we use an approximation, for which as the departing point of the derivation we

consider the infinite-size buffer. In an infinite-size buffer, since the goal is to have

a very low ǫ, we assume that the smartphone queue operates in the high-utilization

regime with ρ→ 1, which results in E[KYiRi] ≈ Umin.

In the case of finite-size buffer, as up to δ0 ratio of the packets are lost, the

approximation is modified to (1 − δ0)E [KYiRi] ≈ Umin. The previous equation

entails that Yi and Ri can’t be directly proportional. Therefore, there are only two
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possible cases. Either Yi and Ri are uncorrelated, or they are inversely propor-

tional. In the first case, Yi is static, so we have

Yi,min =
Umin

(1− δ0)KE[Ri]
. (37)

In the second case, Cov(Yi, Ri) < 0. Then, from the definition of Covari-

ance, we have Cov(Yi, Ri) = E[YiRi] − E[Yi]E[Ri] < 0, resulting in E[YiRi] <

E[Yi]E[Ri], and E[Yi] >
E[YiRi]
E[Ri]

= Umin

(1−δ0)KE[Ri]
= Yi,min. This shows that on av-

erage more resources are needed to maintain the minimum playout rate when there

is a negative correlation between the resources allocated to a user and her per-block

rate.

This result is of practical importance, as (37) is a static policy meaning that the

frame ratio is determined at the beginning and does not change over time for any

user.

In case the number of users in the cell is high and/or their channel qualities are

poor, it may happen that
∑n

i=1 Yi,min > 1. Then, the network resources are not

sufficient to provide even the minimum video quality. An admission control policy

must then be used to reduce the number of users that can be guaranteed a minimum

playout rate with outage ǫ and maximum drop rate of δ0.

4.2.2 Allocating the unused resources

After providing the minimum playout rate, the amount of resources left unused

is Y = 1−
∑n

j=1 Yj,min = 1− Umin

(1−δ)K

∑n
j=1

1
E[Ri]

. The amount of extra resources

needed for user i to obtain the maximum playout rate is

∆Yi =
Umax − Umin

(1− δ)KE [Ri]
. (38)

Eq.(38) shows that the amount of extra resources needed to obtain the maximum

resolution is inversely proportional to the first moment of the per-block rate of

the user. Consequently, to maximize the number of users who get the maximum

resolution, we need to rank the users in decreasing order of their average per-block

rates E[Ri].
Following this reasoning, we have:

Result 4. The maximum number of users that can maintain the maximum resolu-

tion is

max






N

∣
∣
∣
∣
∣
∣

N∑

i=1

∆Y(i) ≤ 1−

n∑

j=1

Yj,min






, (39)

where ∆Y(i) is the extra frame ratio the resources are needed for the user with the

ith highest average per-block rate to get the maximum playout rate.
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4.3 Two classes of users

In Section 4.1 we assumed that all the users have the same playout rate, whereas

in Section 4.2 we were interested in maximizing the number of users with a max-

imum resolution by providing a minimum playout rate to everyone else. In a way,

even in the second case there is only one class of users. Everyone is guaranteed

the same minimum playout rate. The development of network slicing in 5G [5]

has allowed operators to split users into groups, with users of similar use cases or

applications/services within the same group (slice). Consequently, operators can

split users into different classes (based on their QoE), as is currently the case with

media-service providers like Netflix.

We assume that there are two classes of users7. Users that are willing to pay

more for the service have a better QoE (higher playout rates) are called premium

users; all the rest (lower playout rates) are called regular users. Let Up be the

playout rate for premium users, and Ur the playout rate for regular users. It holds

that Up = kpUr, kp ≥ 1. The outage in both cases is ǫ. The outage probability for

premium users is ǫp, whereas for regular users it is ǫr = kǫǫp, kǫ ≥ 1. Similarly, the

packet drop rate for premium users is δp, and for regular users is δr = kδδp, kδ ≥ 1.

So, premium users suffer less rebuffering events and lower information losses.

There areK blocks in total. We assume that all the users (premium and regular)

have the same buffer size B. LetKp be the number of blocks dedicated to premium

users and Kr the number of blocks for regular users. There are two goals in front

of the mobile operator. The first is to determine the maximum playout rates that

can be guaranteed to both classes. The second goal is to determine the optimal

assignment of blocks to both groups.

Let np be the number of premium users with per-block ratesRp,i, i = 1, . . . , np,

and nr the number of regular users with per-channel rates Rr,j, j = 1, . . . , nr.

Since all the users within the class are to have the same playout rate, the data rate

process is, as derived in Section 4.1, Cp(t) = KpYi(t)Rp,i(t) =
Kp

∑np
i=1

1
Rp,i(t)

for

premium users, and Cr(t) = KrYj(t)Rr,j(t) =
Kr

∑nr
j=1

1
Rr,j (t)

for regular users. The

procedure continues for both classes in line with Eqs.(28)-(36). However, to getKp

(or Kr) from the corresponding Eq.(36) is cumbersome and possible only numeri-

cally. Instead, we use the same approximation that lead to Eq.(37) (for small ǫ). In

this case, this yields E

[

(1−δp)Kp
∑np

i=1
1

Rp,i

]

≈ Up and E

[

(1−δr)Kr
∑nr

j=1
1

Rr,j

]

≈ Ur. The previous

two equations lead to Kp =
Up

(1−δp)E





1
∑np

i=1
1

Rp,i





and Kr = Ur

(1−δr)E

[

1
∑nr

j=1
1

Rr,j

] .

Dividing the last two equations, we have

Kp

Kr
= kp ·

1− δr
1− δp

·
E1

E2
= c, (40)

7Having more than two classes is straightforward with similar conclusions drawn. Therefore, to

ease the presentation, we focus on two classes.
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where E1 = E

[

1
∑nr

j=1
1

Rr,j

]

, E2 = E

[

1
∑np

i=1
1

Rp,i

]

. Solving Eq.(40) together with

K = Kp + Kr, and replacing the so obtained Kp and Kr into the corresponding

aforementioned approximations for Up and Ur, we get:

Result 5. The maximum playout rates that can be guaranteed to premium and

regular users, with outages ǫp and ǫr, respectively, and with drop rates of δp and

δr, respectively, are

Up = (1− δp) ·
cK

1 + c
E2, (41)

Ur = (1− δr) ·
K

1 + c
E1. (42)

Note: E

[

1
∑n

i=1
1
Ri

]

=
∑m

k1=1 · · ·
∑m

kn=1
1

∑n
i=1

1
rki

∏n
i=1 pRi

(rki).

4.4 Implementation

The advantage of our approach is that it can be implemented on top of any of

the current 5G architectures [10], [11]. Essentially, there is only one extra step

on the base station side for the resource allocation process (that of calculating

the frame ratio for every user), depending on what the optimization objective is.

Namely, every mobile user sends to the base station the Channel Quality Indica-

tor (CQI), i.e., its per-block rate in the frame. Based on this information, when

the goal is to provide the same experience to everyone, the base station calculates

using Eq.(26) the amount of resources for every user and allocates them. Similar

steps are performed for the other problems.

5 Benchmark model and QoE metrics

The approach we present in this work relies on the requirement that every user

is to be guaranteed a fixed playout rate throughout the streaming process. In or-

der to show the usefulness of this approach to user experience, we compare the

performance with benchmarks.

It is well known that that DASH supports adaptive bitrate streaming (ABR) [20].

Because the DASH algorithm is not public, it is not fully known how the playout

rate changes. However, it is known [20] that the playout rate changes according to

the state of the buffer. To capture this behavior, we use an approach very similar

to [20] to model the change in the playout rate depending on the state of the buffer.

There are two characteristic levels of the state of the buffer: Bmin and Bmax.

While the state of the buffer is in the range [Bmin, Bmax] the playout rate will re-

main unchanged. When the state of the buffer drops below Bmin, the playout rate

decreases by θ%, deteriorating the video resolution. If the state of the buffer goes

above Bmax the playout rate increases by θ%. In Section 6, we run simulations
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for different values of Bmin, Bmax, and θ. In order to compare the performance of

such a system against our approach, we need to define the QoE metrics according

to which the comparison will be conducted.

There is no general consensus regarding the most suitable metric for the QoE

of mobile users that stream live videos. In general, QoE metrics can be classified

as the “simple”, such as: average playout rate, the number of rebuffering events,

the drop rate, etc., or as “composite”, in which the QoE is a function of the simple

metrics. In this paper, we consider one of these metrics, which is defined as

QoEi = E[Ui]− ηiVar(Ui), (43)

where Ui is the playout rate over time, and ηi > 0 scales penalty for temporal

variability in quality [21].

6 Performance evaluation

In this section, we first describe the simulation setup. Then, we provide vali-

dations of (23) and of approximation result (37) using trace data. We then look at

how our theoretical result predicts the performance for packet sizes that are not de-

terministic. This is followed by results related to the three problems. After that, we

compare the performance of our approach with that of an adaptive bitrate (ABR)

system for four QoE metrics. Finally, we look at the impact of buffer sizes on the

packet drop rate.

6.1 Simulation setup

As input parameters, we have used data from a trace of the signal quality of

mobile users. These traces can be found in [22], and their detailed description

is provided in [23].8 The measurements were conducted in several cities across

Europe and North America. Among the parameters we are interested in from the

trace are the Received Signal Strength Indicator (RSSI) and users’ positions, where

the latter are expressed in terms of their longitude and latitude. We picked 8 users

in Amsterdam, which were chosen based on their positions to be close enough so

that they can be served by the same gNodeB. Then, we mapped RSSI values of

every user over time to the corresponding SINR values taken from [24]. We chose

m = 15, which means that all SINR values were translated into 15 discrete per-

block rates (second row of Table 2), according to the threshold values γ [25], shown

in the first row of Table 2. E.g., if in a frame a user’s SINR is 7 dB, its per-block

rate in that frame is 712 kbps. Further, based on the frequency of occurrence of a

per-block rate for every user, we obtained per-block rate probabilities in Table 2.

8Due to the lack of publicly-available 5G traces, we used the signal quality from 4G measure-

ments. Nevertheless, the received signal powers encountered in 4G and 5G are similar [13], with all

other parameters being 5G-related.
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Table 2: Per-block rates and the corresponding probabilities for every user from

the sampled Amsterdam trace
SINR(dB) -9.5 -6.7 -4.1 -1.8 0.4 2.4 4.5 6.4 8.5 10.3 12.2 14.1 15.8 17.8 19.8

R(kbps) 48 73.6 121.8 192.2 282 378 474.2 712 772.2 874.8 1063.8 1249.6 1448.4 1640.6 1778.4

p1,k 0 0.1 0.72 0.04 0.05 0.09 0 0 0 0 0 0 0 0 0

p2,k 0 0 0.2 0.7 0.1 0 0 0 0 0 0 0 0 0 0

p3,k 0 0 0 0 0.02 0.12 0.51 0.32 0.01 0.01 0.01 0 0 0 0

p4,k 0 0 0 0 0 0.01 0.98 0.01 0 0 0 0 0 0 0

p5,k 0.22 0.04 0.07 0.04 0.04 0.06 0.17 0.15 0.01 0.01 0.06 0.06 0 0.03 0.04

p6,k 0.17 0.11 0.1 0.07 0.05 0.1 0.17 0.11 0.02 0.04 0 0.03 0 0.02 0.01

p7,k 0.05 0.03 0.06 0.07 0.09 0.17 0.33 0.08 0.01 0.01 0.01 0.03 0.01 0.03 0.02

p8,k 0 0 0 0.02 0.01 0.03 0.06 0.08 0.01 0.02 0.01 0.03 0 0.05 0.68

From the trace, we have observed a strong correlation between the received signals

of a user in contiguous frames.

The frame duration is 10 ms. The subcarrier spacing is 30 KHz, with 12 sub-

carriers per block, making the block width 360 KHz. The total number of PRBs is

K = 275 [13]. The size of a packet is 5 kbits.9 The duration of the event is 2.5
hours. Unless stated otherwise, the buffer size is 3 MB.

All the simulations are conducted in MATLAB R2018b and we take the aver-

age of the metrics of interest over 1000 runs.

6.2 Validation results

6.2.1 Validating the playout rate result

We validate the result for the maximum achievable playout rate for different

values of the outage and two users, user 1 and user 8. The resources are split

equally among the 8 users. The data rate for these users in frame t is K
8 R1(t)

and K
8 R8(t), respectively. Table 3 depicts the highest achievable playout rates

that can be guaranteed to the two users for different maximum allowed ǫ, when

δ0 = 0.03. There are several interesting outcomes of these results. Firstly and

most importantly, it can be observed that our theoretical result closely matches the

simulation results, despite the fact that in our approach we assume that per-block

rates of the same user in contiguous frames are independent, whereas in the trace

there is a correlation. Secondly, when increasing the outage by small amounts there

is no considerable gain in playout rates. Thirdly, user 8 can afford, due to better

channel conditions, much higher playout rates.

Next, Table 4 shows the theoretical (Eq.(23)) and simulation results for differ-

ent maximum allowed values of δ0, when ǫ = 0.05. We show the results for user

3 and user 6. Similarly to the previous scenario, as can be observed from Table 3,

there is a close match between the theory and actual results. The discrepancy never

exceeds 2−3%. Relaxing the requirement on the maximum allowed drop rate leads

to lower required playout rates to support the same outage because increasing the

playout rate decreases the number of dropped packets.

9We tried other values for packet sizes with similar conclusions drawn.
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Table 3: Playout rate validation for δ0 = 0.03
Outage (ǫ) 0.01 0.03 0.05 0.08 0.1

User 1-theory (Mbps) 5 5.06 5.12 5.23 5.29

User 1-sims (Mbps) 5.02 5.09 5.15 5.21 5.35

User 8-theory (Mbps) 50.37 50.89 51.48 52.27 53.26

User 8-sims (Mbps) 50.09 50.69 51.22 52.46 53.43

Table 4: Playout rate validation for ǫ = 0.05
Max. drop rate (δ0) 0.01 0.03 0.05 0.08 0.1

User 3-theory (Mbps) 17.81 17.35 17.02 16.46 16.11

User 3-sims (Mbps) 17.48 17.22 16.98 16.5 15.98

User 6-theory (Mbps) 13 12.75 12.25 11.75 11.5

User 6-sims (Mbps) 12.98 12.77 12.14 11.78 11.44

6.2.2 Validating the minimum guaranteed playout rate result

We validate the accuracy of our approximation result (Eq.(37)). To this end, the

minimum playout rates are Umin = {4, 8, 20, 40} Mbps, and there are two users

whose results we show, users 2 and 7. For both users, ǫ = 0.01 and δ0 = 0.04.

Table 5 shows the results of frame ratio Y needed to provide Umin. The actual

results (marked as “sims”) are obtained numerically by the trial-and-error method

until the exact value of Yi,min that provides Umin is obtained. As can be observed,

our approximation (Eq.(37)) closely matches the actual result. For higher values

of ǫ (results not shown due to space limitations) the discrepancy is on the order of

10%. This proves the usefulness of our approach in practice. Due to better channel

conditions, user 7 needs fewer resources to maintain the same playout rate.

6.2.3 Variable packet sizes

Having validated the results for the playout rate and the frame ratio, we proceed

with validating our theoretical result for the playout rate (which holds for fixed

packet sizes) for the case when the packet size is not constant. To this end, we

assume that packet sizes are uniform in the range [4, 6] kb. The other parameters

are the same as in the previous scenarios. User 4 and user 5 are our users of interest

Table 5: Frame ratio validation for ǫ = 0.01 and δ0 = 0.04
Minimum playout (Mbps) 4 8 20 40

User 2-theory (Y2,min) 0.082 0.163 0.408 0.817

User 2-sims (Y2,min) 0.079 0.158 0.39 0.791

User 7-theory (Y7,min) 0.032 0.063 0.158 0.316

User 7-sims (Y7,min) 0.031 0.057 0.156 0.309
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Figure 3: The impact of number of

users on playout rate.

in this scenario. Fig. 2 depicts the maximum playout rate for the video vs. drop

rate for the actual result (uniform packet sizes) and that predicted by our theory

(which pertains to deterministic packet sizes with the same value as the average

of the uniform packets, i.e., 5 kb). The results correspond to ǫ = 0.05. As can

be seen from Fig. 2, our theory fares pretty well for non-deterministic packet sizes

as well, with the level of discrepancy not exceeding 5%. This shows the practical

usefulness of our model. User 5 has better channel conditions, and as a result of

that, a higher playout rate.

6.3 Optimization results

We first illustrate a scenario related to providing the same playout rate to ev-

eryone. This is followed by a scenario related to maximizing the number of users

with a given resolution and a scenario with two classes of users.

6.3.1 Same experience to everyone

The first goal is to determine the maximum achievable playout rate for different

number of users and different values of ǫ. There are three scenarios: with users 1-4,

users 1-6, and users 1-8. Fig. 3 shows the maximum achievable playout rate vs. ǫ,
when δ0 = 0.01. As expected, the more users there are, the lower the playout rate

is. Again, allowing higher outages provides small gains in playout rates - order of

5% at most.

6.3.2 Maximum playout rate

We compare next the number of users that achieve a given (maximum) resolu-

tion within the pool of the considered 8 users following our policy of Section 4.2

with the results obtained from three other policies: a) where there is an equal share

of the resources to everyone, b) where the same constant data rate is provided to

everyone at all times and then the unused resources are reallocated equally to the
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same users according to [9], and c) the resources are allocated proportionally to

user’s per-block rate, i.e., Yi(t) = Ri(t)
∑n

j=1 Rj(t)
. We do this for three scenarios:

Umax = {12, 20, 24} Mbps.10 The minimum playout rate that must be guaranteed

to every user in the cell is Umin = 2 Mbps.

Fig. 4 illustrates the results for ǫ = 0.01 and δ0 = 0.03. As can be observed

from Fig. 4, our policy provides the best result in all scenarios, outperforming the

next best policy by at least 15%. E.g., following our policy, 7 out of the 8 users

can be guaranteed a playout rate of 12 Mbps for 99% of the time, with 3% of the

packets dropped.

6.3.3 Two classes of users

We proceed with the case of two classes of users to see how our approximations

fare against actual results. In this scenario, we pick users 1-5 to be regular, whereas

users 6-8 are premium. The goal is to guarantee all the regular users the same

playout rate with the same outage and drop rate. The same holds for premium

users, whose rate is kp× higher than of regular users. The outage for both classes

is ǫp = ǫr = 0.1, i.e., kǫ = 1, whereas the drop rate is δp = δr = 0.01 (kδ =
1). Fig. 5 illustrates the approximation results for Up (Eq.(41)) and Ur (Eq.(42))

against actual (simulated) results for different kp. The first thing to observe is the

close match, with the discrepancy not exceeding 3%. Secondly, playout rates of

premium (regular) users increase (decrease) slower than linearly with kp. This

conclusion propagates across other combinations of kǫ and kδ as well.

6.4 QoE comparisons with ABR streaming

Next, we compare the performance of our approach (providing a constant play-

out rate throughout the entire streaming process) with the adaptive bitrate (ABR)

streaming approach described in Section 5. For the latter, we consider three sce-

narios in terms of Bmin, Bmax, and θ: in the first scenario, Bmin = 0.25B,

Bmax = 0.75B, θ = 10%; in the second, Bmin = 0.3B, Bmax = 0.8B, θ = 5%;

and in the third scenario, Bmin = 0.35B, Bmax = 0.85B, θ = 20%. In all the

scenarios the resources are shared equally among all the users, i.e., every user will

get 1/8 of the resources. Note that B = 3MB
5 kb

= 24Mb
5 kb

= 4800 packets.

We perform the comparison across three QoE metrics. The first QoE metric is

Eq.(43), with η = 0.05 [21]. The QoE for a user in our system is the playout rate

itself (which is fixed). It has been obtained for δ = 0.03 and ǫ = 0.01 across all

eight users. Fig. 6 shows the values of the QoE metric for all the eight users from

the Amsterdam trace both for our approach and the ABR system (three scenarios).

As can be observed from Fig. 6, the QoE with our system (constant playout rate)

is higher than the QoE with the three scenarios pertaining to the ABR system over

all users. Hence, the advantages our approach provides.

10This value is decided by the operator, and need not be the rate yielding the ultimate video expe-

rience.
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The second QoE metric is the packet drop rate δ. Table 6 shows the value of

δ across all users for the three aforementioned scenarios. As already mentioned

in the previous paragraph, the drop rate in our approach is δ = 0.03. As can be

observed, the drop rate is always lower with a constant playout rate.

Table 6 also depicts the outage probability ǫ in the three scenarios of ABR

system for all the considered users, which is the third QoE metric of interest in this

work. As mentioned, the outage with our system in this scenario is ǫ = 0.01. As

can be observed from Table 6, the rebuffering events are always more often with

the ABR system despite the fact that our system is more restrictive in terms of

the playout rate. This is a significant advantage of our approach, as it offers both

constant playout rate and less rebuffering events and loss of information.

Summarizing, we have shown that providing a constant playout rate for a max-

imum δ and ǫ results in a better user experience (for different QoE metrics) than

allowing playout rates that are adjustable based on the state of the user’s buffer.

This is one of the main messages of this paper.

6.5 Impact of channel variability

To conclude this section, we look at the impact of channel variability on the

required size of the buffer so that the loss of information (dropped packets) is very

low. We pick three users with different channel characteristics: user 4 that has the

lowest variation of per-block rate (its coefficient of variation is 0.03), user 5 that

has the highest variation (cv,5 = 0.96), and user 1 with cv,1 = 0.54. The network

resources are shared equally among all the users, and the other parameters remain

unchanged. We choose the (constant) playout rates to be approximately equal to

the average of the data rare for each user (that is a reasonable value is expected

to keep the drop rates and outages low under large buffers): U1 = 5.15 Mbps,

U4 = 16.3 Mbps, and U5 = 17.1 Mbps. We look at what the drop rate will be as

a function of the buffer size, where the latter is now expressed in seconds of live

video content.

Fig. 7 shows the drop rates for the three users for different buffer sizes. User

4 (with almost constant data rates) requires a very low buffer, where even a 0.5 s

buffer suffices to provide no loss of packets. This helps in preserving low latency

(keeping the playout delay on the user’s side of only 0.5 s). As the variability in the

channel conditions increases, the size of the required buffered content increases; a

buffer of 2.5 s is needed to yield a drop rate lower than 0.01. Finally, for user 5, a

buffer of slightly larger than 4 s is needed to result in a drop rate lower than 0.01.

This result is particularly important as it shows that for channel conditions with

a coefficient of variation up to 1 the latency on the user’s side of less than 5 s is

guaranteed with almost no information loss.
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Table 6: The outage probability and drop rate for different ABR scenarios

User 1 2 3 4 5 6 7 8

δ (Sc.1) 0.06 0.05 0.04 0.04 0.06 0.05 0.05 0.04

δ (Sc.2) 0.06 0.05 0.04 0.04 0.11 0.1 0.09 0.04

δ (Sc.3) 0.11 0.12 0.08 0.08 0.15 0.13 0.12 0.06

ǫ (Sc.1) 0.05 0.02 0.04 0.02 0.02 0.02 0.02 0.11

ǫ (Sc.2) 0.04 0.02 0.09 0.02 0.13 0.08 0.12 0.15

ǫ (Sc.3) 0.03 0.02 0.1 0.02 0.11 0.07 0.11 0.17

7 Related work

In general, there isn’t a significant body of research dealing with resource al-

location for real-time video streaming in cellular networks, especially not papers

containing an analytical framework in a 5G context. Most of the works are con-

strained with non-live video streaming, such as [26] that deals with buffer dimen-

sioning, [27] that is a system-related paper allowing varying playout rates, or [28]

that presents an approach for predicting user’s QoE.

Network slicing as a new concept in 5G has been proposed in [29] to enhance

the video streaming experience in vehicular networks. The objective function com-

bines several variables of interest. However, the playout rate is allowed to change,

which deteriorates the QoE. Also, the approach in [29] is not applicable to live

video streaming.

Optimizing social welfare when streaming in real time in a mobile edge com-

puting framework is the focus of [30]. The considered metric is a special-case

expression for QoE. Auctions are used to obtain the optimal solution that is not in

closed-form. On the other hand, in our work we provide closed-form expressions

(whenever possible) corresponding to other objective functions than in [30].

In [31], a system, called Jigsaw, for 4K real-time video streaming is presented.

While Jigsaw indeed provides a superior performance, it operates on 60 GHz fre-

quencies, whereas our system operates in the sub-6 GHz band. Therefore, an ade-

quate comparison between the two approaches is not feasible. Furthermore, there

is no theoretical analysis in [31].

The related works most in spirit to ours are [9] and [32]. The possibility of

having a constant data rate that can be translated into a constant playout rate has

been analyzed in [9], and the reallocation of unused resources to the same users can

further improve the QoE. However, as is shown here, providing constant data rates

leads to inefficient use of resources. On a similar note, in [32] the authors present a

framework that relies on the Brownian approximation to optimize the QoE in terms

of the playback latency and video interruptions for live streaming. A policy that

jointly determines the amount of playback latency of every user and the scheduling

decision of each packet transmission is proposed. It is worth noting that in our

paper we follow a different approach, have different setup and objectives. The as-
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sumption in [32] is that in a frame only one packet can be transmitted to at most

one user. This is unrealistic because in 5G the frame duration is 10 ms, which im-

plies that a considerable number of packets can be forwarded. Another simplified

assumption in [32] is that all the links exhibit similar reliability (corresponding to

identical per-block rates), while we consider heterogeneous users.

In [20], the authors mimic the operation of DASH by introducing two levels

(minimum, maximum) related to the operation of the playout buffer, and based on

that determine the playout rate. On the other hand, [21], [33], provide different

QoE metrics while assuming that the playout rate is variable. However, in this

paper, we show that for several combinations of these 2-level values from [20],

our approach provides higher QoE (for any of its definitions in [21], [33]) than the

adaptive playout approach.

8 Conclusion

In this paper, we have considered analytically the problem of resource alloca-

tion to improve the QoE of cellular users with real-time video streaming, where

users have finite-size buffers. We have solved three problems yielding the corre-

sponding best policies. The analysis is validated on trace data. We have compared

the corresponding optimal policies against other benchmarks, for different QoE

metrics. Results show that the performance can be improved significantly with the

proper resource allocation. In the future, we plan to consider resource allocation

for other objectives.
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