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The rise of big data analytics on top of NLP increasing the computational burden for text processing at scale. The problems faced in 
NLP are very high dimensional text, so it takes a high computation resource. The MapReduce allows parallelization of large 
computations and can improve the efficiency of text processing. This research aims to study the effect of big data processing on NLP 
tasks based on a deep learning approach. We classify a big text of news topics with fine-tuning BERT used pre-trained models. Five 
pre-trained models with a different number of parameters were used in this study. To measure the efficiency of this method, we 
compared the performance of the BERT with the pipelines from Spark NLP. The result shows that BERT without Spark NLP gives 
higher accuracy compared to BERT with Spark NLP. The accuracy average and training time of all models using BERT is 0.9187 and 35 
minutes while using BERT with Spark NLP pipeline is 0.8444 and 9 minutes. The bigger model will take more computation resources 
and need a longer time to complete the tasks. However, the accuracy of BERT with Spark NLP only decreased by an average of 5.7%, 
while the training time was reduced significantly by 62.9% compared to BERT without Spark NLP. 
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1 INTRODUCTION 

Natural language processing (NLP) is a subfield of artificial intelligence (AI) that can study human and computer 
interactions through natural languages, such as the meaning of words, phrases, sentences, and syntactic and semantic 
processing. In early, NLP research used rule-based methods to understand and reason a text. Experts manually create 
these rules for various NLP tasks [1]. It is complicated to manage the rules if the number of rules is large. Therefore, this 
approach is considered obsolete by researchers [2]. Internet development causes data to be collected easily so that a 
statistical learning approach is possible to resolve NLP tasks. This is known as the machine learning approach. With 
feature engineering, this approach brings significant improvements to many NLP tasks [3]. Meanwhile, deep learning 
approaches were introduced to NLP in 2012 after success in image recognition [4] and speech recognition [5]. Deep 
learning outperformed the other approaches with surprisingly better results. 

In NLP, language modeling (LM) provides a context that differentiates similar words and phrases according to the 
context in which they appear. The NLP framework based on deep learning for language modeling has entered a new 
chapter. This is characterized by many deep learning architectures and models from which to solve NLP tasks is 
constantly evolving. Previously successful architecture is bidirectional LSTM (bi-LSTM) based on recurrent neural 
network (RNN), where the model can read the context from left to right and from right to left [6]. The main limitations 
of bi-LSTM are sequential, which makes the parallel training process very difficult. The transformer architecture 
accomplishes this by replacing the LSTM cells with an "attention" mechanism [7]. With this attention, the model can see 
the entire sequence of context as a whole, making it easier to practice in parallel. The Transformer has made great 
progress on many different NLP benchmarks. There are many transformer-based language models, including BERT[8], 
RoBERTa [9] GPT-2 [10] and XLNet [11]. 

The rise of "big data" analytics on top of NLP has led to an increasing need to ease the computational burden that 
processes text at scale [12]. The amount of unstructured textual data has led to increased interest in information 
extraction technology from academia and industry. One of the problems faced in NLP is that text has very high 
dimensions [13]. It takes computation capable of processing high-dimensional textual data quickly. Input data is 
distributed across multiple machine clusters to complete within a reasonable time. The MapReduce allows easy 
parallelization of large computations and uses re-execution as the primary mechanism for fault tolerance [14]. Previous 
research has used this concept to perform sentiment analysis tasks. The results obtained are that MapReduce can 
improve the efficiency of processing large amounts of text even though the performance obtained is similar to traditional 
sentiment analysis [15]. 

This research aims to study big data processing on NLP tasks based on a deep learning approach. We classify large 
amounts of news topics using BERT based on transformer architecture. Training BERT from scratch requires a huge 
dataset and takes much time to train. Therefore, we use the existing pre-trained models [8], [16].To demonstrate the 
efficiency of this method, we conducted extensive experiments to study our proposed approach. We use Spark NLP built 
on top of Apache Spark as a library that can scale the entire classification process in a distributed environment [17]. We 
compared the performance of the base method model with the classifier pipelines from Spark NLP. Apart from observing 
the model's accuracy, we also look at the computation time and computation resources used during the training and 
testing process. 

2 RELATED WORK 

Big data comes with an unstructured format, mainly textual data, called big text [18]. Social media has the most 
contribution to a big text. In addition, other online sources such as online news portals, blogs, health records, government 



3 

data provide rich textual data for research. Despite the abundance of data sources, this field has attracted less attention 
from academia. In this section, we present literature studies carried out in the fields of deep learning for text classification 
and big data framework for large-scale text processing. We reviewed prior work to understand its limitations so that we 
can use them to refine our research. 

Deep learning gives us big potential in the NLP field [19]. Many studies have contributed to text classification tasks 
using deep neural networks. Some successful architectures include convolutional neural network (CNN) based models, 
for example, VD-CNN [20] and DP-CNN [21], recurrent neural network (RNN) based models, for example, SANN [22], 
and attention-based models, for example, HAN [23] and DiSAN [24]. These models use pre-trained word embedding 
[25], [26] to improve performance in downstream tasks. Although many impressive results have been achieved, the 
dependent problem carries many limitations for enhancing the model's performance. Even with the development of 
contextualized word vectors such as CoVe [27] and ELMo [28], the model architecture still needs to be assigned in 
particular. Pre-training language models and fine-tuning of downstream tasks have made breakthroughs in NLP. 
Howard and Ruder proposed ULMFiT [29], whereas Radford et al. proposed OpenAI GPT [30] using a multi-layer 
transformer architecture to learn language representations of large-scale text. To solve unidirectional language 
representation from OpenAI GPT, Devlin et al. proposed BERT [8] using deep bidirectional representations. Compared 
to the previous model, BERT does not require a specific architecture for each downstream task, so this model has 
achieved great success in many NLP downstream tasks [31]. 

Hadoop is a MapReduce platform used for distributed processing. One of the Hadoop framework's major problems is 
that it transforms any computation as a MapReduce job [12]. In NLP, this would require re-implementation of each NLP 
pipeline, so it is ineffective. Apache Spark addresses this problem by extending Hadoop ecosystem with a parallel 
computational programming model, including resilient distributed datasets (RDDs) and learning algorithms [32]. Next, 
Xiangrui et al. introduced MLib1 as a machine learning library running on Spark [33]. Research from Jian et al. analyzed 
the Spark framework by running a machine learning instance using MLib and highlighting Spark's advantages [34].  
Spark is also used as a distributed framework for solving NLP tasks such as sentiment analysis [35], [36], and document 
classification [37]. Their research results show that Spark has a speed advantage in large text processing. As deep 
learning models have successfully in NLP, there is a need to implement pre-trained models and scale large data with 
distributed use cases. John Snow Labs2 developed Spark NLP as a library built on top of Apache Spark and Apache MLib 
that provides an NLP pipeline and pre-trained models [17]. The library offers the ability to train, customize and save 
models so they can be run on clusters, other machines, or stored. 

3 METHODOLOGY 

3.1 Dataset 

We use a corpus of news articles from the AG dataset [38]. It contains 1 million news articles that have been gathered 
from more than 2000 from ComeToMyHead news sources. This dataset includes 120,000 training samples and 7,600 test 
samples. We only use the description as a sample and category as the label. Each sample is a short text divided into four 
labels. 

 
1 https://spark.apache.org/mllib. 
2 https://nlp.johnsnowlabs.com. 
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3.2 BERT 

BERT is a deep learning architecture that can be used for downstream NLP tasks. The architecture consists of a stacked 
encoder layer from the transformer [7]. There are two main steps in BERT: pre-training and fine-tuning [8]. During pre-
training, BERT is trained in a large unlabeled corpus with two unsupervised tasks: masked language model (MLM) and 
next sentence prediction (NSP) to produce a pre-trained model. For fine-tuning, the model is initialized with the pre-
trained parameters, and all the parameters are fine-tuned using labeled data for specific tasks such as classification. 

We can assume the pre-trained model as a black box with H = 768 shaped vectors for each input token in a sequence. 
Sequences can be one sentence or a pair of sentences separated by a [SEP] token and begin with a [CLS] token. For 
classification task, we added an output layer to model and fine-tuned all parameters from end to end. In practice, we 
only use the output from the [CLS] token as the representation of the whole sequence. Thus, the entire fine-tuning BERT 
architecture for the classification task is shown in Figure 1.  A simple SoftMax classifier is added to the top of the model 
to predict the probability of label c shown in Equation 1. Where W is the task-specific parameter matrix. We fine-tune 
all the parameters from BERT as well as W jointly by maximizing the log-probability of the correct label.  

 
𝑝(𝑐|ℎ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ) (1) 

 
In this study, we use five pre-trained models as shown in  Table 1. In the original paper, L represents the numbers of 

transformer layers (stacked encoder), H represents numbers of hidden embedding size, and A represents numbers of 
attention heads [8]. Smaller model architecture is using less parameters to train and can be used in limited computation 
resources.  The number of parameters in every pretrained model shown in Table 2. 

 

 
Figure 1: Fine-tuning BERT architecture for the classification task. We just use the [CLS] output token for classification along with 

some added Linear and SoftMax layers. 

 
Table 1: Pre-trained BERT models are used. We only focus on six models: Tiny (L=2, H=128), Mini (L=4, H=256), Small (L=4, H=512), 

Medium (L=8, H=512), and Base (L=12, H=768). 

 H=128 H=256 H=512 H=768 
L=2 BERT-Tiny - - - 
L=4 - BERT-Mini BERT-Small - 
L=8 - - BERT-Medium - 
L=12 - - - BERT-Base 
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Table 2: The number of parameters on the pre-trained BERT model. 

Model Parameters (Millions) 
BERT-Tiny 4.4 
BERT-Mini 11.3 
BERT-Small 29.1 
BERT-Medium 41.7 
BERT-Base 110.1 
BERT-Large 340 

 
The optimal hyperparameter values are task-specific. We use Adam with β1 = 0.9 and β2 = 0.999. The base learning rate 
is 1e-4and the warm-up proportion is 0.1. We empirically set the max number of the epoch to 4 and save the best model 
on the validation set for testing. 

3.3 Spark NLP 

Due to the popularity of NLP in recent years, many NLP library have been developed, such as Natural Language Toolkit 
(NLTK) [39], SpaCy3, TextBlob4,Gensim5, FastText [40], [41], and Stanford Core NLP [42]. Some of these are only 
optimized to work on a single node machine and not designed for distributed environments or parallel computing. In 
addition, recent deep learning models such as BERT have made significant changes to NLP because they can be fine-
tuned and reused without major computational effort. A new library, Spark NLP, was introduced to meet the need for 
scalable, high-performance, and high-accuracy text processing. Spark NLP is an open-source library built on top of 
Apache Spark and Spark ML [17]. Apache Spark is a component of the Hadoop ecosystem, a favorite big data platform 
because of its ability to process streaming data. 

In this study, we used text processing and word embedding from the BERT pre-trained model to build a text 
classification model in Spark NLP. Each stage in the Spark NLP is implemented in a pipeline as a sequence, as shown in 
Figure 2. Each resulting output is directed to the next stage as input. This means that the DataFrame (DF) input will be 
changed as it passes through each stage. First, DF is fed to DocumentAssembler() to generate document fields as starting 
points in Spark NLP. Then the document column is inserted into SenteceDectector() to be split into an array of sentences 
and generate a sentence column. The sentence column is inserted into Tokenizer() to generate a word token for the 
entire sentence and generate the token column. A token column is fed to BertEmbeddings() to convert the token into a 
vector representation. We use the BERT pre-trained model as explained in the previous section. Finally, we use Sentence 
Embeddings() to train a model. 

 

 
Figure 2: Spark NLP pipeline as a sequence for text classification. Each annotator applied adds a new column to a DataFrame that is 

fed into the pipeline. 

 
3 https://spacy.io. 
4 https://textblob.readthedocs.io/en/dev. 
5 https://radimrehurek.com/gensim. 
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To create a classifier in Spark NLP, we use ClassifierDL. ClassifierDL is a multi-class text classifier in Spark NLP, and 
it uses various text embeddings as an input for text classifications. The ClassifierDL uses a deep learning model (DNNs) 
built inside TensorFlow6.The classification process is carried out after going through the text processing stages above. 
We will train each pre-trained model for 4 epochs with a batch size of 32 and a learning rate of 1e-4. Spark NLP will 
write the training logs to annotator_logs folder in our directory. 

4 RESULT AND DISCUSSION 

Our experiment compares basic BERT without Spark NLP and uses pipelines in Spark NLP to classify large text data. 
We run all models in Google Colab7 containing one 1 GPU Tesla P100 16 GB and 27.4GB RAM. For the experiment 
environment, we use Python version 3.8, Spark NLP version 2.7.5, Apache Spark version 2.3.0, OpenJDK version 
1.8.0_292, and TensorFlow version 2.4.1. We measure the resource needed when running all five pre-trained models in 
Table 1. In addition, we also measure the accuracy performance of the model on the testing data. We observe the GPU 
and RAM resources used during the training process. To track and observe during the model training process, we use 
the Weights & Biases8 library running in our environment. 

The first experiment is performed using the BERT model without Spark NLP. The first computing resources test 
results are shown in Figure 3. The BERT-Large model cannot run in our environment because it needs a higher 
specification than the one GPU we use in our experiment. According to the comparison shown in Figure 3, BERT-Base 
takes the most resources and needs a longer time to complete the training, and BERT-Tiny requires the least number of 
resources and completes the training the fastest. The result shows the bigger the model, the greater the GPU usage and 
memory allocation needed. Moreover, the bigger the model, the longer time it takes to complete model training.  

In the next experiment, we used the pipeline from Spark NLP and added the embedding from the pre-trained BERT 
model to generate the word embedding. Model development using Spark NLP pipeline is relatively easy and fast 
compared to the BERT model from scratch. The results of testing computation resources when using Spark NLP are 
shown in Figure 4. The result is similar to the previous experiment, the bigger the model, the greater the GPU usage and 
memory allocation are needed. And the bigger the model is, the longer time to complete model training. This is because 
large models have a larger number of parameters to fine-tune. From the computation resource comparison shown in 
Figure 3 and Figure 4, we can see that BERT without Spark NLP needs the least number of resources and can complete 
the training much faster than BERT without Spark NLP.   

BERT without Spark NLP and BERT with Spark NLP gives different results, as shown in Table 3. The highest accuracy 
of BERT without Spark NLP is 0.9253 by BERT-Base. This is not much different from the BERT-Small of 0.9213. 
Meanwhile, the lowest accuracy when using BERT-tiny is 0.9104. Thus, we did not see a significant increase in accuracy 
across the pre-trained BERT models without the Spark NLP with an average accuracy of 0.9187. The fastest training time 
using BERT-Tiny is 11 minutes. Meanwhile, the longest training time when using BERT-Base shows more than 1 hour. 
The average training time using BERT without spark NLP is 25 minutes. Similar to the previous experiment, the lowest 
accuracy was when using BERT-tiny at 0.8444, while the highest accuracy was obtained using BERT-base at 0.8665. The 
different results showed that accuracy continues to increase when using all pre-trained models using Spark NLP pipeline. 
Except for the BERT-Base medium, smaller than the BERT-Small. The average accuracy obtained for BERT with spark 
NLP is 0.8665. The average training time using BERT with spark NLP is 9 minutes. 

 
6 https://www.tensorflow.org. 
7 https://colab.research.google.com. 
8 https://wandb.ai. 
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The results of all experiments show that, BERT without Spark NLP gives higher accuracy rate compared to BERT 
with Spark NLP on all pre-trained models. But BERT with Spark NLP has advantages in efficiency. As shown in Table 
3, BERT with Spark NLP gives good accuracy but it takes less time to complete the task. A significant decrease in 
computation time when using BERT with Spark NLP by 62.9% with a decrease in accuracy of 5.7%. Even though using 
Spark NLP the RAM resources used is much higher, we can see the efficiency of this method. 

	 	 	
(a) (b) (c) 

Figure 3: The computational resources used during the training use the BERT without Spark NLP pipeline. (a) GPU utilization, (b) GPU 
memory allocated, and (c) process memory in use. 

 

	 	 	
(a) (b) (c) 

Figure 4: The computational resources used during the training use BERT with Spark NLP pipeline. (a) GPU utilization, (b) GPU 
memory allocated, and (c) process memory in use. 

 
Table 3: Comparison of accuracy and computation time during the training process between the BERT without Spark NLP and BERT 

with Spark NLP pipelines. We also calculate the reduction in accuracy and computation time (in percent) to determine the 
effectiveness of the proposed pipeline. 

 
BERT  BERT + Spark NLP Decrease in 

Accuracy (%) 
Decrease in  

Time (%) Accuracy Wall Time Accuracy Wall Time 
BERT-Tiny 0.9104 00:11:41 0.8444 00:04:36 7.2 60.6 
BERT-Mini 0.9168 00:13:59 0.8567 00:06:49 6.6 51.3 
BERT-Small 0.9213 00:26:13 0.8714 00:10:17 5.4 60.8 

BERT-Medium 0.9199 00:26:24 0.8710 00:11:28 5.3 56.6 
BERT-Base 0.9253 01:38:12 0.8893 00:14:35 3.9 85.1 

Average 0.9187 00:35:18 0.8665 00:09:33 5.7 62.9 
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5 CONCLUSION 

The BERT model is a good model to do large scale NLP tasks such as news classification. The larger the model gives 
higher accuracy, but it will take more time to complete the task. The bigger the dataset we use to train and test the 
model, it will affect the time it takes to complete the task. Using Spark NLP gives us advantages when we want to use a 
BERT-Large model and process large amounts of data. In this study we found that using BERT with Spark NLP is more 
efficient then using BERT without Spark NLP. Using BERT with Spark NLP, the drop accuracy average is 5.7% and the 
training time drop average is 62.9% compared to BERT without Spark NLP. In the near future, we plan to expand and 
improve our framework by exploring more architectures and pre-trained models to improve classification performance 
and computational resources. Furthermore, we wanted to explore the effects of text preprocessing prior to training. 
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