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ABSTRACT
Large amounts of annotated data is essential for modern Human
pose estimation. We propose using a semi supervised learning
scheme to estimate the 3D poses from adversarial multi-views gen-
erated representations from a single RGB image. Our GAN gener-
ated views are the result of training that aims to create authentic
and less degenerated outputs. Our method targets the shared latent
space between the 3 dimensional and 2 dimensional poses and aims
to simplify it by constraining the latent distribution. This resulted
in a noticeable increase in the method generalization and exploita-
tion of unlabeled depth maps. We utilized heatmaps to visualize
the attention robustness under variety of poses. Our method com-
petes with state of the art performances among semi supervised
approaches and excels in some challenging poses as evaluated on
Human3.6M, MPII-INF-3DHP and Leeds SportsPose challenging
datasets. 1
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1 INTRODUCTION
3D human pose estimation refers to the detection and localization of
the human body joints in videos and images. It offers key informa-
tion to analyzing human behavior such as human-robot interaction
and action recognition. There are numerous approaches to handle
generating 3D human poses from monocular images [10, 17, 34–
37, 39, 42, 43, 53]. The supervised learning approaches are taking
the lead in this field due to the availability of a large corpus of depth
images annotated with body joints. However, These methods are
1This is an extended and revised version of a preliminary conference report that was
presented in KICONF 2020 [54]
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still limited to the poses similarity between training and testing
samples and therefore tend to have degraded quality. The training
data distribution has dominant effect on the model behavior which
limits its generalization abilities toward unseen views.

Semi-supervised learning provides an alternative method for
learning robust geometry representations without extensive precise
3D annotation. Many approaches [4, 16, 28, 38, 45, 63] leverage
knowledge transformation to increase their robustness by training
3D annotations with abundant 2D annotations. These methods face
challenges in domain shift between training poses and in-the-wild
poses.

On one hand, using the semi supervised methods to exploit infor-
mation from unlabeled data is highly non-trivial. On the other hand,
overcoming the generalization challenge of supervised methods re-
quires a great deal of annotation, which is tedious and error-prone.
In this work, we train an adversarial multi-view images generator
from original RGB image to provide semi supervision and estimate
3D human pose. We utilize a variational autoencoder (VAE) [9]
generative model to create the views and generative adversarial
network (GAN) [14] to capture the latent spaces of human body
poses and corresponding images for estimating 3D pose. We also
propose a mapping between the latent body pose space and latent
joint-mapping space. A key point that is sampled in any of those
latent spaces is defined by the VAE as a 3D pose or by GAN as a joint
mapping. As a result, the model learns geometrical representations
that enables decent 3D poses estimation. During inference, our gen-
erator creates different views of the given target which adopts the
model parameters to the new distribution. This adaptation enables
the model to generalize well in estimating 3D poses for unseen
samples.

Motivated by Self-Attention GAN’s [15] (SAGAN), we incor-
porate them to enhance the 3D pose estimation. It offers global
structural constrains for the body joints through learning the gen-
eral and instantaneous dependencies between those joints. Our
results steadily showed the effectiveness of our method on Hu-
man3.6M [19], MPII-INF-3DHP (MPII) [36], and Leeds Sports Pose
(LSP) [21] datasets. Besides drastically reducing the need for anno-
tated data, our approach enhances the performance under scaling
and viewpoint variation. Figure 1 shows an overview of the pro-
posed method.

Our paper is organized as follows. Related works is reviewed in
section 2. Proposed method is presented in Section 3. Experimental
results are discussed in Sections 4, followed by the conclusion in
Section 5.

2 RELATEDWORKS
Both supervised and semi-supervised approaches have been used
to achieve a high-quality 3D pose estimation. Supervised methods
rely on deep learning architectures that utilize very large datasets
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Figure 1: The proposed architecture consists of three parts:
Panoptic embeddings based pose generator: 3D pose estima-
tor that uses features extracted from a multi view VAE, Dis-
criminatorwithwasserstein loss that scores the realness of a
given image instead of the probability of the image realness.
Lastly the reprojection network guided by [63].

for training [35, 37, 43, 44, 48, 53, 57, 59, 60, 74]. As those super-
vised approaches are heavily dependent on the training data, they
struggle to generalize outside the poses and motions of training set.
Researchers have invested in adding more content to the training
data through more annotations [22, 36, 44] and data augmentation
[20, 27, 52]. Transfomer based models have benefited from such
increase but without sufficent generalization [33, 72]. However,
the limited diversity of appearance and motion that current tools
provide, along with their imperfect verisimilitude, limits both the
generality and the accuracy of networks trained using only those
images.

Due to the previous factors, semi supervision is considered a
promising alternative in which network is trained without 2D to
3D supervision [4, 16, 28, 38, 45, 63]. Researchers utilized semi
supervision to let their models acquire knowledge through differ-
ent perspectives. Kocabas et al. [28] propose Epipolar geometry
to self-supervise a 3D pose estimator. Bastian et al. [63] used re-
porejoction loss to train a semi supervised model. They also use
adversarial losses to identify between infeasible poses. Kanazawa
et al. [24] create a parametarized 3D mesh with respect to joint
angles in 3D space and the linear shape space. Pavllo et al. [45]
utilize temporal information with dilated convolutions over 2D key
point trajectories to estimate 3D poses in videos which is found
helpful when labeled data is scarce. The robustness of 3D pose
estimation has increased through the above proposals however
there is still space to improve generalization against viewpoints
and scale changes. Several geometry-driven self-supervised meth-
ods [4, 11, 28, 29, 41, 46, 50, 51, 60, 61] are proposed to train models
with more unlabeled training data. However, they were not eval-
uated on active manner. Tome et al. [60] use motion capture data
and multi-staged 2D pose estimation model to generate 2D and
3D pose predictions. Novotny et al. [41] Estimate 3D pose using
viewpoint and shape parameters and used canonicalization loss to
introduce inductive bias. Wan et al. [61] learn to map two latent
spaces by using two generative models. Their models generation
abilities allowed the pose constraints to be learned improving the
pose estimation.

In this paper, we propose a semi-supervised method that is
trained with view generator from a single RGB image. Our work is
aligned with [28, 44] in using the generated data for semi supervised
training. The approach of [44], however, calibrates a set of camera

views parameters that are hard to obtain in open environments. The
[28] approach uses Epipolar geometry to estimate the correspond-
ing 3D pose from 2D poses. This results in back propagating the
3D reconstruction errors to the trained models and consequentially
builds against outdoor environments where 2D pose estimation is
not robust. In contrast to [44] and [28], our learning which uses two
generative models is robust to challenging poses in the captured
data and unbound to view constrains which concurrently optimize
for 2D and 3D poses. Our learning also improves predictions in 2D
space using multi-view unlabeled data. We evaluate our approach
on three challenging datasets unseen during training and find out
that it competes with existing methods trained on these datasets
for semi supervised learning and excels in the 3D pose estimation
task under some challenging poses.

3 PROPOSED METHOD
We propose a framework that maps from the input 2D distribution
to the 3D pose distribution. To achieve such learning we introduce
an intermediate distribution by generating N views of an obser-
vation using VAE and GAN. GAN [14] input is sampled from a
Gaussian or uniform distribution. In our method, the generator
input is obtained from the latent space of the VAE while generating
N sided panoptic information from a single RGB image. Giving
our method the name panoptic embeddings based pose estimator
(PEPE). The errors in the 3D poses from input 2D observations is
minimized by adopting the Wasserstein loss for the GAN [1, 63].
Figure 1 shows the network main components: 1) the generator
network, 2) the discriminator used in the adversarial training and
finally 3) the reprojection part that maps the 2D poses distribution
to the 3D poses distribution. The three components are trained
alternatively.

3.1 Generator
The generator models a prior distribution on body pose configu-
rations using inception [58] VAE. Its structure allows learning the
mapping from high dimensional body poses to a low-dimensional
representation while keeping the reconstruction accuracy high
through decoders. Let д represent some generated observation. We
want to estimate a prior p(д) by modeling the generation process
of д by sampling some h from an arbitrary low-dimensional distri-
bution p(h) as

p(д) =

∫
h
p(д | h)p(h)dh (1)

Fitting p(д) directly usually involves expensive inference. There-
fore, we approximate p(д) using VAE guided by a GAN. We provide
a brief mathematical representation for the usage of VAE and GAN
and their usage to model the prior of depth mapping and body
poses. Figure 2 illustrates details of the VAE and the pose generator.
We denote the generated depth map as y from 2D input image x .
The VAE generates N outputs representing N camera views of the
person in x . Therefore we have N decoders and a single encoder.
xn refers to the reconstructed pose parameter from the nth decoder.
y refers to the synthesized depth map from the GAN generator. hxn
and hyn are the nth latent pose of view and depth map respectively.
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Figure 2: The panoptic embeddings based pose generator
(referenced in Figure 1) is shown. The VAE component and
the generator create authentic y to fool the discriminator.

Our VAE regularizes a single encoder and N decoders to estimate
the posterior of latent variable as:

Enc(x) =
N∑
n=1

q(hxn | x) (2)

Dec(hxn ) = p(x | hxn ) (3)
The latent pose

∑N
n=1 hxn is regulated by introducing a prior over

the latent distribution on p(hxn ) and reconstructing xn to make
it correspond to the view of the given 2D image x . Commonly, a
Gaussian prior is integrated into the loss as the Kullback-Leibler
divergence DKL between the encoded distribution q(hxn | x) and
the prior p(hxn ). The VAE loss is given by reconstruction errors
summation of N decoders and latent prior as follow:

Lvae =

N∑
n=1

L
pose
n + Lp (4)

whereLpose
n is the reconstruction loss of the nth view and its given

as:
L
pose
n = −Eq(hXn |x )

[
logp(x |hxn )

]
(5)

and Lp is prior loss and its given as:

Lp =

N∑
n=1

DKL
(
q(hxn | x) | | p(hxn )

)
(6)

We want to reconstruct the depth map using VAE extracted latent
variables through GAN. However, GAN alone can’t perform this
estimation for latent variable posterior. Therefore, we must impose
learning a mapping from Hx latent space (which is formed by
concatenating all the latent spaces hxn ) to Hy . By optimizing latent
space parameter of the body pose, we create a reference space
to learn mapping to the 3D map latent space that is Hy through
MAP(Hx ).

Having the corresponding pairs x and y, we can train using the
observed depth images y as teacher signal and with synthesized im-
ages y = Gen(MAP(Hx )) that are projected toHx and then mapped
toHy . Weminimize the 3D reconstruction error by the intermediate
loss Lr given a latent input Hx which is mapped to the GAN latent
space as follows:

Lr = max
(
∥ yn −Gen(MAP(Hx )) ∥

2, ξ
)

(7)

Where ξ is the clipping threshold and MAP(·) is a single fully-
connected neuron with tanh activation marked in purple arrow in
Figure 2. We train this network using a clipped mean squared error

loss function. This ensures robustness to depth estimation noise as
used in [55]. Since the depth map is normalized to

[
1,−1

]
, we set

ξ = 1. Since our generative model is able to learn low-dimensional
representations, we are able to generate realistic samples with a
very small set of labeled (x ,y) pairs. With such mapping, arbitrary
points in the latent pose space can be mapped into the 2D body
pose space or corresponding 3D map space. The latent spaces of
this mapping is considered as a common shared latent pose.

The composite functionGen(MAP(·)) generates the depth latent
space. Its input is the mapped latent space marked by the green
arrow in Figure 2. The normal distribution Hx is mapped to Hy
through the MAP(·) that is implicitly learned. This infers that any
standard normal distribution random noise can be mapped to body
pose or a corresponding depth map. The Gen(MAP(·)) function is
implemented as six transposed convolutional layers with dilation
factor of two in order to build y. A shared latent space between the
depth map and the pose can be simplfied by introducing the con-
straint on the latent distribution. The generated samples y and real
data samples y are fed to the discriminator to distinguish between
them.

3.2 Attention Localization
Following the self-attention mechanism mentioned in [15] which
indicates that, for an arbitrary input, the overall self-attention map
is in size of (H ×W) × (H ×W). Therefore, there is a corresponding
sub-attention map whose size is (H × W) for every specific point
in the image [11]. We incorporated the self-attention layer in the
last two layers of decoders as shown in Figure 2. This allows our
model to generate representations using salient details from all
feature positions. The discriminator can observe that distant fea-
tures in a single image are consistent with each other. Following
[15] to enhance feature learning, The GAN generator uses spectral
normalization. Figure 3 shows attention layer visualization. It is ob-
served that the generator enhances neighborhoods that correspond
to joints locations in all views.

3.3 Discriminator
We chose to design the discriminator to be similar to the pose re-
gression network. We train it using the Wasserstein loss function
[1]. We incorporate kinematic chain space (KCS) [62] to handle
joint angle dynamics, kinematic chains, and symmetry. It operates
based on the constraint that bone lengths are constant. This re-
sults in trivial optimization of a nuclear norm problem. It allows
for better scenes reconstruction without depending on predefined
body measures. The KCS layer with a subsequent fully-connected
network forms another branch of the discriminator network. The
KCS branch output is concatenated with another fully connected
layer from the pose generator. Consecutively, the GAN loss with
respect to generator and discriminator is:

LGAN = log(Disc(y)) + log(1 − Disc(Gen(Hy ))) (8)

where Disc(y) is the discriminator output and Gen(Hy ) is the
generated pose. The generator learns to reduce the loss and gener-
ates more authentic samples while the discriminator is trained to
confuse the generator by maximizing the loss.
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3.4 Reprojection
The reprojection layer takes as input the synthetic poses y created
by the generator and remaps it into 2D coordinate space. This
proposal follows the method of [63]. It is given as:

w ′ = y (9)

where w ′ denotes the 2D reprojection. The reprojection loss
function Lj (·) can be defined as:

Lj (y) = ∥ w − y ∥F (10)

Where ∥ . ∥F represents the Frobenius norm andw is the observed
2D pose matrix which has the same structure as w ′. The repro-
jection layer does not have any trainable parameters. If a joint is
not detected then its corresponding columns inw and y are set to
zero. This marginalizes their influence on the value of the reprojec-
tion loss. According to the discriminator, the pose generator will
hallucinate the missing joints.

4 EXPERIMENTS
4.1 Training
We trained our model using a fine-grained subset of the Panoptic
studio [22] dataset. It contains 480 synchronized video streams for
numerous subjects involved in social activities with their anatomi-
cal landmarks labels. All cameras heights are fixed and the subject
movements happen at defined zones. This offers consistency for
generative model to learn salient characteristics robustly while
marginalizing the background noise. Hence, we choose this data
over the others for training. Our fine-grained streams are from se-
lected 8 cameras that are 2.2-meter-high in the panoptic sphere. Our
selected streams are for scenes that have no overlapping subjects
performing random activities. This allowed us to acquire octuplets
samples. At a single time, a random item of the octuplets items is
considered an input while the other seven (plus the selected input)
forms the VAE output. Per sample, the random selection of the
input happens 4 times. The above process yields 40,000 samples
in which 35,000 samples were used for training. We have not used
other datasets for training. Our selected samples have a variety of
person sizes which gave the 2D joint generator an arbitrary scale.
To minimize this effect, The vector of the generated 2D pose is
divided by its own standard deviation. As a result, the possible 2D
pose values are constrained. This allows our method to perform
domain transfer of 2D poses more easily.

The three components of our model are trained alternatively.
Training alternates between minimizing LGAN parameters of the
generator then maximizing LGAN w.r.t. parameters of the discrim-
inator and finally minimizes Lj to remap the generated 3D poses
into the 2D space for the generator to start learning from another
batch. We stabilize training on every hidden layer by batch normal-
ization. We use the Adam [26] algorithm to optimize our network.
We regularized latent variable after VAE encoder by adding random
Gaussian noise with 0.035 standard deviation. The training took
5000 epochs with learning rate set to 0.001. It took about 15 hours
for training with around 35,000 samples on 4X NVIDIA Tesla V100
of 32GB.

Figure 3: The PEPE is able to reconstruct 8 views that cor-
respond to the input image. We include the self-attention
map referenced in 2. The subject joints in the corresponding
view is localized under variation of their activation. They
hold the desired structural information. The top left im-
age is from Panoptic studio (testing data). The top right im-
age is from Human3.6M. The input in this case is not the
front view. However, the model managed to make success-
ful reconstruction. Image at bottom left and bottom right
are from the MPII and LSP datasets respectively.

4.2 Evaluation
After training our model with Panoptic studio dataset [22], we eval-
uate its performance on the following three datasets: Human3.6M
[19], MPII [36], and LSP [21]. Human3.6M dataset contains images
of people aligned with respect to time into 2D and 3D correspon-
dences. All the data in those datasets are considered unseen as
we use Panoptic studio only for training in all experiments. We
evaluate our training quantitatively on Human3.6M and MPII data.
For qualitative results, we evaluate on LSP that contains unusual
poses and camera angles.

As multi-view generation is an intermediate step and its effect
can not be seen directly through results. Figure 3 shows the PEPE
reconstruction of 8 views from a single RGB image. The inputs
are unseen data with a variety of postures and and viewing points.
The generated views hold useful structural information that can be
used for pose estimation once projected on the depth map space.
In Figure 3, for every input image, we show the decoded view and
the generated attention for every view. The positional attention
module captures structural joint information. For comprehensible
visualization, we show some attended channels that highlights
clear joint information. The activation around a specific join is
observed after enhancing the channel attention module. These
visualizations show ability to capture dependencies for improving
feature representation in 2D pose estimation.

4.2.1 Quantitative Evaluation. Quantitative analysis in the litera-
ture uses the mean per joint positioning error (MPJPE) and Percent-
age of Correct Key points (PCK). The MPJPE aims to compute the
error per joint position as the Euclidean distance between predic-
tion and the ground truth of a given joint. The PCK is evaluated
as the percentage of trials where the Euclidean pixel distance be-
tween the actual and predicted joint location is below the desired
threshold. The Human3.6M dataset is commonly evaluated using
the MPJPE measure while the MPII and LSP datasets are evaluated
using the PCK. We followed same conventions in our analysis. In
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Table 1: MPJPE values for our pose estimation and state of the art on Human3.6M. In this comparison we follow Protocol-1(no
rigid alignment). Scores are taken from the referenced papers. The rows PEPE-(nV) show our method when we use n decoders
to create n views.

Method Direct Disc Eat Greet Phone Photo Pose Perch Sit SitD Smoke Wait Walk WalkD WalkT Avg
Martinez et al.[35] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Iskakove et.al [25] 41.9 49.2 46.9 47.6 50.7 57.9 41.2 50.9 57.3 74.9 48.6 44.3 41.3 52.8 42.7 49.9
Pavllo et al. [45] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Cheng et al.[70] 38.3 41.3 46.1 40.1 41.6 51.9 41.8 40.9 51.5 58.4 42.2 44.6 41.7 33.7 30.1 42.9
Cheng et al.[6] 36.2 38.1 42.7 35.9 38.2 45.7 36.8 42.0 45.9 51.3 41.8 41.5 43.8 33.1 28.6 40.1
Dinehs et al.[75] 38.4 46.2 44.3 43.2 44.8 48.3 52.9 36.7 45.3 54.5 63.4 44.4 41.9 46.2 39.9 44.6
Mohamaddi et al.[23] 39.4 46.9 41.0 42.7 53.6 54.8 41.4 50.0 59.9 78.8 49.8 46.2 51.1 40.5 41.0 49.1
Fang et al.[13] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Zhao et al.[73] 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6
Cai et al.[67] 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Xu et al.[66] 37.4 43.5 42.7 42.7 46.6 59.7 41.3 45.1 52.7 60.2 45.8 43.1 47.7 33.7 37.1 45.6
liu et al.[32] 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1
Zeng et al.[72] 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 43.1 31.5 32.6 44.8
Wang et al.[32] 40.2 42.5 42.6 41.1 46.7 56.7 41.4 42.3 56.2 60.4 46.3 42.2 46.2 31.7 31.0 44.5
PEPE-4V 42.2 49.4 47.7 58.3 58.1 65.7 47.8 67.5 64.6 90.7 53 49.5 37.5 43.3 43.5 54.6
PEPE-6V 40.6 48.1 46.7 57.1 56.4 64.5 46 66.1 62.7 88.8 51.7 48 36.5 41.7 42.4 53.1
PEPE-8V 38.8 37.9 39.8 45.9 38.1 51.6 37.1 36.6 62 87.2 43.4 42.1 34.4 30.3 29.1 43.6

our evaluation we use Protocol-1 where no pose alignment hap-
pens. Table 1 shows our results on the Human3.6M dataset. We
observe that having more generated views significantly improves
the pose estimation. Our method competes with supervised and
unsupervised methods in many cases, namely [6] and [75] and ex-
cels in some challenging poses such as perching and sitting down.
Although Human3.6M is outside our training set, we still outper-
form models that are trained on this data, and thereby highlights
the generalization ability of our approach. To keep the evaluation
subjective, we analyze the same movement from the same viewing
point in Figure 4. We included standard poses and challenging poses
such as crouching and squatting.

Figure 4: We show reconstruction for variety of motions
from the test set of Human3.6M. Six samples are shown. The
images starting from the left are input, ground truth and our
pose estimation (PEPE-8V ).

Although our method is trained using Panoptic studio dataset
only, we outperform supervised and unsupervised approaches trained
on Human3.6M dataset in many scenarios. Our results for MPII
compete with the state of the art methods that are trained on this
dataset without additional training namely the work of Bulat et
al.[3]. Figure 5 shows some standard and challenging prediction
samples. We report quantitative results in Table 2.

4.2.2 Qualitative Evaluation. LSP is commonly used for qualita-
tive evaluation due to its small content yet sparse characteristics.

Figure 5: We show reconstruction for variety of motions
from the test set of MPII created by considering 8 views
(PEPE-8V ).

This dataset contains 2000 images of people showing variety of
poses while performing sports activities. Our network never en-
countered many of the evaluated poses during training. Despite
this fact, our method reconstructed poses as shown in Figure 3
and predicted plausible 3D poses for many images as shown in
Figure 6. The tests cover cases that are captured from uncommon
camera angles. The third column in Figure 6 illustrates cases in
which the model failed to generalize. Table 3 shows the results of
LSP dataset outperforming all the state of the art methods for this
dataset. This underlines robustness of the learning to distinguish
between feasible and infeasible poses and 2D projections.

Figure 6: Reconstructions is shown for a variety of motions
from the test set of LSP created by considering 8 views
(PEPE-8V ).
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Table 2: Comparison on MPII test set with the state of the art. Bounding box around people are used for evaluation. We report
the PCK measure in 3D. The higher the score the more accurate is the estimation.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Average
Chen et al.[5] 98.1 96.5 92.9 88.5 90.2 89.6 86.0 91.9
Ke et al.[31] 98.5 96.8 92.7 88.4 90.6 89.4 86.3.5 92.1
Tang et al.[65] 98.4 96.9 92.6 88.4 91.8 89.4 86.2 92.3
Sun et al. [56] 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3
Bulat et al.[3] 98.8 97.5 94.4 91.2 93.2 92.2 89.3 94.1
PEPE-4V 88.45 80.15 77.65 81.55 60.05 83.95 79.35 78.7
PEPE-6V 97.2 96.5 92.1 87.3 90.9 87.9 84.6 90.9
PEPE-8V 98.7 98.1 95.4 91.1 92.1 92.5 88.9 93.8

Table 3: PCK-based comparison with state of the art on the LSP test set. We report PCK measure in 3D using 4, 6 and 8 views.
Higher PCK indicates more accurate estimation.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Average
Yang et al.[69] 90.6 78.1 73.8 68.8 74.8 69.9 58.9 73.6
Rafi et al.[49] 95.8 86.2 79.3 75 86.6 83.8 79.8 83.8
Yu et al.[71] 87.2 88.2 82.4 76.3 91.4 85.8 78.7 84.3
Belagiannis et al.[2] 95.2 89 81.5 77 83.7 87 82.8 85.2
Lifshitz et al.[30] 96.8 89 82.7 79.1 90.9 86 82.5 86.7
Pishchulin et al.[47] 97 91 83.8 78.1 91 86.7 82 87.1
Insafutdinov et al.[18] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1
Wei et al.[64] 97.8 92.5 87 83.9 91.5 90.8 89.9 90.5
Email et al.[12] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7
Chu et al.[8] 98.1 93.7 89.3 86.9 93.4 94 92.5 92.6
Yang et al.[68] 98.3 94.5 92.2 88.9 94.7 95 93.7 93.9
Ning et al.[40] 98.2 94.4 91.8 89.3 94.7 95 93.5 93.9
Chou et al.[7] 98.2 94.9 92.2 89.5 94.2 95 94.1 94
Bulat et al.[3] 98.7 95.7 93.1 90.3 95.8 95.6 94.8 94.8
PEPE-4V 96.16 89.96 82.46 77.96 84.66 87.96 83.76 86.16
PEPE-6V 96.7 92.3 87.9 85.5 92.0 92.6 91.1 91.2
PEPE-8V 99.3 96.5 93.9 91.1 96.6 96.4 95.6 95.6

5 CONCLUSION
In this paper, we propose a 3D body pose estimation method by
evaluating the shared latent space posterior of the depth map and
body pose parameters. We used two deep generative networks: a
variational autoencoder to generate multiple camera views of body
poses and a generative adversarial network to model the prior of
body poses and depthmapping for the poses. As a result, the learned
pose constrains have improved the discriminative pose estimation
by VAE and the GAN generalization . The proposed method learns
from unlabeled data, which overcomes a significant problem in
the field of body pose estimation, where annotated training data is
scares. Our approach enhances the semi-supervised configurations
of GAN to make more structured predictions. Our results show
competing performance against state of the art methods and surpass
in some challenging poses. It also shows robust generalization
against three unseen datasets over previous semi-supervised and
unsupervised state of art methods.
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