
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2021 IEEE

Synthesis of Predictable Global NoC by Abutment in

Synchoros VLSI Design

Jordi Altayó González*, Dimitrios Stathis, Ahmed Hemani

KTH Royal Institute of Technology, Electrum 229, 164 40 Kista, Stockholm, Sweden
{jordiag,stathis,hemani}@kth.se

Abstract— Synchoros VLSI design style has been

proposed as an alternative to the standard cell best design

style; the word synchoros is derived from the Greek word

choros for space. Synchoricity discretises space with a

virtual grid, the way synchronicity discretises time with

clock ticks. SiLago (Silicon Lego) blocks are atomic

synchoros building blocks like Lego bricks. SiLago

blocks absorb all metal layer details, i.e., all wires, to

enable composition by abutment of valid; valid in the

sense of being technology design rules compliant, timing

clean and OCV ruggedized. Effectively, composition by

abutment eliminates logic and physical synthesis for the

end user. Like Lego system, synchoricity does need a

finite number of SiLago block types to cater to different

types of designs. Global NoCs are important system level

design components. In this paper, we show, how with a

small library of SiLago blocks for global NoCs, it is

possible to automatically synthesize arbitrary global

NoCs of different types, dimensions, and topology. The

synthesized global NoCs are not only valid VLSI designs,

their cost metrics (area, latency, and energy) are known

with post-layout accuracy in linear time. We argue that

this is essential to be able to do chip-level design space

exploration. We show how the abstract timing model of

such global NoC SiLago blocks can be built and used to

analyse the timing of global NoC links with post layout

accuracy and in linear time. We validate this claim by

subjecting the same VLSI designs of global NoC to

commercial EDA’s static timing analysis and show that

the abstract timing analysis enabled by synchoros VLSI

design gives same results as the commercial EDA tools.

Keywords — Coarse Grain Reconfigurable

Architectures, Clock Tree Synthesis, VLSI design, SiLago

I. INTRODUCTION

Wires are scaling worse with technology, compared to

computation and storage as shown in Fig. 1a. It is also well

known that storage and interconnect dominate the cost

metrics [1] as shown in Fig. 1b. This is because of the

emergence of memory intensive applications especially in the

ML/AI category [2]. These arguments suggest that

interconnect cost should be factored in during the design

space exploration (DSE) at all three levels of chip-design

hierarchy: blocks, sub-system and chip. However, the

interconnect cost is not known until physical design has

happened. Many estimation techniques have been proposed

to factor in the interconnect cost, especially for NoCs,

however, these estimation techniques, especially at higher

abstractions, face two challenges: i) the estimation accuracy

is exponentially worse compared to the accuracy at lower

abstractions and ii) the impact of interconnect cost on overall

design cost becomes increasingly significant compared to the

*Corresponding author

impact at lower abstractions. The abstractions from highest to

lowest levels are: system, application, algorithms, RTL,

logic/gate, physical design, see [3], for more details.

A. Problem statement

To precisely define the problem being addressed in this

paper and how the contributions of this paper are intended to

be used, consider the abstract chip-level design space

exploration (DSE) loop shown in Listing 1.

In the DSE loop, an application is mapped to a chip in

terms of synchronous islands containing logic, storage, or

both, that communicate with each other over lobal NoC

(GNoC) and in general on latency insensitive basis. There are

three key problems in the DSE loop:

a) Creating new solution (create_new_solution on line 3)

in terms of deciding the number and content of the

synchronous islands and the global NoC that meets the

communication needs of these synchronous islands.

These solutions are abstract, the VLSI implementation

and post-layout area, latency, and energy are not known.

b) Implement the functionality mapped to synchronous

islands as VLSI design and know their post-layout

accurate costs. Floorplan the chip in terms of

synchronous islands with space for GNoC.

c) Implement the VLSI design of GNoC according to the

specification of GNoC created by step a) and the

floorplan constraints created by step b)

We observe that the loop shown in Listing 1 is expected

to deal with large designs of the order of 100s of million gates

and the loop is expected to potentially evaluate millions of

solutions. Synchoros VLSI design’s post-layout accuracy and

linear time complexity are essential for effective and efficient

Figure 1. Breakdown of the energy consumption [1][2]

Listing 1. Design space exploration example loop

0

50

100

150

200

250

300

45 nm 11 nm

E
n

er
g

y
 (

p
J)

64b 15

mm wire

64b 5

mm wire

64b

cache

register

file

64 b FPU

7% 3%

33%

33%

15%

8%

1%

DRAM Fetch

DRAM I/F

Fetch

coefficient

Fetch

activation

Transport

1. cost_of_best_solution = infinity;

2. LOOP

3. [Synchronous Islands, Global NOC] =

4. create_new_solution (Application);

5. create_new_solution(application);

6. cost_of_new_solution = cost of Synchronous Islands +

7. cost of Global NoC;

8. IF cost_of_new_solution < cost_of_best_solution THEN

9. cost_of_best_solution = cost_of_new_solution

10. best_solution = new_solution

11. END IF

12. END LOOP

DSE. The conventional state-of-the-art methods to estimate

cost-metrics sacrifice accuracy for speed. The option to do

logic and physical synthesis for millions of candidate

solutions is obviously not scalable. Synthesis of GNoC in

terms of SiLago blocks complements the research to improve

predictability of NoCs at architectural and algorithmic level

[4][5][6].

Composition of regional clock tree by abutment in a

synchoros design framework has been elaborated [7]; this

work has been presented at TAU 2021. A conceptual scheme

to create power grid by abutment has also been presented [3].

The focus of this paper is on synthesis of GNoC by abutment.

We next introduce the essential concepts of synchoros

VLSI design, as they are not widely known. This is essential

to concretely define the contributions and for understanding

the concepts and methods introduced in this paper.

B. Synchoros VLSI design

Synchoricity is analogous to synchronicity. In

synchronicity, time is uniformly discretised with clock ticks

to simplify the temporal and logical composition. In

synchoricity, space is uniformly discretised with a virtual grid

to simplify the spatial and electrical composition that is

technology compliant. Lego is a prime example of synchoros

design objects; all Lego objects are integer multiples of a

standard pitch and Lego studs are placed at these pitches to

enable composition by abutment. This enables infinite variety

of Lego structures to be built out of a finite set of Lego bricks

type. Synchoros VLSI design style objects are called SiLago

(Silicon Lego) blocks (SB). SBs, like their inspiration, the

Lego bricks, are designed to compose large VLSI designs by

abutment; no logic or physical synthesis is required. In this

paper, we will introduce a set of GNoC SBs, that enables

creation of arbitrary type and dimension of GNoC, simply by

abutment, and with knowledge of post-layout accurate cost-

metrics. We next introduce the three levels of hierarchical

synchoros design objects: SBs, regions and chips.

SiLago blocks are the atomic building blocks and their

salient properties are: a) they absorb all metal layer details,

i.e., absorb all inter-SB wires, as part of their design; all

implies functional wires like NoC, and infra-structural like

clock, reset, power grid etc. b) bring out the inter-SiLago

interconnects, like the Lego studs, at right place on the right

metal layer. As a result, when valid SB neighbours 2 are

placed on the grid, their interconnects align to create a larger,

valid VLSI design, c) SiLago blocks export micro-

architecture level operations in contrast to the boolean-level

operations exported by the standard cells, d) SBs are

characterized with post-layout data. Since, the intra-SB

details and the inter-SB details are known and characterized

with post-layout data, it is possible to create abstract models

for a design composed in terms of SBs and know the cost-

metrics with post-layout accuracy; see [8] for more details.

Regions are aggregates of SBs of the same type. In terms

of the DSE loop in Listing 1, the reader can think of region

instances as synchronous islands. For more details on regions,

see [7]. Instances of region communicate with each other over

GNoC and in general the communication can be latency

insensitive. We have proposed using a variant of GALS

protocol called GRLS [9].

2 Every SB type can abut with a sub-set of other SB types. These are

called valid neighbours.

Chips are aggregates of region instances or equivalently

synchronous islands. Figure 2 shows a visual depiction of a

synchoros VLSI Chip level floor plan. Multiple instances of

different types of regions are shown; we remind that region

instances are equivalent to synchronous islands in the DSE

loop in List. 1. GNoC SBs are also shown creating the GNoC

that connects the region-instances. Light pink shaded GNoC

SBs are switchbox type of SBs, and the dark pink shaded SBs

are wired, buffered, or registered SBs. Light shaded SBs in

region instances are Network Interface Units (NIUs) that

connect the region instance to the GNoC.

C. Contributions of this paper

1. A set of SBs types to create an arbitrary GNoC and distribute

a global clock tree (GCT) along with it.
2. Characterization and timing model of the GNoC SBs to

enable linear time and post-layout accurate timing

analysis of arbitrary GNoC composed from such SBs.

3. Synthesis algorithm to select the optimal mix of GNoC

SBs that fulfils the abstract GNoC specifications created

by the create_new_solution in the DSE loop in Listing 1.

4. Validation of the claim of linear time and post layout

accuracy of the cost-metrics of GNoC composed by

abutment of SBs.

The rest of the paper is organized as follows. In section II,

we introduce the GNoC SBs, their characterization, timing

model and synthesis of GNoC in terms of the SBs. In section

III, we present the experimental results and validate the

claim; see point 4 above. In section IV, we review the state-

of-the-art and differentiate the proposed method and justify

it. Finally, in section V, we draw conclusions and present a

list of enhancements that we are working on to go beyond the

results presented in this paper.

II. ANALYSIS AND SYNTHESIS OF SYNCHOROS GNOC

In this section, we introduce a set of GNoC SB types that

are sufficient to implement arbitrary type and dimensions of

GNOC. Each type of GNoC SB has sub-types to cater to

variations in dimensions (width) and functionality, i.e.,

different types of routers with varying dimensions of storage

for packets, commands, status etc. We also introduce the

timing model of the SBs to enable linear time, post layout

accurate timing analysis that we call higher abstraction static

Figure 2. SiLago floorplan example.

timing analysis or HASTA. Finally, we present a synthesis

algorithm to synthesize arbitrary GNoC in terms of an

optimal set of GNoC SB instances.

Besides GNoC fragments, the SBs also absorb fragments

of the GCT. As a result, both GNoC and GCT gets created by

abutment of these SBs. For brevity, we will only mention

GNoC but also imply GCT as well. We mention GCT, only

when arguments for GNoC, do not apply to GCT.

A. Abutable GNoC SiLago Blocks (SBs)

There are three types GNoC SBs to build NoC wires and

another type for switchbox and router logic. These blocks

propagate NoC wires as well as a global clock. Some of these

blocks also use the global clock besides propagating it. The

logical layout of the GNoC in terms of these SiLago blocks

can be expressed as a simple grammar presented in Listing 2.

Every GNoC instance in a synchoros VLSI design is a

sentence that fulfils this simple grammar. Every GNoC SB

sub-type is characterized, and this data is then used for the

timing model that is used by HASTA. Each sub-type of

GNoC SB is also made abutment ready and the way wires are

laid out ensures that technology design rules are also fulfilled

in the design created by abutment. We next elaborate the

function, design, and dimensions of these GNoC SBs.

Wire (W) GNoC SB: The plain wire SB, represented by token

W in Listing 2 and shown in Fig. 3.1, is the simplest and used

to create wires of length that allows the slew rate to

deteriorate within the lower bound of slew-rate spread that

the technology rule allows. Note that the drivers of these

wires and their strength is known because the driver is also

part of some pre-characterized SB that drives these wire SBs.

In general, the need to buffer the GNoC wires is similar, with

a small spread in slew rate variations. However, the GCT

wire, shown as red lines in Fig. 3, could have larger variations

because it is expected to be more heavily loaded. For this

reason, the wire (W) GNoC SiLago blocks (Fig 3.1) come in

two sub-types: one in which the GCT fragment is buffered

and the second in which, its non-buffered, as shown in Fig

3.1.

Buffer (B) GNoC SB: The buffered wire SB, represented by

token B in the Listing 2 and shown in Fig. 3.2 is used to

restore the slew rate to a healthy value within the slew rate

spread that the technology rule prescribes. In this SB, all

wires are buffered.

Register (R) GNoC SB: Finally, the registered wire SB,

shown as token R in Listing 2 and depicted Fig. 3.3, is used

to pipeline the GNoC wires, should the propagation delay

through the wire and buffered SBs become longer than the

global-clock period. It should be noted that this applies only

to the GNoC wires but not to the GCT. For the GCT wire, it

is essential to have the minimum distance between buffers

that is less than half the clock period of the maximum

intended global clock frequency.

Switch/Router (S) GNoC SB: The GNoC switch/router,

denoted as S in Listing 2, and conceptually depicted in Fig.

3.4. Depending upon the type of Switch/Router, the

dimension of storage etc. there will multiple sub-types of S

type GNoC SBs. However, all of them would be synchoros

and composable with other GNoC SBs by abutment.

Network Interface Unit (N) GNoC SB: The N type of GNoC

SB is placed in region instances, see section I.B. N SBs are

not shown in Fig. 3 because their instantiation is part of

region instance synthesis that is not the focus of this paper.

Synchoricity of GNoC SBs constraints three aspects of VLSI

design of these SBs. i) Width varies according to the content;

width of W SBs would be least and S SB the maximum. All

widths will be an integer multiple of the pitch of the virtual

grid as shown in Fig. 3. ii) Height is the same for SBs that

carries the same number and type of wires and is also an

integer multiple of the pitch of the virtual grid. iii) SBs that

carries the same number and type of wires form a family of

GNoC SB sub-types that are valid neighbours, and they all

bring out their wires on the periphery at right place and right

metal layer to enable composition by abutment. The layout of

the wires is also controlled to comply with the technology

design rules.

B. Characterization, Timing models and Analysis

In this section, we elaborate how these SBs are

characterised, and the characterization data used to create

timing models that predict post-layout accurate timing in

linear time and also how these models are made PVT and

OCV rugged.

Characterization

As mentioned in the section I.B, a synchoros VLSI design

is composed by abutting the pre-characterized, hardened SBs.

This implies that all instances of a specific SB sub-type will

be identical in their VLSI design. For this reason,

characterization is a onetime time effort for each SB sub-type,

as is the case with characterizing standard cells.

Characterization distinguishes between two kinds of SBs:

the ones with active logic (S, R and B) and the others that

are passive with plain wires (W). The characterization of the

passive wire SBs is simple, it encapsulates the length of the

wire that is an integer multiple of the pitch of the synchoros

VLSI design. This length of wire translates into capacitive

load for the active SBs that drives the plain wire (W) SBs.

Every GNoC timing path is divided into segments. Each

segment starts and ends with an active [R|S|B] SB with up

to K intervening passive W SBs; K depends on the technology

and the width of the SBs. Since there are three active SB

types, there are 9 possible combinations of source and

Figure 3. Abutable GNOC SBs used in the GNoC edges

Listing 2. The GNoC floorplan grammar

1. // Tokens

2. S: Switch Box/Router

3. W: Plain Wires

4. B: Buffered Wires

5. R: Registered Wires

6.

7. // GNOC grammar

8. GNOC: S Wires GNOC |

9. S

10. Wires: {W, B, R}+

destination to create 9 types of segments. For each segment

type, one characterization table is built with two dimensions:

range (L) of input slew rates from low to high and the load

corresponding to the number (0 to K-1) of intervening W SBs.

In our experiments, we have used K=L=10. This implies 9

tables of size 1010 cells. Since the SBs are modest in their

complexity, invoking static timing analysis (STA) 900 times

takes only 1 or 2 hours, and even that is a onetime effort.

While each segment instance of GNoC has 900 possible

variants, a GNoC will be a cascade of 100s of such segments

making the design space of GNoCs virtually infinite.

However, it is possible to analyse any instance from among

the infinite variants of GNoC in linear time and with post-

layout accuracy. This is because, if there are N segments of a

GNoC, HASTA just needs to do N look ups in one of the 9 2-

dimensional tables.

To use the two-dimensional table, HASTA first decides

which of the 9 table to use depending on the source and

destination active block combination. The column is decided

by the intervening number of wire blocks. The row is selected

based on the input slew rate. If it is not an exact match, then

there are two options. One is to take a pessimistic view and

use the next row with worse slew rate for setup-checks and

better slew rate for hold checks. The second option is to

consider the two rows corresponding to the two closest slew

rates are selected and perform linear interpolation. A third

option is to increase L to improve accuracy.

The discussion above was focussed on data wires.

However, from a circuit perspective, the global clock wires

are also treated similarly and lends to similar characterization

and timing analysis. This allows HASTA to know the latency

and skew in the clock propagation. Additionally, if the PLL

specifications are known, HASTA can be supplied with the

jitter information to factor the jitter in its analysis. In essence,

HASTA can deal with timing analysis of global clock tree

with the same degree of accuracy as the conventional EDA

tools. A method to synthesize and analyse regional clock tree

(RCT) in synchoros VLSI design is built on similar (not the

same) principles and has been rigorously validated against the

commercial EDA tools [7].

HASTA, like the conventional STA, also needs to analyse

the flop-to-flop timing in GNoC to check for the following

violations: a) setup, b hold, c) combinational delays greater

than one clock-period and d) unbuffered clock wires greater

than half a clock period of highest intended global clock

frequency. Any flop-to-flop timing path is a cascade of the

900 types of segments discussed above.

The flop-to-flop timing path analysis needs to distinguish

between two cases: forward and backward paths. In a forward

path, the clock and the data wires move in the same direction

and the positive skew has the effect of stretching the clock

period. The reverse is true for the backward path in which the

clock and data move in the opposite direction.

OCV and PVT

HASTA, like the conventional STA in the EDA tools

needs to factor in the PVT and OCV. This is naturally handled

because the timing models that HASTA uses are based on

data extracted from STA that derates the calculated value for

the worst case and the best case. The two-dimensional table-

based timing models discussed in section II.a have two

variants, one for the best and the other for the worst case.

When checking for the hold violations, the min delay table is

used and for the setup violations, the max delay table is used.

In essence, when HASTA declares a GNoC path to be

timing clean, it is done with same level of rigour and accuracy

as the conventional STA tools. The difference is that HASTA

works at higher abstraction of 900 types of pre-characterized

segments and the timing of arbitrary GNoC is composable in

terms of the timing models of these segments.

C. The GNoC synthesis algorithm

In this section, we present an algorithm for the synthesis of

GNoC. The synthesis algorithm is presented in Listing 3.

The lowest cost solution is to realize the GNoC links is to

use just the plain wire (W) SBs, provided that the max

frequency and slew rate constraints are met. If these

constraints are not met, the next best option is to use buffered

wire (B) SBs. The B SBs are added in increments of one in

successive attempts. These blocks are evenly placed. The first

attempt is to place a single B SB in the middle of the link. If

that does not fulfil the requirement, it is removed (line 7) and

two buffers, placed at equidistant, are inserted. Adding

buffers will lower latency, reduce the slew rate but increase

the power consumption. However, allowing slew rate to

deteriorate, even if it is within the technology design rules

range, will make slower transitions, and increase the crow-

bar current that will increase power consumption.

If the buffered wire SBs fail in meeting the frequency

constraint, the synthesis algorithm, turns its attention to using

the registered wire (R) SBs, to pipeline the GNoC wires. The

synthesis algorithm begins by inserting a single register and

then each registered segments is synthesised using the plain

wires and/or buffered wired SBs as described above. If a

single register is insufficient, the synthesis algorithm will

increment the registered wire (R) SBs successively and as

with the B blocks, placing them evenly; this of course

requires eliminating the previously inserted R and B blocks.

In essence, the synthesis algorithm attempts to find the

lowest cost solution and if that does not meet the constraints,

it successively adds more expensive SBs, first B and then the

R SBs.

The synthesis algorithm for GCT, in general, requires

dealing with cyclic graph. In our present, proof-of-concept,

design framework, we simplify the problem by cutting the

loop to create an acyclic graph. The principal constraint on

GCT is to use buffered (B) and plain wire (W) SBs, such that

the max distance between neighbouring B SBs is less than

half the distance of the max clock frequency of GCT. Once

Listing 3. GNoC synthesis algorithm

1. cost_of_best_solution = infinity;

2. current_solution = “ALL WIRES”

3. LOOP

4. | IF is_valid(current_solution) THEN

5. | break;

6. | IF not (WIRE_BLOCKS ∈ current_solution) THEN

7. | | current_solution =

8. remove_buffers(current_solution);

9. | | current_solution =

10. insert_registers(current_solution);

11. | ELSE

12. | | current_solution =

insert_buffers(current_solution);

13. | END IF

14. END LOOP

this is achieved, the slew rate is checked and if required,

additional B SBs are added.

III. EXPERIMENTS AND RESULTS

In this section, we present proof-of-concept experimental

results to validate the claims a) that it is possible to create

GNoC link from a small set of pre-design GNoC SBs. AND

B) the timing is known with post-layout accuracy.

The experimental setup involved using EDA tools to

create the timing models and to validate the GNoC designs

created by abutment and 40 nm technology library.

Three GNoC wire SBs and one switchbox SB were

designed. The switchbox SB is a dummy switchbox with flop

interface to mimic an arbitrary switchbox. The

characterization of internals of switchbox is also predictable

and has been covered by [8]. In this paper, the focus is on

building and validation of the GNoC links. Including the

delays of a specific switchbox/router will simply add a fixed

offset in terms of physical design implementation.

To validate the claim, we created synthetic statements

based on the grammar listed in Listing 2. These are shown in

Table 3. A GNoC VLSI design was constructed

corresponding to the four cases by abutting the SBs that

corresponds to the sequence of letters in the GNoC sentence.

The composite VLSI design created by abutment was

analysed using the timing models discussed in section II.C

and also by the commercial EDA tool’s STA engines. This

analysis was done for setup checks. As can be seen, the value

predicted by the GNoC SB timing models is in pretty good

agreement with the values predicted by the EDA tools. Figure

4 shows the results of the timing analysis on the last path of

Table 3. The x-axis represents the buffer stage and on the y-

axis, arrival times and delay are plotted for the results

obtained with our method versus the results obtained by the

commercial EDA tool. The figure also shows the arrival time

comparison between the HASTA and EDA STA. The

difference is less than 1%. The cause for the slightly

pessimistic but safe results is that when there is not an exact

match with the slew rate entry, we used the closest worse slew

rate. Using an interpolation of two nearest slew rates and/or

increasing the number of slew rate entries would further

reduce the error.

The results for the hold-check are not shown because, it

is in principle the same method, it just involves using a

different characterization table.

IV. STATE OF THE ART

The NoC research community has richly addressed the

challenge of predictable NoC design with quality of service

(QoS) guarantees [4][5][6], However, these research

minimize the uncertainty at architectural and algorithmic

level and do not factor in the physical design when the actual

delay in wires become known. The method proposed in this

paper complements these research by eliminating the

physical design uncertainty.

Bertozzi et al. presented a NoC library called xpipes [10]

that consists of soft macro-like blocks that can be used to

build arbitrary GNoC designs. It is important to note that this

library does not handle the clocking of the NoC and that task

is left to the physical design. Later, the same group at Univ.

Of Ferrara along with Teklatech A/S in Denmark, developed

the iNOC approach, where a vertically integrated approach of

predictable NoC design was attempted. In this framework,

starting with a process graph annotated with average traffic

on the edges, a floor planning tool factors in the traffic cost

while doing floor planning. However, it still relies on

backend synthesis to do the final design. In contrast, the

synchoros VLSI design, eliminates the logic and physical

synthesis and enables creation of arbitrary GNoCs simply by

abutment and to know the costs with post-layout accuracy.

Further, the significance of factoring in physical design

during NoC synthesis received boost when a special session

was organized in NOCS 2020 by Chris Batten and Mike

Taylor on “Physical Design Issues for NoCs”. This session

did bring into focus the need to keep physical design into

focus but did not offer any method to factoring in physical

design into NOC synthesis as is proposed in this paper.

Dally et al. in their 2013 paper listed physical composition

of NoC based on pre-characterised blocks as one of the

required steps in moving towards 21st century EDA tools

[11]. This vision paper highlighted the need for a physical

regularity in VLSI that would lower the engineering costs of

new designs. The synchoros VLSI design framework has

similar goals and goes beyond [11] in that it uses synchoros

design objects to not just make physical design process

simpler but also empower higher abstraction synthesis as

envisaged in the DSE loop in Listing 1 and proto-tool for

application level synthesis built on this principles [12].

Moreover, Dally et al. [11] do not talk about composing NoC

or its analysis and synthesis in terms of SiLago like blocks.

Commercial EDA tools also provide hierarchical timing

analysis (HTA) capability [13]. In this method, each block is

Table 1. Experiment results for the delay calculation of different paths

Path composition Length Predicted

delay (ns)

EDA tool

delay (ns)

Error

RWWBWWR 7 0.326 0.324 0.62%

RWWWWWWBWWWWWWR 15 0.667 0.662 0.76%

RBWWBWWWBWWWWBWWWWBWWWBWWBR 27 1.005 0.997 0.80%

RBWWBWBWBWBWWBWWBWWBWBWBWWBR 27 0.814 0.808 0.74%

Figure 4. Comparison between the predicted delays by the

proposed estimation method and commercial EDA tool

characterised and its internal logic removed, as we do for the

switch box, and only make its relevant peripheral model

available for a hierarchical timing analysis. This method has

some resemblance to the method proposed in this paper,

However, the crucial difference is that HTA is applied to ad-

hoc designs and the peripheral model is extracted for each

block in each design. Additionally, the logic and physical

synthesis and timing analysis at the higher level is still

performed, i.e., ad hoc wires do get created and must be

analysed; only the internals of block level designs is

eliminated for the purpose of efficiency. In the method

proposed in this paper, the timing models are extracted as a

onetime effort and no new wires (functional or

infrastructural) gets created.

Research effort has also been focused on clocking

strategies specifically tailored for NoC designs [14]–[16].

These methods do not address the physical composition of the

NoC in terms of hardened SBs to create valid predictable

designs.

SiLago’s composition by abutment is inspired by the

Mead-Conway methodology [17] that later evolved into what

became known as silicon-compilation. The Cathedral series

of synthesis tools from IMEC were prime examples of this

style of design flow, also known as full-custom design flow.

There are two key innovations that takes the SiLago design

flow beyond previous work: i) SiLago introduces the concept

of synchoricity as the basis for making floor-planning and

standardize composition by abutment among all SiLago

blocks, like Lego bricks. ii) In SiLago, all metal level details

are absorbed as part of SiLago blocks. This means that no ad-

hoc wires need to be synthesized; not even the infrastructural

wires like power-grid, clocks, reset etc. This is fundamental

to making synchoros designs predictable with post-layout

accuracy and eliminate logic and physical synthesis. In the

previous full-custom design flows, these infrastructural wires

had to be synthesized anew for each design depending on the

floorplan.

V. CONCLUSION AND FUTURE WORK

We have presented a scheme to synthesize arbitrary

global NoC from a small set of GNoC SBs. The cost of GNoC

is known with post-layout accuracy in linear time. This is

envisaged as a critical problem in exploring the design space

at chip level, where the interconnect cost is very dominant

because wires are not scaling in proportion to logic and

storage. The synthesized GNoC is a valid VLSI design that is

timing clean.

The experimental framework presented in this paper is

proof-of-concept. It is being extended to also predict the

energy cost. To some extent, this has been presented in [8]

for other SiLago blocks. Another critical enhancement that

we are working on is to make the synchoros GNoC designs

generated by abutment to be also DRC clean. Rather than find

and fix design rule violations in every design and design

iteration, it is more productive to factor them into SiLago

blocks, as a onetime effort, so that the emerging design is not

just timing but also DRC clean.

VI. ACKNOWLEDGEMENTS

Supported by CREST II project funded by Vinnova, Sweden.

VII. REFERENCES

[1] P. Kogge and J. Shalf, “Exascale computing trends P.

Kogge et. al., “Exascale computing trends: Adjusting to the

‘new normal’ for computer architecture,” Comput. Sci. Eng.,

vol. 15, no. 6, pp. 16–26, 2013.

[2] “Domain-Specific Memory.” https:// semiengineering

.com/domain-specific-memory/ (accessed Jun. 11, 2021).

[3] A. Hemani et. al, “Synchoricity and NOCs could make

Billion Gate Custom Hardware Centric SOCs Affordable,”

IEEE/ACM NOCS’17, pp. 1–10, 2017.

[4] S. Murali et al., “Synthesis of Predictable Networks-on-

Chip-Based Interconnect Architectures for Chip

Multiprocessors,” vol. 15, no. 8, pp. 869–880, 2007.

[5] B. Grot, J. Hestness et. al, “Kilo-NOC: A heterogeneous

network-on-chip architecture for scalability and service

guarantees,” Proc. - Int. Symp. Comput. Archit 2011.

[6] D. Rahmati et. al, “A method for calculating hard QoS

guarantees for NoC,” IEEE/ACM ICCAD '2009.

[7] D. Stathis et. al, “Regional Clock Tree Generation by

Abutment in Synchoros VLSI Design,” arXiv Prepr., no.

arXiv:1910.11253, 2019.

[8] S. M. A. H. Jafri et. al , “SiLago-CoG: Coarse-Grained

Grid-Based Design for Near Tape-Out Power Estimation

Accuracy at High Level,” in Proc. of IEEE ISVLSI, 2017.

[9] J. M. Chabloz and A. Hemani, “Low-latency maximal-

throughput communication interfaces for rationally related

clock domains,” IEEE Trans. VLSI. Syst. 2014.

[10] D. Bertozzi and L. Benini, “Xpipes: A network-on-chip

architecture for gigascale systems-on-chip,” IEEE Circuits

Syst. Mag., Jun. 2004.

[11] W. J. Dally et. al., “21St Century Digital Design Tools,”

in Proceedings - Design Automation Conference, 2013.

[12] S. Li et. al., “System level synthesis of hardware for DSP

applications using pre-characterized function

implementations,” in IEEE/ACM/IFIP ISSS+CODES), 2013.

[13] P. Gandhi et al., “Hierarchical Timing Analysis: Pros,

Cons, and a New Approach.” www.cadence.com (accessed

Dec. 09, 2020).

[14] J. Öberg, “Clocking Strategies for Networks-on-Chip,”

in Networks on Chip, Kluwer Academic Publishers, 2005.

[15] D. Mangano et al., “Skew insensitive physical links for

network on chip,” 2006.

[16] T. Bjerregaard et. al., “A scalable, timing-safe, network-

on-chip architecture with an integrated clock distribution

method,” Proc. DATE’2007..

[17] C. Mead and L. Conway, Introduction to VLSI Systems.

USA: Addison-Wesley Longman Publishing Co., Inc., 1979.

