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Abstract— Synchoros VLSI design style has been 

proposed as an alternative to the standard cell best design 

style; the word synchoros is derived from the Greek word 

choros for space. Synchoricity discretises space with a 

virtual grid, the way synchronicity discretises time with 

clock ticks. SiLago (Silicon Lego) blocks are atomic 

synchoros building blocks like Lego bricks.  SiLago 

blocks absorb all metal layer details, i.e., all wires, to 

enable composition by abutment of valid; valid in the 

sense of being technology design rules compliant, timing 

clean and OCV ruggedized. Effectively, composition by 

abutment eliminates logic and physical synthesis for the 

end user. Like Lego system, synchoricity does need a 

finite number of SiLago block types to cater to different 

types of designs. Global NoCs are important system level 

design components. In this paper, we show, how with a 

small library of SiLago blocks for global NoCs, it is 

possible to automatically synthesize arbitrary global 

NoCs of different types, dimensions, and topology. The 

synthesized global NoCs are not only valid VLSI designs, 

their cost metrics (area, latency, and energy) are known 

with post-layout accuracy in linear time. We argue that 

this is essential to be able to do chip-level design space 

exploration. We show how the abstract timing model of 

such global NoC SiLago blocks can be built and used to 

analyse the timing of global NoC links with post layout 

accuracy and in linear time. We validate this claim by 

subjecting the same VLSI designs of global NoC to 

commercial EDA’s static timing analysis and show that 

the abstract timing analysis enabled by synchoros VLSI 

design gives same results as the commercial EDA tools. 

Keywords — Coarse Grain Reconfigurable 

Architectures, Clock Tree Synthesis, VLSI design, SiLago 

I. INTRODUCTION 

Wires are scaling worse with technology, compared to 

computation and storage as shown in Fig. 1a. It is also well 

known that storage and interconnect dominate the cost 

metrics [1] as shown in Fig. 1b. This is because of the 

emergence of memory intensive applications especially in the 

ML/AI category [2]. These arguments suggest that 

interconnect cost should be factored in during the design 

space exploration (DSE) at all three levels of chip-design 

hierarchy: blocks, sub-system and chip. However, the 

interconnect cost is not known until physical design has 

happened. Many estimation techniques have been proposed 

to factor in the interconnect cost, especially for NoCs, 

however, these estimation techniques, especially at higher 

abstractions, face two challenges: i) the estimation accuracy 

is exponentially worse compared to the accuracy at lower 

abstractions and ii) the impact of interconnect cost on overall 

design cost becomes increasingly significant compared to the 
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impact at lower abstractions. The abstractions from highest to 

lowest levels are: system, application, algorithms, RTL, 

logic/gate, physical design, see [3], for more details.  

A. Problem statement 

To precisely define the problem being addressed in this 

paper and how the contributions of this paper are intended to 

be used, consider the abstract chip-level design space 

exploration (DSE) loop shown in Listing 1. 

In the DSE loop, an application is mapped to a chip in 

terms of synchronous islands containing logic, storage, or 

both, that communicate with each other over lobal NoC 

(GNoC) and in general on latency insensitive basis. There are 

three key problems in the DSE loop:  

a) Creating new solution (create_new_solution on line 3) 

in terms of deciding the number and content of the 

synchronous islands and the global NoC that meets the 

communication needs of these synchronous islands. 

These solutions are abstract, the VLSI implementation 

and post-layout area, latency, and energy are not known.  

b) Implement the functionality mapped to synchronous 

islands as VLSI design and know their post-layout 

accurate costs. Floorplan the chip in terms of 

synchronous islands with space for GNoC. 

c) Implement the VLSI design of GNoC according to the 

specification of GNoC created by step a) and the 

floorplan constraints created by step b) 

 

We observe that the loop shown in Listing 1 is expected 

to deal with large designs of the order of 100s of million gates 

and the loop is expected to potentially evaluate millions of 

solutions. Synchoros VLSI design’s post-layout accuracy and 

linear time complexity are essential for effective and efficient 

 

Figure 1. Breakdown of the energy consumption [1][2] 

Listing 1. Design space exploration example loop 
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1. cost_of_best_solution = infinity; 

2. LOOP 

3.   [Synchronous Islands, Global NOC] =  

4.                               create_new_solution (Application); 

5.       create_new_solution(application); 

6.   cost_of_new_solution = cost of Synchronous Islands +  

7.                          cost of Global NoC; 

8.   IF cost_of_new_solution < cost_of_best_solution THEN 

9.     cost_of_best_solution = cost_of_new_solution 

10.     best_solution = new_solution 

11.   END IF 

12. END LOOP 

 



DSE. The conventional state-of-the-art methods to estimate 

cost-metrics sacrifice accuracy for speed. The option to do 

logic and physical synthesis for millions of candidate 

solutions is obviously not scalable. Synthesis of GNoC in 

terms of SiLago blocks complements the research to improve 

predictability of NoCs at architectural and algorithmic level 

[4][5][6]. 

Composition of regional clock tree by abutment in a 

synchoros design framework has been elaborated [7]; this 

work has been presented at TAU 2021. A conceptual scheme 

to create power grid by abutment has also been presented [3]. 

The focus of this paper is on synthesis of GNoC by abutment. 

We next introduce the essential concepts of synchoros 

VLSI design, as they are not widely known. This is essential 

to concretely define the contributions and for understanding 

the concepts and methods introduced in this paper. 

B. Synchoros VLSI design 

Synchoricity is analogous to synchronicity. In 

synchronicity, time is uniformly discretised with clock ticks 

to simplify the temporal and logical composition. In 

synchoricity, space is uniformly discretised with a virtual grid 

to simplify the spatial and electrical composition that is 

technology compliant. Lego is a prime example of synchoros 

design objects; all Lego objects are integer multiples of a 

standard pitch and Lego studs are placed at these pitches to 

enable composition by abutment. This enables infinite variety 

of Lego structures to be built out of a finite set of Lego bricks 

type. Synchoros VLSI design style objects are called SiLago 

(Silicon Lego) blocks (SB). SBs, like their inspiration, the 

Lego bricks, are designed to compose large VLSI designs by 

abutment; no logic or physical synthesis is required. In this 

paper, we will introduce a set of GNoC SBs, that enables 

creation of arbitrary type and dimension of GNoC, simply by 

abutment, and with knowledge of post-layout accurate cost-

metrics. We next introduce the three levels of hierarchical 

synchoros design objects: SBs, regions and chips. 

SiLago blocks are the atomic building blocks and their 

salient properties are: a) they absorb all metal layer details, 

i.e., absorb all inter-SB wires, as part of their design; all 

implies functional wires like NoC, and infra-structural like 

clock, reset, power grid etc. b) bring out the inter-SiLago 

interconnects, like the Lego studs, at right place on the right 

metal layer. As a result, when valid SB neighbours 2  are 

placed on the grid, their interconnects align to create a larger, 

valid VLSI design, c) SiLago blocks export micro-

architecture level operations in contrast to the boolean-level 

operations exported by the standard cells, d) SBs are 

characterized with post-layout data. Since, the intra-SB 

details and the inter-SB details are known and characterized 

with post-layout data, it is possible to create abstract models 

for a design composed in terms of SBs and know the cost-

metrics with post-layout accuracy; see [8] for more details. 

Regions are aggregates of SBs of the same type. In terms 

of the DSE loop in Listing 1, the reader can think of region 

instances as synchronous islands. For more details on regions, 

see [7]. Instances of region communicate with each other over 

GNoC and in general the communication can be latency 

insensitive. We have proposed using a variant of GALS 

protocol called GRLS [9]. 

 
2 Every SB type can abut with a sub-set of other SB types. These are 

called valid neighbours. 

Chips are aggregates of region instances or equivalently 

synchronous islands. Figure 2 shows a visual depiction of a 

synchoros VLSI Chip level floor plan. Multiple instances of 

different types of regions are shown; we remind that region 

instances are equivalent to synchronous islands in the DSE 

loop in List. 1. GNoC SBs are also shown creating the GNoC 

that connects the region-instances. Light pink shaded GNoC 

SBs are switchbox type of SBs, and the dark pink shaded SBs 

are wired, buffered, or registered SBs. Light shaded SBs in 

region instances are Network Interface Units (NIUs) that 

connect the region instance to the GNoC. 

C. Contributions of this paper 

1. A set of SBs types to create an arbitrary GNoC and distribute 

a global clock tree (GCT) along with it. 
2. Characterization and timing model of the GNoC SBs to 

enable linear time and post-layout accurate timing 

analysis of arbitrary GNoC composed from such SBs. 

3. Synthesis algorithm to select the optimal mix of GNoC 

SBs that fulfils the abstract GNoC specifications created 

by the create_new_solution in the DSE loop in Listing 1. 

4. Validation of the claim of linear time and post layout 

accuracy of the cost-metrics of GNoC composed by 

abutment of SBs. 

The rest of the paper is organized as follows. In section II, 

we introduce the GNoC SBs, their characterization, timing 

model and synthesis of GNoC in terms of the SBs. In section 

III, we present the experimental results and validate the 

claim; see point 4 above. In section IV, we review the state-

of-the-art and differentiate the proposed method and justify 

it. Finally, in section V, we draw conclusions and present a 

list of enhancements that we are working on to go beyond the 

results presented in this paper. 

II. ANALYSIS AND SYNTHESIS OF SYNCHOROS GNOC 

In this section, we introduce a set of GNoC SB types that 

are sufficient to implement arbitrary type and dimensions of 

GNOC. Each type of GNoC SB has sub-types to cater to 

variations in dimensions (width) and functionality, i.e., 

different types of routers with varying dimensions of storage 

for packets, commands, status etc. We also introduce the 

timing model of the SBs to enable linear time, post layout 

accurate timing analysis that we call higher abstraction static 

 

Figure 2. SiLago floorplan example. 



timing analysis or HASTA. Finally, we present a synthesis 

algorithm to synthesize arbitrary GNoC in terms of an 

optimal set of GNoC SB instances. 

Besides GNoC fragments, the SBs also absorb fragments 

of the GCT. As a result, both GNoC and GCT gets created by 

abutment of these SBs. For brevity, we will only mention 

GNoC but also imply GCT as well. We mention GCT, only 

when arguments for GNoC, do not apply to GCT. 

A. Abutable GNoC SiLago Blocks (SBs) 

There are three types GNoC SBs to build NoC wires and 

another type for switchbox and router logic. These blocks 

propagate NoC wires as well as a global clock. Some of these 

blocks also use the global clock besides propagating it. The 

logical layout of the GNoC in terms of these SiLago blocks 

can be expressed as a simple grammar presented in Listing 2. 

Every GNoC instance in a synchoros VLSI design is a 

sentence that fulfils this simple grammar. Every GNoC SB 

sub-type is characterized, and this data is then used for the 

timing model that is used by HASTA. Each sub-type of 

GNoC SB is also made abutment ready and the way wires are 

laid out ensures that technology design rules are also fulfilled 

in the design created by abutment. We next elaborate the 

function, design, and dimensions of these GNoC SBs. 

Wire (W) GNoC SB: The plain wire SB, represented by token 

W in Listing 2 and shown in Fig. 3.1, is the simplest and used 

to create wires of length that allows the slew rate to 

deteriorate within the lower bound of slew-rate spread that 

the technology rule allows. Note that the drivers of these 

wires and their strength is known because the driver is also 

part of some pre-characterized SB that drives these wire SBs. 

In general, the need to buffer the GNoC wires is similar, with 

a small spread in slew rate variations. However, the GCT 

wire, shown as red lines in Fig. 3, could have larger variations 

because it is expected to be more heavily loaded. For this 

reason, the wire (W) GNoC SiLago blocks (Fig 3.1) come in 

two sub-types: one in which the GCT fragment is buffered 

and the second in which, its non-buffered, as shown in Fig 

3.1. 

Buffer (B) GNoC SB: The buffered wire SB, represented by 

token B in the Listing 2 and shown in Fig. 3.2 is used to 

restore the slew rate to a healthy value within the slew rate 

spread that the technology rule prescribes. In this SB, all 

wires are buffered. 

Register (R) GNoC SB: Finally, the registered wire SB, 

shown as token R in Listing 2  and depicted Fig. 3.3, is used 

to pipeline the GNoC wires, should the propagation delay 

through the wire and buffered SBs become longer than the 

global-clock period. It should be noted that this applies only 

to the GNoC wires but not to the GCT. For the GCT wire, it 

is essential to have the minimum distance between buffers 

that is less than half the clock period of the maximum 

intended global clock frequency. 

Switch/Router (S) GNoC SB: The GNoC switch/router, 

denoted as S in Listing 2, and conceptually depicted in Fig. 

3.4. Depending upon the type of Switch/Router, the 

dimension of storage etc. there will multiple sub-types of S 

type GNoC SBs. However, all of them would be synchoros 

and composable with other GNoC SBs by abutment. 

Network Interface Unit (N) GNoC SB: The N type of GNoC 

SB is placed in region instances, see section I.B. N SBs are 

not shown in Fig. 3 because their instantiation is part of 

region instance synthesis that is not the focus of this paper. 

Synchoricity of GNoC SBs constraints three aspects of VLSI 

design of these SBs. i) Width varies according to the content; 

width of W SBs would be least and S SB the maximum. All 

widths will be an integer multiple of the pitch of the virtual 

grid as shown in Fig. 3. ii) Height is the same for SBs that 

carries the same number and type of wires and is also an 

integer multiple of the pitch of the virtual grid. iii) SBs that 

carries the same number and type of wires form a family of 

GNoC SB sub-types that are valid neighbours, and they all 

bring out their wires on the periphery at right place and right 

metal layer to enable composition by abutment. The layout of 

the wires is also controlled to comply with the technology 

design rules.  

B. Characterization, Timing models and Analysis 

In this section, we elaborate how these SBs are 

characterised, and the characterization data used to create 

timing models that predict post-layout accurate timing in 

linear time and also how these models are made PVT and 

OCV rugged.  

Characterization 

As mentioned in the section I.B, a synchoros VLSI design 

is composed by abutting the pre-characterized, hardened SBs. 

This implies that all instances of a specific SB sub-type will 

be identical in their VLSI design. For this reason, 

characterization is a onetime time effort for each SB sub-type, 

as is the case with characterizing standard cells. 

Characterization distinguishes between two kinds of SBs: 

the ones with active logic (S, R and B) and the others that 

are passive with plain wires (W). The characterization of the 

passive wire SBs is simple, it encapsulates the length of the 

wire that is an integer multiple of the pitch of the synchoros 

VLSI design. This length of wire translates into capacitive 

load for the active SBs that drives the plain wire (W) SBs.  

Every GNoC timing path is divided into segments. Each 

segment starts and ends with an active [R|S|B] SB with up 

to K intervening passive W SBs; K depends on the technology 

and the width of the SBs. Since there are three active SB 

types, there are 9 possible combinations of source and 

Figure 3. Abutable GNOC SBs used in the GNoC edges 

Listing 2. The GNoC floorplan grammar 

 

1. // Tokens 

2. S: Switch Box/Router 

3. W: Plain Wires 

4. B: Buffered Wires 

5. R: Registered Wires 

6.  

7. // GNOC grammar 

8. GNOC: S Wires GNOC | 

9.       S 

10. Wires: {W, B, R}+ 



destination to create 9 types of segments. For each segment 

type, one characterization table is built with two dimensions: 

range (L) of input slew rates from low to high and the load 

corresponding to the number (0 to K-1) of intervening W SBs. 

In our experiments, we have used K=L=10. This implies 9 

tables of size 1010 cells. Since the SBs are modest in their 

complexity, invoking static timing analysis (STA) 900 times 

takes only 1 or 2 hours, and even that is a onetime effort. 

While each segment instance of GNoC has 900 possible 

variants, a GNoC will be a cascade of 100s of such segments 

making the design space of GNoCs virtually infinite. 

However, it is possible to analyse any instance from among 

the infinite variants of GNoC in linear time and with post-

layout accuracy. This is because, if there are N segments of a 

GNoC, HASTA just needs to do N look ups in one of the 9 2-

dimensional tables. 

To use the two-dimensional table, HASTA first decides 

which of the 9 table to use depending on the source and 

destination active block combination. The column is decided 

by the intervening number of wire blocks. The row is selected 

based on the input slew rate. If it is not an exact match, then 

there are two options. One is to take a pessimistic view and 

use the next row with worse slew rate for setup-checks and 

better slew rate for hold checks. The second option is to 

consider the two rows corresponding to the two closest slew 

rates are selected and perform linear interpolation. A third 

option is to increase L to improve accuracy. 

The discussion above was focussed on data wires. 

However, from a circuit perspective, the global clock wires 

are also treated similarly and lends to similar characterization 

and timing analysis. This allows HASTA to know the latency 

and skew in the clock propagation. Additionally, if the PLL 

specifications are known, HASTA can be supplied with the 

jitter information to factor the jitter in its analysis. In essence, 

HASTA can deal with timing analysis of global clock tree 

with the same degree of accuracy as the conventional EDA 

tools. A method to synthesize and analyse regional clock tree 

(RCT) in synchoros VLSI design is built on similar (not the 

same) principles and has been rigorously validated against the 

commercial EDA tools [7]. 

HASTA, like the conventional STA, also needs to analyse 

the flop-to-flop timing in GNoC to check for the following 

violations: a) setup, b hold, c) combinational delays greater 

than one clock-period and d) unbuffered clock wires greater 

than half a clock period of highest intended global clock 

frequency. Any flop-to-flop timing path is a cascade of the 

900 types of segments discussed above. 

The flop-to-flop timing path analysis needs to distinguish 

between two cases: forward and backward paths. In a forward 

path, the clock and the data wires move in the same direction 

and the positive skew has the effect of stretching the clock 

period. The reverse is true for the backward path in which the 

clock and data move in the opposite direction. 

OCV and PVT  

HASTA, like the conventional STA in the EDA tools 

needs to factor in the PVT and OCV. This is naturally handled 

because the timing models that HASTA uses are based on 

data extracted from STA that derates the calculated value for 

the worst case and the best case. The two-dimensional table-

based timing models discussed in section II.a have two 

variants, one for the best and the other for the worst case. 

When checking for the hold violations, the min delay table is 

used and for the setup violations, the max delay table is used.  

In essence, when HASTA declares a GNoC path to be 

timing clean, it is done with same level of rigour and accuracy 

as the conventional STA tools. The difference is that  HASTA 

works at higher abstraction of 900 types of pre-characterized 

segments and the timing of arbitrary GNoC is composable in 

terms of the timing models of these segments. 

C. The GNoC synthesis algorithm 

In this section, we present an algorithm for the synthesis of 

GNoC. The synthesis algorithm is presented in Listing 3.  

The lowest cost solution is to realize the GNoC links is to 

use just the plain wire (W) SBs, provided that the max 

frequency and slew rate constraints are met. If these 

constraints are not met, the next best option is to use buffered 

wire (B) SBs. The B SBs are added in increments of one in 

successive attempts. These blocks are evenly placed. The first 

attempt is to place a single B SB in the middle of the link. If 

that does not fulfil the requirement, it is removed (line 7) and 

two buffers, placed at equidistant, are inserted. Adding 

buffers will lower latency, reduce the slew rate but increase 

the power consumption. However, allowing slew rate to 

deteriorate, even if it is within the technology design rules 

range, will make slower transitions, and increase the crow-

bar current that will increase power consumption.  

If the buffered wire SBs fail in meeting the frequency 

constraint, the synthesis algorithm, turns its attention to using 

the registered wire (R) SBs, to pipeline the GNoC wires. The 

synthesis algorithm begins by inserting a single register and 

then each registered segments is synthesised using the plain 

wires and/or buffered wired SBs as described above. If a 

single register is insufficient, the synthesis algorithm will 

increment the registered wire (R) SBs successively and as 

with the B blocks, placing them evenly; this of course 

requires eliminating the previously inserted R and B blocks. 

In essence, the synthesis algorithm attempts to find the 

lowest cost solution and if that does not meet the constraints, 

it successively adds more expensive SBs, first B and then the 

R SBs. 

The synthesis algorithm for GCT, in general, requires 

dealing with cyclic graph. In our present, proof-of-concept, 

design framework, we simplify the problem by cutting the 

loop to create an acyclic graph. The principal constraint on 

GCT is to use buffered (B) and plain wire (W) SBs, such that 

the max distance between neighbouring B SBs is less than 

half the distance of the max clock frequency of GCT. Once 

Listing 3. GNoC synthesis algorithm 

 

1. cost_of_best_solution = infinity; 

2. current_solution = “ALL WIRES” 

3. LOOP 

4. | IF is_valid(current_solution) THEN 

5. |   break; 

6. | IF not (WIRE_BLOCKS ∈ current_solution) THEN 

7. | | current_solution =                                                                                         

8.              remove_buffers(current_solution); 

9. | | current_solution =  

10.              insert_registers(current_solution); 

11. | ELSE 

12. | | current_solution = 

insert_buffers(current_solution); 

13. | END IF 

14. END LOOP 



this is achieved, the slew rate is checked and if required, 

additional B SBs are added. 

III. EXPERIMENTS AND RESULTS 

In this section, we present proof-of-concept experimental 

results to validate the claims a) that it is possible to create 

GNoC link from a small set of pre-design GNoC SBs. AND 

B) the timing is known with post-layout accuracy.  

The experimental setup involved using EDA tools to 

create the timing models and to validate the GNoC designs 

created by abutment and 40 nm technology library. 

Three GNoC wire SBs and one switchbox SB were 

designed. The switchbox SB is a dummy switchbox with flop 

interface to mimic an arbitrary switchbox. The 

characterization of internals of switchbox is also predictable 

and has been covered by [8]. In this paper, the focus is on 

building and validation of the GNoC links. Including the 

delays of a specific switchbox/router will simply add a fixed 

offset in terms of physical design implementation.  

To validate the claim, we created synthetic statements 

based on the grammar listed in Listing 2. These are shown in 

Table 3. A GNoC VLSI design was constructed 

corresponding to the four cases by abutting the SBs that 

corresponds to the sequence of letters in the GNoC sentence.  

The composite VLSI design created by abutment was 

analysed using the timing models discussed in section II.C 

and also by the commercial EDA tool’s STA engines. This 

analysis was done for setup checks. As can be seen, the value 

predicted by the GNoC SB timing models is in pretty good 

agreement with the values predicted by the EDA tools. Figure 

4 shows the results of the timing analysis on the last path of 

Table 3. The x-axis represents the buffer stage and on the y-

axis, arrival times and delay are plotted for the results 

obtained with our method versus the results obtained by the 

commercial EDA tool. The figure also shows the arrival time 

comparison between the HASTA and EDA STA. The 

difference is less than 1%. The cause for the slightly 

pessimistic but safe results is that when there is not an exact 

match with the slew rate entry, we used the closest worse slew 

rate. Using an interpolation of two nearest slew rates and/or 

increasing the number of slew rate entries would further 

reduce the error. 

The results for the hold-check are not shown because, it 

is in principle the same method, it just involves using a 

different characterization table. 

IV. STATE OF THE ART 

The NoC research community has richly addressed the 

challenge of predictable NoC design with quality of service 

(QoS) guarantees [4][5][6], However, these research 

minimize the uncertainty at architectural and algorithmic 

level and do not factor in the physical design when the actual 

delay in wires become known. The method proposed in this 

paper complements these research by eliminating the 

physical design uncertainty.  

Bertozzi et al. presented a NoC library called xpipes [10] 

that consists of soft macro-like blocks that can be used to 

build arbitrary GNoC designs. It is important to note that this 

library does not handle the clocking of the NoC and that task 

is left to the physical design. Later, the same group at Univ. 

Of Ferrara along with Teklatech A/S in Denmark, developed 

the iNOC approach, where a vertically integrated approach of 

predictable NoC design was attempted. In this framework, 

starting with a process graph annotated with average traffic 

on the edges, a floor planning tool factors in the traffic cost 

while doing floor planning. However, it still relies on 

backend synthesis to do the final design. In contrast, the 

synchoros VLSI design, eliminates the logic and physical 

synthesis and enables creation of arbitrary GNoCs simply by 

abutment and to know the costs with post-layout accuracy.  

Further, the significance of factoring in physical design 

during NoC synthesis received boost when a special session 

was organized in NOCS 2020 by Chris Batten and Mike 

Taylor on “Physical Design Issues for NoCs”. This session 

did bring into focus the need to keep physical design into 

focus but did not offer any method to factoring in physical 

design into NOC synthesis as is proposed in this paper. 

Dally et al. in their 2013 paper listed physical composition 

of NoC based on pre-characterised blocks as one of the 

required steps in moving towards 21st century EDA tools 

[11]. This vision paper highlighted the need for a physical 

regularity in VLSI that would lower the engineering costs of 

new designs. The synchoros VLSI design framework has 

similar goals and goes beyond [11] in that it uses synchoros 

design objects to not just make physical design process 

simpler but also empower higher abstraction synthesis as 

envisaged in the DSE loop in Listing 1 and proto-tool for 

application level synthesis built on this principles [12]. 

Moreover, Dally et al. [11] do not talk about composing NoC 

or its analysis and synthesis in terms of SiLago like blocks. 

Commercial EDA tools also provide hierarchical timing 

analysis (HTA) capability [13]. In this method, each block is 

Table 1. Experiment results for the delay calculation of different paths 

Path composition Length Predicted 

delay (ns) 

EDA tool  

delay (ns) 

Error 

RWWBWWR 7 0.326 0.324 0.62% 

RWWWWWWBWWWWWWR 15 0.667 0.662 0.76% 

RBWWBWWWBWWWWBWWWWBWWWBWWBR 27 1.005 0.997 0.80% 

RBWWBWBWBWBWWBWWBWWBWBWBWWBR 27 0.814 0.808 0.74% 

 

Figure 4. Comparison between the predicted delays by the 

proposed estimation method and commercial EDA tool 



characterised and its internal logic removed, as we do for the 

switch box, and only make its relevant peripheral model 

available for a hierarchical timing analysis. This method has 

some resemblance to the method proposed in this paper, 

However, the crucial difference is that HTA is applied to ad-

hoc designs and the peripheral model is extracted for each 

block in each design. Additionally, the logic and physical 

synthesis and timing analysis at the higher level is still 

performed, i.e., ad hoc wires do get created and must be 

analysed; only the internals of block level designs is 

eliminated for the purpose of efficiency. In the method 

proposed in this paper, the timing models are extracted as a 

onetime effort and no new wires (functional or 

infrastructural) gets created.  

Research effort has also been focused on clocking 

strategies specifically tailored for NoC designs  [14]–[16]. 

These methods do not address the physical composition of the 

NoC in terms of hardened SBs to create valid predictable 

designs. 

SiLago’s composition by abutment is inspired by the 

Mead-Conway methodology [17] that later evolved into what 

became known as silicon-compilation. The Cathedral series 

of synthesis tools from IMEC were prime examples of this 

style of design flow, also known as full-custom design flow. 

There are two key innovations that takes the SiLago design 

flow beyond previous work: i) SiLago introduces the concept 

of synchoricity as the basis for making floor-planning and 

standardize composition by abutment among all SiLago 

blocks, like Lego bricks. ii) In SiLago, all metal level details 

are absorbed as part of SiLago blocks. This means that no ad-

hoc wires need to be synthesized; not even the infrastructural 

wires like power-grid, clocks, reset etc. This is fundamental 

to making synchoros designs predictable with post-layout 

accuracy and eliminate logic and physical synthesis. In the 

previous full-custom design flows, these infrastructural wires 

had to be synthesized anew for each design depending on the 

floorplan. 

V. CONCLUSION AND FUTURE WORK 

We have presented a scheme to synthesize arbitrary 

global NoC from a small set of GNoC SBs. The cost of GNoC 

is known with post-layout accuracy in linear time. This is 

envisaged as a critical problem in exploring the design space 

at chip level, where the interconnect cost is very dominant 

because wires are not scaling in proportion to logic and 

storage. The synthesized GNoC is a valid VLSI design that is 

timing clean. 

The experimental framework presented in this paper is 

proof-of-concept. It is being extended to also predict the 

energy cost. To some extent, this has been presented in [8] 

for other SiLago blocks. Another critical enhancement that 

we are working on is to make the synchoros GNoC designs 

generated by abutment to be also DRC clean. Rather than find 

and fix design rule violations in every design and design 

iteration, it is more productive to factor them into SiLago 

blocks, as a onetime effort, so that the emerging design is not 

just timing but also DRC clean. 
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