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Previous studies on writing and understanding programs presented evidence that programmers beyond a

novice stage utilize plans or plan-like structures. Other studies on code composition showed that learners

have difficulties with writing, reading, and debugging code where interacting plans are merged into a short

piece of code. In this article, we focus on the question of how different code-composition strategies and the

familiarity with code affect program comprehension on a more abstract, i.e., algorithmic level. Using an eye-

tracking setup, we explored how advanced students comprehend programs and their underlying algorithms

written in either a merged or abutted (sequenced) composition of code blocks of varying familiarity. The ef-

fects of familiarity and code composition were studied both isolated and in combination. Our analysis of the

quantitative data adds to our understanding of the behavior reported in previous studies and the effects of

plans and their composition on the programs’ difficulty. Using this data along with retrospective interviews,

we analyze students’ reading patterns and provide support that subjects were able to form mental models

of program execution during task performance. Furthermore, our results suggest that subjects are able to

retrieve and create schemata when the program is composed of familiar templates, which may improve their

performance; we found indicators for a higher element-interactivity for programs with a merged code com-

position compared to abutted code composition.
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1 INTRODUCTION

Programming is a multi-faceted skill. It is widely agreed that programming is more than code
writing and encompasses other essential skills such as program comprehension [25, 38, 42, 73,
74], designing, and testing [80]. The aspect we focus on in this article, program comprehension,
is emphasized in multiple pedagogical approaches to introductory programming [31, 35, 48, 62,
81], but is also relevant for experts such as professional software developers [34, 69]. Previous
studies explored distinct aspects of program comprehension [4, 5, 37, 54, 60] and how students
move from textual elements to higher levels of abstraction, and how elements in the program
represent overarching goals. Common to all is the notion that comprehension can be described as
the development of a (subjective) mental representation of the program [61, p. 66].

Research on program comprehension is heavily influenced by research on human cognition,
especially Chunking [12, 45] and Schema Theory [58], which describes how students deal with a
large number of concepts and integrate them to form a mental model of the dynamic aspects of
program execution.

Central to comprehension is the conceptualization of plan-schemata, which was introduced
in early Computing Education Research (CER) studies (e.g., References [56, 65–67]). Plan-
schemata serve as a “library of stereotypical solutions to problems as well as strategies for coor-
dinating and composing them” [65, p. 850]. Throughout this article, we refer to the following
terminology:

• Plan-schemata describe (mental representations of) typical solutions to problems, such as
finding the largest number in a field or a guard protecting a code section from execution [67].
• (Standard) Plans are realizations of a plan-schema in a programming language and there-
fore refer to code sections. What makes a plan standard varies based on instruction and
context. In this work, we consider plans such as guard, average, counter, sentinel, as exam-
ples of standard plans, extracted from Soloway and Ehrlich [67].
• Tailored plans, following the definition of Soloway, refer to modified plans, e.g., using a
FindMaximum-plan on an array while storing the index of each candidate [65, p. 856].
• Unplan-like code refers to code sections that do not correspond to any plan-schemata.

Literature on how students compose code sections has described several strategies students
use: a plan-composition strategy [65]. For example, students might sequence (abut) plans, where
plan execution is independent or one plan output serves as input to the following plans. Another
strategy is to merge plans in one code section, where plan execution is interleaved with other plans.
An example would be FindMaximum-plan and a FindMinimum-plan sharing the same loop code.
It has been reported that students are more likely to produce flawed code if they use merged plan-
compositions [16, 67], but consider it to be “better” regardless [17]. It has been argued [15] that
sequenced programs may be less difficult to comprehend than merged ones due to lower element
interactivity [72], i.e., plans that need to be simultaneously processed by learners. Therefore, it
stands to reason that sequenced composition is beneficial not only for code writing [17], but also
for comprehension.

We are interested in whether there is a direct influence of plan-schemata and the composition of
code sections on code comprehension.While a positive effect of plans in programming, as opposed
to non-familiar code, was reported before (see, e.g., Reference [67]), there is no direct investiga-
tion of the effects of plans, tailored plans, unplan-like code, and the composition of such code
sections on learners’ comprehension behavior. To alleviate this gap, we conducted a study with
a purposive sample of participants carefully selected to ensure they had plan-schemata at their
disposal. Combining eye-tracking and retrospective interviews, we studied the following research
questions:
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• RQ 1: How does the availability of plan-schemata affect program comprehension? Based on
the literature, we hypothesized that plans are faster to understand than tailored plans, and
these are faster to understand than unplan-like code.
• RQ 2: How does the composition of code sections affect program comprehension? Based on
the literature, we hypothesized that merged code sections—as opposed to sequenced code
sections—are more difficult to comprehend. They would require simultaneous processing of
all involved sections and hence resulting in more switches between different sections. Fur-
thermore, we expect that these switches impact the time it takes to comprehend a program.

The contribution of this article is threefold: First, we provide insights into how the process of
program comprehension can be affected by plan-schemata. Second, we investigate how the com-
position of such solutions affects program comprehension. We do so by using innovative investi-
gation methods using eye-tracking data. Instead of focusing on saccades and transitions between
keywords or elements of syntax, we focus on more meaningful chunks of information by adopt-
ing plans as the unit of measurement. This methodology facilitates the analysis, as it requires
less accurate eye-tracking methods and provides more meaningful information about the program
comprehension process. Consequently, our third contribution is a setup for a study design: Using
the model-building assumption (see Section 3.4) and its verification, it allows us to apply a com-
bination of non-invasive sampling of high-quality eye-tracking data enriched with insights from
retrospective interviews [18].

2 RELATED WORK

Plans. Research in the 1980s showed that most of the novices’ difficulties originated not from
syntax errors, but from difficulties in structuring interconnecting parts of the program, or “putting
the pieces together,” i.e., composing and coordinating components of a program [65, 66, 68, 70]. In-
spired by Schema Theory [58], Soloway and colleagues proposed a novel perspective to investigate
difficulties in programming instruction: They argued that “learning to program amounts to learn-
ing how to construct mechanisms and how to construct explanations” [65]. The building blocks
of programming expertise are plans, essentially schemata in the programming domain, which can
be further adapted to solve similar problems using what Soloway described as tailored plans [65,
p. 856]. Differences in programming expertise could be attributed to experts having built up large
libraries of stereotypical solutions to problems as well as strategies to use them. Rist [56] showed
that when schemata are available, both novices and experts resort to higher-level strategies, mov-
ing from abstract plans to concrete code (top-down). However, when schemata are not available,
both novices and experts resort to a bottom-up strategy.

Program comprehension. Various studies provide evidence that programming skills are orga-
nized as a hierarchy [11, 25, 38, 39, 42, 73, 74], where students progress from reading to tracing,
summarizing, and finally writing code. Activities involving some of such skills have been generally
described as program comprehension tasks [30, 47, 48, 52], i.e., any activity that supports an indi-
vidual to construct his or her mental model of a program by interacting with an artifact representing
the code [31]. The BRACElet project [10] findings suggest that a distinction between novices and
experts is the ability to abstract from the code and summarize it into a concise description of the
program goal and that this ability also correlates positively with code writing skills.

Program comprehension models, such as Pennington’s model [54, 55] and the Block Model [60,
61], often emphasize the distinction between textual elements of the code and more abstract repre-
sentations of goals, such as plans. Such models describe a mental model approach to represent the
dichotomy between code and abstractions representing program execution and the goals of parts of
the program.Wiedenbeck and Ramalingam [79] show that different programming behaviors could
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lead to different mental representations. For example, novices comprehending object-oriented pro-
grams tend to develop strong mental representations of the goals of programs’ pieces, but weak
in terms of data flow and superficial features of the program. Novices, however, develop stronger
mental representations of surface features of the code when comprehending procedural programs.

Plan-composition strategies. Plan and goals analysis decoupled the strategies used to solve a
problem from its concrete code representation, allowing the comparison of different solutions
across programming languages and freeing researchers from the minutiae and specifics of each
programming language. Theoretically, plans would allow comparing different problems (and their
solutions) based on the similarity of their plan-goal structure [65]. However, there are different
ways to “glue together” these plans—a plan-composition strategy that will have a impact on the
actual code produced [65]. In general, research has identified three main plan-composition strate-
gies [65, 70]: Abutted or sequenced plan-composition, where plans are presented in sequence, one
after the other; Nested plan-composition, where one plan completely surrounds another plan; and
Merged plan-composition, where at least two plans are interleaved.

Plan-composition strategies play a crucial role in learning to program. Some studies suggested
that students find merged or interleaved programs hard to write or comprehend [19, 65, 70].
There is also evidence that students wrongly concatenate plans instead of merging them and
frequently struggle with plans that interact in complex ways [24]. Students sometimes read
merged plans as if they were composed sequentially [26], and there is evidence that students’
plan composition strategy may lead them to write defective code [16]. Also, there is some evi-
dence favoring a sequenced-plans approach, which may lead to better outcomes when writing
programs [66].

Eye-tracking. A pioneer study using eye-tracking in program comprehension was presented by
Crosby et al. [13] in 1990. In eye-tracking studies, participants usually work in a highly controlled
environment while their eyes are being tracked via an infra-red sensor, which allows computing
what their eyes focus on. However, it remained a rarely used methodology [50], even though it
can provide insights into processes that are hard to archive using other methods. Just and Car-
penter [33] suggest that fixations of the eye indicate cognitive processing and that gaze duration
reflects comprehension processes. Recent empirical studies showed connections between cognitive
demand and gaze duration [9] and elaborated how other eye-tracking metrics can be used to mea-
sure cognitive load [82]. Because of its non-invasive character and the rich insights eye-tracking
data can generate, we chose eye-tracking to investigate our research questions.

Previous eye-tracking studies investigated aspects of program comprehension [50, 63]. Differ-
ences in natural language and code comprehension were investigated using eye-tracking methods
to explore successful reading strategies [6, 57] and strategies to identify bugs [64, 75, 76]. Jbara
and Feitelson [32] found that programmers spent less time on repeated code, indicating that the
effects of familiarity affect their reading behavior. Studies used the time spent on input-examples
to suggest that programming patterns may play a role in solving algorithmic problems [51]. Abid
et al. divided code into sections fulfilling a small purpose and leveraged those to compare code
summarizing behavior of novices and experts [1]. These code sections, however, did not neces-
sarily have to be familiar to participants and therefore did not qualify as plans. Peitek et al. [53]
recently found that linearity of code (e.g., method calls vs. in-line code) and semantic cues have a
more significant impact on code reading order than experience and comprehension strategy. Our
work continues to investigate this trend in eye-tracking studies, but instead focusing on how the
familiarity of code sections and their composition, as opposed to surface-text features, can impact
comprehension behavior.
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3 METHODOLOGY

For this study, we developed a set of programs based on theoretical considerations, designed
“tracing-tasks” based on these, and assessed different aspects of their quality in pilot studies (see
Section 3.2 and Section 3.3). We assumed that participants would develop a mental model of the
program while working on the first input and later use such mental model in subsequent input-
to-output conversions (see Section 3.4). This assumption allowed for a more robust analysis of the
eye-tracking data (see Section 3.5 and Section 3.6). We complemented the quantitative analysis
of the eye-tracking data by conducting and analyzing retrospective interviews [18] in which we
showed the participants a visualization of their gazes and prompted them to comment on it, using
deductive qualitative content analysis [43] (see Section 3.7).

3.1 Participants

By the nature of our research questions, participants were required to fulfill the following inclusion
criteria: (1) Non-novice status regarding programming and (2) demonstrated experience with writ-
ing programs in Java. This way, we ensured that participants possessed some plan-schemata. For
this, we used a purposive sample. To ensure that participants indeed had shown proficiency in pro-
gramming classes, instructors and teaching assistants were asked to recommend participants that
fit the inclusion criteria. We acknowledge that this skewed the sample towards high-performing
students. While this is in line with the sought expert status, we carefully reflect on this bias when
attempting to generalize results beyond the context of this study. Participation in this study was
compensated for according to the institutions’ standards for trial compensation.

Overall, we recruited 17 subjects for this study. All subjects were either graduate students or had
startedworking in the industry recently and possessed a CS degree. The age rangewas 22−29 years.
Four participants identified themselves as female (a similar ratio of the CS degrees’ population in
the participants’ institutions). We did not record any other demographic data.

3.2 Material

Most programs used in this study were used in previous studies [20–22, 40, 65] to cover a range of
difficulties. They reflect a variety of levels in which the sections of the code interact and options
to represent the programs in merged or sequenced code composition.

3.2.1 Description of the Programs Used in the Study. We used short programs to avoid unnec-
essary distractions that may confound the eye-tracking analysis later. Therefore, no program con-
tained checks for empty or invalid input. In each of our experiments, the participants were in-
formed about this and were assured that all inputs presented were valid and unambiguous. We
designed four pairs of programs with the goal in mind that the difficulty of understanding the
programs in a pair as well as the time to mentally simulating the programs in each pair should be
comparable—in Section 3.3, we discuss how we performed such evaluation. Variable names were
not obfuscated deliberately but did not carry semantic information, either.

To give a flavor of both sequenced and merged code-compositions, we describe Maximum
Count, Rainfall, and Omega in their sequenced version and the rest of the programs in their
merged version. A complete description of all programs is available in the Appendix (see Figure 5–
7). The first pair was Minimum Sum and Maximum Count, both consisting only of plans.

Minimum Sum (sequenced version): Given an array of integers, this program adds the
minimum of all elements to the sum of all elements and returns this value. For this, it uses two
(standard) plans realized as two separate for-loops: the first loop adds all numbers in the input,
the second computes the minimum value in the input. It then adds the sum to the minimum and
returns this value.
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Maximum Count (merged version): Given an array of integers, this program subtracts the
maximum of all numbers from the number of values divisible by three. For this, it uses two plans
merged into one for-loop. The first plan counts the numbers divisible by three in the input, the
second computes the maximum. It returns the difference between the maximum and the count.

The second pair was Rainfall and Rainfall Partner, both containing a tailored plan.

Rainfall (sequenced version): Given an array of integers, this program solves a modified
(and simplified) version of Soloway’s Rainfall problem [65] in which the aggregate of all negative
numbers up to the first occurrence of the number 999 is computed. For this, the program uses
three for-loops. The first loop creates a list containing all elements in the input up to the first
occurrence of the number 999. The second loop filters this list and produces a list containing only
the negative numbers. Finally, the third loop computes the sum of all elements in the filtered list
and returns this value.

Rainfall Partner (merged version): We designed this program to match Rainfall
concerning the plans used and the assumed difficulty to mentally simulate it. Given an array of
integers, this program subtracts all positive numbers starting from the first occurrence of 100. For
this, the program maintains a variable r (initialized with 100) and uses a single for-loop over the
input array. Inside this loop, the program executes an if-else-statement: If the first occurrence
of 100 is encountered, then it sets a flag and, from there on, always executes the else-branch.
In this branch, it checks whether the current number is positive; if so, then it subtracts it from r .
After the last iteration, the program returns the value of r .

The third pair was Omega and Balanced Subset, both containing unplan-like code.

Omega (sequenced version): This program was part of a solution for Ginat’s “Omega” prob-
lem [20, 21]. The task here is to find the maximum-distance pair of values in a given array such
that the left value is larger than the right value. To solve this task, the program proceeds in four
steps (see Reference [21] for details): The first step was implemented using a for-loop to greedily
compute the (indices of) a monotonically increasing sequence of entries in the input starting with
the last element in the input. The second step uses a for-loop to greedily compute the (indices
of) a monotonically increasing sequence of entries in the input starting with the first element in
the input. To reduce the tracing difficulty of this task, we presented to students the state of the
program before the second code section and asked them to compute the desired output from this
point onward. Preempting the discussion of the eye-tracking results, we mention already at this
point that our participants indeed did not look back (much) to the first section. The third code
section uses two nested for-loops for a synchronized scan over the two lists (see Reference [21]);
in this scan, the distances between the elements of each candidate pair are computed. The final
section then finds the maximum of those distances and returns it. In our implementation, the list
containing the indices of a monotonically increasing sequence (see above) was provided as the
input as well.

Balanced Subset (merged version): The program was part of a solution for a problem pre-
sented by Ginat and Blau [22] (see Figure 3).

The original problem is to find, for a given array A of zeroes and ones, the length of the longest
sub-array containing the same number of zeroes and ones. To match the task structure of the
Omega-problem discussed above, we also presented the participants with the result of the first
step of the algorithm. In this step, each entry A[i] was replaced by the excess or deficit of ones in
the original entry A[0 . . . i]. The participants were asked to consider the following code sections:
The first section uses a for-loop to find the index of the last occurrence of a zero in the “excess
array,” i.e., the length of a balanced sub-array starting at the beginning of the input. The second
section uses another for-loop to iterate over the “excess array” and, across each of the values
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Fig. 1. Visualization of material development: Left part: Program candidates including standard plans, tai-

lored plans, and unplan-like code were developed based on theoretical considerations. Upper right part: To

find inputs that took a similar amount of time to mentally simulate with the program, a high-level summary

of each program was handed to participants. The participants were then asked to compute the output of the

program. Lower right part: Participants were presented to all programs in either a merged or a sequenced

version and prompted to rank them according to the difficulty to comprehend them. This ranking was used

to confirm the theoretical considerations and mitigate differences within the program pairs.

encountered, record the longest distance to another excess entry with the same value. The third
section then returns either this maximum or the length of the longest sub-array starting at the
beginning of the input and ending with a zero, whichever is the larger value.

3.3 Pilots

Because the number of participants that can be recruited for an eye-tracking study is very limited,
the quality of the material used and the experimental setting is of paramount importance. Hence,
we assessed the quality of the material in multiple ways (see Figure 1 for an overview of our
process). Besides the assessment of the material that is presented here in detail, we also confirmed
the clarity of the instructions for the participants, the recording quality, and the experimental
environment using agreed-upon standards [63].

Assessing the difficulty to mentally simulate the process. We used the framework of Duran et al.
[15] to differentiate and evaluate the complexity and difficulty of comprehending programs (see
the left part of Figure 1). Program’s characteristics such as the kind of programming constructs
it manipulates, how instruction presented the behavior of such constructs to learners, and how
constructs are structured in the code define an absolute, learner-independent metric of program
complexity. Different learners will display distinct performances when comprehending a given pro-
gram based on their prior knowledge in the programming domain. Therefore, the same program
might yield different difficulties even when having the same complexity. For example, according
to the framework of Duran et al., comprehending a program that searches for the minimum value
in a given input array and a program computing the sum of all values stored in this input would
demand a similar cognitive effort from learners to be comprehended, providing learners’ have
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comparable expertise. However, mentally simulating these programs could lead to rather different
results, depending on their inputs. We thus conducted a pilot study to understand and compensate
for such effects.

In this pilot study, we aimed to understand how comparable were the processing times for sim-
ilar problems (see upper-right part of Figure 1). To estimate possible difficulties in the mental
simulation, we recruited four students that match the inclusion criteria; however, none of these
students participated in the final study. We presented each participant with high-level summaries
of sections discussed in Section 3.2.1. To avoid any unwanted effects such as misunderstanding the
program, no code but sub-goal labels were provided. For instance, a summary for the second code
section in the Balanced Subset problem was “Considering all elements in the input that have a re-
peated entry, calculate the maximum distance between the indexes of each repetition for all repeated
entries.” For each problem, consisting of several steps, the participants were shown a worked ex-
ample of how each step contributes to processing the input. Once a participant had provided the
correct answer for an example input and was confident to have understood the description, we
asked him/her to compute the results for 12 different inputs as quickly as possible. The time for
each task was measured.

We repeated this process, adjusting the input for the programs based upon feedback from previ-
ous rounds until wewere confident that all inputs were adequate and no clear difference in “tracing
time” could be detected between pairs of problems (which we added their corresponding code in
the next steps of the pilot) we intentionally designed to have similar complexity.

Assessing the difficulty of the programs. To assess the relative difficulty of the programs used in
our study, we performed another pilot study with 15 teaching assistants; none participated in the
final eye-tracking experiment (see lower left part of Figure 1). Eight of these rated the programs in
their merged form and seven rated the programs in their sequenced form. Both groups were asked
to rate the difficulty to comprehend the programs using a Likert scale (−7 to+7) while assuming the
difficulty of the Rainfall problem as the baseline (0). The instructions explicitly allowed programs
to be rated identically. We converted the ratings into rankings [27] and computed their inter-rater
reliability. Both groups had at least sevenmembers, therefore the approximation to the chi-squared
distribution was valid; we thus can interpret the p-values [36]. Kendall’sW showed a statistically
significant agreement in the rankings for both the sequenced (W = .71,p < .0005) and merged
(W = .87,p < .0005) versions.

The agreed-upon ranking of the sequenced versions of the programs was (in increasing order
of difficulty) Minimum Sum, Maximum Count, Rainfall, Rainfall Partner, Balanced Subset,
and Omega. For the merged versions, Maximum Count and Rainfall, as well as Balanced Sub-
set, changed their relative order. Therefore, no program was rated more than two ranks apart
from its intended pair. In each pair (averaged for all raters), the ranks of two programs differed
by strictly less than 1.5 ranks. Since this rating did not contradict the pairing described above, we
used (Minimum Sum, Maximum Count), (Rainfall, Rainfall Partner), and (Balanced Subset,
Omega) as companion programs.

The pilots confirmed the theoretical considerations: Programs we deemed to be more com-
plex were perceived as more difficult. Additionally, pairs of programs were perceived to be
on a similar level of difficulty. Furthermore, for sufficiently comprehended programs, the
“tracing-tasks” took a similar amount of time. Hence, differences within pairs of programs
may be attributed to code composition (merged/sequenced) or familiarity with parts of
code (plans).
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Fig. 2. Study design. Each participant was familiarized with an example before working on the programs. Be-

cause the last two programs contained a program section that was not relevant for the task, all participants

were presented a second example to familiarize themselves with this setting. Left part: Eye-tracking tasks

progressing from example programs, programs with plans, programs with tailored parts, and programs with

unplan-like code (from left to right). Programs in the upper part are presented in sequenced composition,

programs in the lower part are presented in merged composition. The order of plan-composition was ran-

domly assigned (C). Right part: Retrospective interviews. The order was randomized for each participant,

but the first two programs always consisted only of standard plans, the second two programs always con-

tained standard and tailored plans but no unplan-like code, and the last two programs consisted of all three

kinds of code sections.

3.4 Model-building Assumption

We built our study design on the following model-building assumption:

Model-Building Assumption: While performing the first input-to-output conversion for a pro-
gram, readers build a mental model of the program and utilize it on the subsequent tasks.

The model-building assumption, if found to hold, would allow an increase in the quality of eye-
tracking data by choosing a short but meaningful interval of eye-tracking data to study, where
participants were highly engaged with the intended process and nothing else. As part of our study,
we collected and analyzed data concerning validating this assumption.

3.5 Study Design

Our main study consisted of two phases (see Figure 2). In the first phase, participants were succes-
sively shown programs along with inputs and were asked to provide the output generated by the
program based on the input (see Figure 3). The programs were grouped as described in Section 3.2.
We randomized the order (merged-first or sequenced-first) within each pair of programs.

In their textbook on eye-tracking, Holmqvist et al. [29] warn that eye-tracking studies have
many confounding factors tied to individual characteristics. To avoid confounding human factors,
we thus used a within-subject design for our study. The independent variables were the code
composition (sequenced ormerged) and the familiarity of the code (plans, tailored plans, or unplan-
like code), while the dependent variables were derived from the time the participants’ eyes focused
on areas of interest and the number of transitions between certain areas.

In the second phase, participants were presented with a screen recording in which the traces of
their eye-tracking data were overlaid on top of the respective tasks they had performed during the
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Fig. 3. Areas of interest (AOIs) for the merged version of Balanced Subset.

first phase. They were prompted to comment on their behavior and were asked to describe their
behavior during prominent movement phases, such as switching between two code sections, for
a better understanding of the eye-tracking data. They were also prompted to comment on how
familiar the program felt and to summarize the program briefly.

Eye-tracking. The data was collected in two eye-tracking labs set up according to the recommen-
dations for collecting rich data by Holmqvist et al. [29, pp. 17–21].1 Both labs were equipped with
a state-of-the-art Tobii Pro Spectrum 300 Hz eye-tracker, using the Tobii Pro Lab as recording
software. We followed established procedures for seating the participant, calibrating the system,
and obtaining high-quality data [29, pp. 116–128]. Per standard procedure, only one participant
and a researcher were in the lab simultaneously; the researcher did not interact with participants
during the experiment.

To present the programs and their input, we developed a web application showing the mate-
rial, following recommendations regarding the placement of elements on the screen [63]. Figure 3
shows an example screenshot in which the areas of interest are highlighted.2 See Section 3.6.1 for
how the AOIs were chosen. This environment was in line with recommendations from Sharafi
et al. [63, pp. 3144–3155]. The input was presented in an indexed form at the top left corner of the
screen to avoid unnecessary attention pulled to that area [63, p. 3144]. An input field for entering
the result of the computation was always located at the top right corner. Depending on the length
of the program, up to three columns of code were rendered; we ensured that each block of code
was presented in one column only. The vertical spacing of lines and blocks of code was chosen
with the margins of the areas of interest for the eye-tracking analysis in mind while making the
code look natural, as seen in Figure 3.

Previous studies show that allowing participants to familiarize themselves with the environ-
ment is beneficial for the experiment [1]. We thus started each session with a phase in which the
participants could familiarize themselves with the software, hardware, and the type of tasks to be

1We collected the data in two-eye tracking labs, one lab at each participating institution.
2Note that these areas were not visible to the participants. Screenshots of all programs, including the used areas of interest,

can be found in the Appendix.
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performed. A researcher was present to answer questions related to both the application and the
task. In the first phase of each experiment, the participant was shown the six programs Minimum
Sum (sequenced), MaximumCount (merged), Rainfall (sequenced), Rainfall Partner (merged),
Omega (sequenced), and Balanced Subset (merged); within each pair of programs, the order was
randomized (see Figure 2). The participants were presented one program at a time with the option
to pause between the experiment, e.g., for drinking or if they felt tired.

For each program, we prepared a progression of input-to-output conversion tasks. To make
experiments comparable across participants, we limited the time allowed for each task. This limit
was derived from the average time needed to mentally simulate the process (see Section 3.3) plus
some extra time for comprehending the program in the first place. All programs were presented
with the instruction to process as many inputs as possible. The competitive subtext of this task
likely engaged the participants and triggered a comprehension process to solve the tasks as fast
as possible. To allow participants to relax and focus again, these instructions were repeated before
each program. This first phase of each experiment took 30 to 35 minutes per participant.

Interview Setup. After the first phase, we conducted semi-structured reflective interviews. Par-
ticipants were shown recordings of their gaze movements. For each program, they were asked in a
semi-structured interview to explain their thoughts and to comment both on what they did and on
the program they were working on. Gaze movements identified as interesting by the researcher
during eye-tracking were discussed to gather more detailed impressions. If participants did not
comment on their own recording, then we prompted them for each program to describe the pro-
gram as they understood it, briefly summarize it, and comment on aspects they found familiar or
unusual.

3.6 Analysis

In this subsection, we first present the analysis of the eye-tracking data. Then, we explain how we
coded and analyzed the qualitative data gathered during the retrospective interviews.

3.6.1 Eye-tracking. In line with standard eye-tracking methods, we analyzed fixation times for
areas of interest (AOIs). AOIs are non-overlapping portions of the screen defined by the re-
searchers and separated by sufficiently wide margins such that slight tracking inaccuracies do not
cause false-positive identifications of other AOIs [29, pp. 187–192]. Depending on the analysis (see
below), we defined the AOIs to encompass blocks of code or the area in which the input was pre-
sented. Participants were oblivious to both the AOIs and our analysis goals. As it is customary, we
analyzed the number of transitions between different AOIs and the dwelling time within each AOI.

Following established practice [29, pp. 140–143], we manually preprocessed the tracking data
to ensure no offset errors occurred for AOIs. To avoid misinterpretation due to spotty data, we
removed data traces with prominent gaps; in particular, we made sure that all data traces ana-
lyzed had tracking data for more than 80% of the time frame under inspection. These time frames
captured the time between first seeing an input and submitting the output (or the time limit was
reached). The duration of such a time frame ranged from several seconds to a few minutes.

In the following, we present the AOIs used in our analysis. By design, all programs shared a
property that each line contained a declaration, an assignment, or a control structure (see the
Appendix), so we could legitimately use the number of lines as a measure of a program’s length.
Thus, wherever possible, we sought to have AOIs containing the same number of lines of code. Be-
cause this was not always possible, we considered the normalized total dwelling time on each code
section (plans, tailored plans, or unplan-like code) by dividing the total time participants fixated
that section by its number of lines, as recommended by Sharafi et al. [63, pp. 3153–3154]. Doing
so, we were able to identify which code section attracted (relatively speaking) the most attention.
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Next, we present how these AOIs were used to investigate our research questions. We aimed
at designing the program sections within each program to contain the same number of lines. For
more details regarding the AOIs and programs, see the Appendix.

AOIs for code sections with sequenced code compositions. The Minimum Sum program contained
two loops (and correspondent AOIs), each with the same number of lines. One loop computed
the sum of elements in the input array, the other one extracted the minimum of all elements. We
assumed that participants would have the corresponding plan-schemata at their disposal.

For Rainfall, we studied twoAOIs. The first AOI contained a loop filtering the input to populate
a list of all input elements up to the first occurrence of “999.” This is an extension of a RunTotal-
Loop [65], hence, we considered it to be a tailored plan. The second AOI contained a loop adding all
elements in this list; a (standard) plan that can be assumed safely to be familiar to our non-novice
participants. Both the (standard) plan and the tailored plan consisted of three lines of code each.

For Omega, we considered three AOIs. The first AOI contained four lines of code3 describing a
(standard) FindMaximum plan [65]. The second AOI contained seven lines of code for a tailored
FindMaximum plan that also stored the indices of all candidates in a list. The third AOI contained
eight lines of unplan-like code: It identified a maximum-distance tuple of values in the input such
that the left value is larger than the right value. For this, two nested for-loops comparing indices
and values were used. In contrast to what might be expected from two nested loops, the loop
indices were updated in a way that resulted in an overall linear runtime [20]; given these features,
we considered the code to be unplan-like.

AOIs for code sections with merged code composition. In programs with a merged code composi-
tion, two different code sections may share lines of code, such as control structures of a for-loop.
To avoid overlapping AOIs that in turn could lead to misinterpretation of the dwelling time, we
were careful to design the AOIs so each AOI contained only lines of code that could be attrib-
uted to exactly one code section. In particular, we did not assign shared control structures, e.g., of
for-loops, to any AOI.

The Maximum Count program consisted of one for-loop containing two plans with the same
number of lines of code. One (standard) plan computed a minimum and the other (standard) plan
counted the numbers divisible by three. We consider these to be familiar plans.

For Rainfall Partner, we studied two AOIs. The first AOI contained the four lines of code for
finding the first occurrence of “100” and then raising a flag. We consider this to be a tailored plan.
The second AOI contained the three lines of code that subtracted all negative elements from 100.
While this code effectively merges a Filter and a Subtract (standard) plan [65], it did so in a very
obvious manner. Hence, we considered this code to be a (standard) plan.

The Balanced Subset program consisted of five code sections (see Figure 3), the first of which
initialized the input array. Since we presented our participants with the input array, they did not
need to look at this section, and we used only the four remaining code sections for AOIs. One
tailored plan (left column) consisted of four lines and scanned an array for the last occurrence of
“0.” Another code section we considered to be a (standard) plan (right column) contained four lines
of code that compute the maximum of two elements. The other two code sections are presented
inside a for-loop controlling their execution (middle column). The first of these is a four-line,
unplan-like code managing data in a hash map to find the first and last occurrence for each value
stored. The other (standard) plan is a three-line code that computes the maximum of all differences

3We exclude closing brackets, as they do not add information. In fact, they were used to increase the separation between

AOIs without making the code look unnatural.
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between the current value and its first occurrence using a result from the preceding (upper) code
section. Hence, only the code section in the middle column of Figure 3 was merged.

Verification of the model-building assumption underlying the study design. As mentioned before,
our study design rests on the model-building assumption (see Section 3.4), which claims that read-
ers build amentalmodel of the program during the first input-to-output conversion and utilize it on
the subsequent tasks. We thus needed to verify this assumption first. Based on the model-building
assumption, we would expect participants to spend a higher percentage of their time on the code
during the task than during subsequent tasks. For this, we studied the following hypothesis:

HA: The ratio of time spent on the input to time spent on the code is highest during the first task.

To investigate this hypothesis, we studied each participant’s reading behavior using two AOIs
per program: One AOI encompassed the input, the other AOI encompassed the program. We then
computed the ratio of time spent dwelling on the code and the time spent dwelling on the input
across the different inputs for each program. In these terms, spending a higher percentage of time
on the input than on the code would imply that the code is less important for solving the task
and this, in turn, would support the assumption that the reader indeed can resort to a mental
representation of the program instead of having to re-read every single instruction of the program.

As we will discuss in Section 4.1, our analyses confirmed this hypothesis and thus supported
the model-building assumption underlying our research design. We thus formulated hypotheses
for our two research questions.

RQ 1: How does the availability of plan-schemata affect program comprehension? To investigate
this research question, we formulated the following two hypotheses:

• H1.1: Within a program, participants spent more time on tailored plans than on plans.
• H1.2: Within a program, participants spent more time on non-planlike code sections than on

tailored plans.

For H1.1, we studied programs that contained plans and tailored plans, and for H1.2, we studied
programs that also contained unplan-like code sections. Because of themodel-building assumption,
we limited the investigation to the first task, since we assumed that during this step a mental model
of the program was developed and therefore that phase was the most meaningful.

RQ 2: How does the composition of code sections affect program comprehension? To investigate the
effects of the composition of program sections, we selected AOIs from each program and counted
the number of transitions between these. Following standard procedure, eye movements were
classified as transitions if two consecutive fixations occurred in different AOIs.

We assessed this research question by formulating two hypotheses. The first hypothesis we for-
mulated was related to the conjecture that merged program composition leads to simultaneous
processing of program sections and therefore more transitions between these. The second hypoth-
esis we formulated was related to the conjecture that this additional processing time led to more
time that needs to be spent on code:

• H2.1: The number of transitions between merged program sections is higher than the number of
transitions between sequenced program sections.
• H2.2: The ratio of time spent on the code relative to the input is higher for programs with a

merged code composition than for programs with a sequenced code composition.

Given the confirmation of the model-building assumption, we again limited the investigation
to the first task. For H2.2, we compared the pairs of programs as described in Section 3.2 (see also
Figure 2). For H2.1, we compared the number of transitions between these pairs and additionally
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within Balanced Subset, because both, merged and sequenced program sections, existed in that
program. The exact AOIs we compared were the following:

• Pair Minimum Sum/Maximum Count: For Minimum Sum (sequenced), the AOIs studied
corresponded to a FindMinimum and a Sum (standard) plan. For Maximum Count (merged),
the AOIs studied corresponded to a Count and a FindMaximum (standard) plan. In this
pair, both programs were composed of very similar plans; thus, we assume the number of
transitions to be mainly affected by the type of code composition.
• Pair Rainfall/Rainfall Partner: For the (merged) Rainfall Partner program, we consid-
ered transitions between the two code sections described in Section 3.2.1. For the (sequenced)
Rainfall program, we considered the transitions between the code section extracting the
sub-array from the beginning to the first occurrence of “999” and the code section filter-
ing the positive values. For Rainfall, we considered the Sum (standard) plan as well. This
(standard) plan interacted with the two other code sections, i.e., we counted interactions be-
tween three code sections as opposed to interactions between two code sections in Rainfall
Partner. Due to the larger number of plans (and, thus, AOIs), a given approach to reading
a program, e.g., a linear scan, would result in more transitions for the sequenced program
than for the merged program. Since our research question was operationalized by hypoth-
esizing that the sequenced program induced fewer transitions, this actually made it harder
to confirm H 2.2. Therefore, we suggest a different reading strategy would have to be used
when reading sequenced programs to induce fewer code transitions. We consider the code
in both programs to correspond to plan-schemata to the same extent.
• Within Balanced Subset and Pair Balanced Subset/Omega: For the (merged) Balanced
Subset program, we had identified four AOIs, two of which were merged inside a for-loop
(two blocks in the middle column, Figure 3) and two of which were presented in sequenced
code composition (left and right column, Figure 3). These were used to compare the effect of
merged and sequenced code-composition within a program. As with Rainfall, we studied
interactions between more sequenced code sections (section in the left and right column and
the upper section in the middle column) than between sections in merged composition (two
sections in the middle column), again penalizing H 2.2. In the same spirit, we studied two
AOIs with a maximal number of transitions between them for the (sequenced) Omega pro-
gram (a tailored plan finding all candidates for a maximum and an unplan-like code finding
a maximum-distance tuple). We compared these transitions and the transitions between the
plans in the middle column of Balanced Subset.

3.7 Qualitative Content Analysis

We enriched our analysis by collecting additional qualitative data to assist the interpretation of
the eye-tracking data [71, p. 161] using retrospective interviews. In such interviews, participants
are presented with a video of their eye movement and comment on it.

We chose deductive qualitative content analysis (qca), “a data analysis technique within a
guided research process, and this research process is bound to common (qualitative and quanti-
tative) research standards” [43, p. 10], to analyze these retrospective interviews. The goal of our
analysis was to provide insights that support the interpretation of the eye-tracking data and further
explore the processes involved in program comprehension.

qca distinguishes two approaches: Deductive Content Analysis aims at “extracting a certain
structure from the material based on exact dimensions, that are grounded in theory and derived
from the issue/statement of the problem concerned” [43, p. 95]. This method, therefore, builds on
theories related to the research question. If no such theoretical background is available, then
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Inductive Content Analysis is more suitable. This approach aims at developing categories “that
are coming from the material itself, not from theoretical considerations” [43, p. 79].

Both approaches begin with a clearly formulated research question that determines which units
of the material are analyzed [43, p. 51]. For example, because all research questions in this study
aimed at better understanding program comprehension (its process), the recording units in this
study were interview sections for each participant commenting on each program.

Because the research questions in this article are closely related to existing literature, we chose
a deductive approach. In this approach, categories (and the respective sub-categories) are defined
based on theory. The sub-categories do not have to be found in the literature, verbatim, “but they
have to be grounded with theoretical arguments” [43, p. 97]. These definitions are then specified
using as unambiguous encoding rules as possible. Additionally, each sub-category is illustrated by
one or multiple anchor examples.

By reading thematerial line-by-line, each part of thematerial that fulfills the definition ismarked
and assigned a sub-category.Mayring [43, p. 99] suggests that after coding 10%–50% of thematerial,
the coding rules may be modified until they become smoother and examples for each sub-category
are chosen. At this point, or if severe problems with the categories arise, the face validity of the sub-
categories and coding rules should be reconsidered in respect to the research question. If changes
are necessary at any of these points, then theoretical considerations should be used.

Finally, the sub-categories are applied by multiple researchers. If they derive sufficiently similar
codings, as measured by interrater reliability, then the coded material can be further analyzed.

We analyzed the verbatim transcripts of the retrospective interviews using qca. The coding
procedure for all sub-categories followed the suggestions of Campbell et al. [7]. One coder, who
was engaged in the development of the category systems, marked for each group of sub-category
sections of interest. These sections ranged from a single sentence to one coherent statement cov-
ering multiple sentences. For example, if a participant answered the question, or if the program
was familiar, then this answer was assigned the category system familiarity. If multiple sections
of the program were described in such a section, then that section was split into multiple parts
correspondingly. After that, 20% of each category system was coded by two coders independently
by using the categories defined as above. The coding results were compared and ambiguities in the
coding rules were resolved. Finally, the whole material was coded again by both coders and the
inter-coder reliability was computed. Below, we describe the categories and their sub-categories
derived from the literature.

Category – Abstraction of Code. The performance during mental simulation may be related
to the abstraction of the code [77, p. 239] [78]. Therefore, we investigated the qualitative research
question: On what level of abstraction was the mental model participants created of the programs?
Therefore, we analyzed descriptions of program sections from the retrospective interviews as de-
scribed below.

A common category system used to analyze the quality of such mental models is the Structure

of the Observed Learning Outcome (solo). Biggs and Tang describe five levels of abstraction [3,
pp. 39–50]. These were applied by Lister et al. to categorize program summaries of novices [41] and
by Ginat and Menashe to assess algorithm design [23]. We chose to deductively develop categories
based on the solo taxonomy reflecting that some programs in our study were longer than pro-
grams used in previous works and that our participants were more advanced. Every sentence of an
attempt to summarize parts of (or a whole) program was assigned one of the following categories:

• Prestructural: Responses on this level “simply miss the point” [3, p. 39]. Responses of par-
ticipants that failed to summarize a section were categorized as prestructural. Therefore,
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statements that merely paraphrased one or two lines of the code or even showed difficulties
understanding a line of the code at all were categorized as prestructural. In the following ex-
ample, a student paraphrased lines of code from Omega while reading themwith no attempt
to summarize them.

[G:] If you somehow find a value, um, that is in list 2, but is smaller than or, um, equal to a
value from r, then the loop is aborted and nothing is stored in list 3.

• Uni- and Multistructural: A response that meets only one aspect of a task is considered
to be on an unistructural level, whereas a “disorganized collection” of such aspects would be
considered to be on a multistructural level [3, p. 49]. Biggs and Tang state that answers on
this level reflect that a person giving this answer “sees the trees but not the wood” [3, p. 40].
We considered a complete solution of the task a summary of the whole program, including
coordination of sub-summaries of different program sections. Hence, using the terminology
in the above sub-category, a “tree” would be a summary of a program section. Because single
sentences were coded using this category system, it would not be possible to distinguish uni-
and multistructural responses directly. Therefore, this category considered both responses.
However, after the coding was completed, then this category was refined as follows: If in
one document only one program section was described, then the category was changed to
unistructural. If two or more program sections in one document were described, then the
category was changed to multistructural.
The following example illustrates a summary of a code section as a maximum but does not
relate it to the rest of the program:

[C:] Takes the first entry and checks, the first loop checks, what the biggest entry is.

• Relational: Staying in their metaphor, Biggs and Tang describe this level as a response
where “the trees have become the woods” [3, p. 40]. Lister et al. [41] describe this level as
an understanding of all parts of the program and an integration of these into a coherent
structure such as a summary of the whole program. We considered all descriptions to be on
a relational level if one or more sections of the program were related to each other. The fol-
lowing example illustrates how a section computing the distance between identical numbers
in an array and a section computing a minimum are related to each other:

[A:] Eventually my interpretation was, uhm, that it computes the distance between to equal
numbers, I mean the smallest distance between two equal numbers.

• Extended Abstract: This is the highest level of abstraction. Biggs and Tong state that re-
sponses go “beyond existing principles” [3, p. 41]. However, they note that this also depends
on the context, because “today’s extended abstract is tomorrow’s relational” [3, p. 40]. We
considered statements relating program sections to a broader context to be on an extended
abstract, e.g., suggestions on how program sections could be rewritten to be more compre-
hensible or statements on properties such as the runtime of a section. Preempting the results,
all documents containing a section we coded as extended abstract also contained at least a
section on a relational level. In the following example, a participant comments on how a
program section could be rewritten because she identified two independent processes. We
note that she also provided a complete summary on a relational level initially.

[H:] Here we have a loop with two operations, but those are somewhat independent of each
other, so they could, hypothetically, be rewritten as two separate loops.

Category – Familiarity. The programs in this study were designed according to Soloway’s
notion of plans [65].
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Programs consisted of sections we had designed to (a) correspond to (standard) plans, (b) corre-
spond to tailored plans, or (c) not correspond to any plan-schema at all. To assess whether or not
our programs conformed to these criteria, we conducted a pilot study (see Section 3.3).

During the interviews, we prompted the participants to comment on the familiarity of the pro-
gram, but not explicitly to comment on separate program sections to avoid any bias from social
desirability. Responses to these prompts were split into sections commenting on one program sec-
tion if possible. For the analysis of the qualitative data gathered in this pilot, we used the following
category system:

• Code Corresponding to a Plan-schema. This category was applied to statements of high
familiarity with a program section. Indicators such as the explicit use of plan-names, noting
that one is familiar with this code ormentioning that one did encounter the same code before.
In the following quote, two code sections are directly referred to as maximum and minimum:

[I:] In the end one compares, in order to build the minimum—is it a minimum or a
maximum—I don’t know.

• Modification of a Plan-schema (Tailored Plan). This category was applied if a code sec-
tion is described as familiar, but a change from a standard procedure is noted. Indicators are,
e.g., the identification of something familiar in otherwise unfamiliar sections or explicit com-
ments on how a section deviates from a standard procedure. The following quote illustrates
a comment of a participant on the program section of Rainfall, where two conditions are
used in a for-loop:

[E:] I wasn’t totally sure, because, [. . . ] I rarely did it with two conditions and then I had to
think how it would probably work.

• No Schema Available. This category was applied if the program code is not perceived as
familiar and no references to any schema are made. Indicators are the lack of any references
or an explicit comment that the program section is unfamiliar.

[H:] This nested for-loop here with no explanations, it is extremely difficult to find an in-
terpretation for this and to understand what this code does.

• Unclear Familiarity. This category is assigned to statements that do not belong in any of
the categories above. Ambiguous statements, comments on rules of discourse, or the inputs
provided were assigned this category. For example, some participants commented not on
the code, but on the input-to-output conversion tasks:

[G:] It seemed unusual to me that I entered 100 every time.

4 RESULTS

In this section, we present the results of the analysis of both quantitative and qualitative data
obtained during our study. We start with presenting the eye-tracking data relevant to answer each
of the hypotheses presented in the previous sections. Then, we briefly summarize findings from
the qca. In Section 5, we then combine both—the results from the analysis of the qualitative and
the quantitative data—to answer our research questions.

4.1 Eye-tracking Data on How Students Read Programs

Before we present our results, we briefly discuss the question of whether significant results might
need to be adjusted. In his review of the use of the Bonferroni correction in clinical research,
Armstrong cautions that such a correction “should not be used routinely” [2, p. 504] and lists
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Table 1. Ratio of Time Spent on Code and Input over the First Three Tasks

Per Program (Mean ± Standard Deviation) for All Traces Meeting the

Inclusion Criteria for Data Quality

Program n Task 1 Task 2 Task 3

Minimum Sum 9 3.80 ± 1.46 1.85 ± 2.00 .47 ± .50
Maximum Count 8 4.64 ± 1.89 1.61 ± 2.18 .40 ± .30

Rainfall 11 4.82 ± 2.01 1.50 ± 1.87 .68 ± .64
Rainfall Partner 12 16.01 ± 7.54 4.13 ± 8.42 3.71 ± 5.67
Balanced Subset 7 14.73 ± 6.96 0.89 ± 1.00 .96 ± .75

Omega 11 16.78 ± 8.35 3.22 ± 1.26 3.34 ± 3.12
The difference between the first and the second task was always significant (p < .05,

d > .8).

indicators for when it should be used.We discuss these in turn. (1)While, at first, it may appear that
the fact that we are using one set of traces for multiple analyses indeed requires such a correction,
we point out that each analysis performed pertains to a unique hypothesis (e.g., “The time spent on
the input decreases from the first to the second task.” or “There is a dependency between the level
of familiarity of a code section and the relative amount of time spent on that task.”). As such, our
study is not “a single test of the “universal null hypothesis” (H0) that all tests are not significant” [2,
p. 504]. (2) We did not run “a large number of tests without preplanned hypotheses” [2, p. 504].
Instead, all tests were motivated from the literature and exactly those are reported in the following.
We thus conclude that adjusting significance levels was not required for our analyses.

HA: The ratio of time spent on the input to time spent on the code is highest during the first task. We
investigated this hypothesis by analyzing the ratio of the overall time spent on gazing at the code
and the overall time spent on gazing at the input during the first three input-to-output conversions.
The inclusion criterion for data traces, in addition to having no prominent measurement gaps, was
that the participant in the corresponding study had computed correct outputs on at least three
inputs. We also considered answers to be correct if participants consistently had made the same
error, e.g., had confused the minimum with the maximum, because we have no reason to assume
that the high-level reading strategy or the time on task might have been affected by such errors.
In contrast, such confusions were reported before for experienced programmers, because their
experience makes them read code superficially if they expect something [28].

All programs varied in different aspects, i.e., the composition of code sections and how re-
lated these were to plan-schemata. Therefore, we chose throughout the analysis to treat programs
separately.

We discuss results for the Minimum Sum program; other tasks showed similar patterns (see
Table 1). There were no outliers in the data, as assessed by inspection of a box plot for values
greater than 1.5 box lengths from the edge of the box. Differences between the ratio of time spent
on the different AOIs were normally distributed, as assessed by Shapiro-Wilk’s test (p = .18).4 From
Task 1 to Task 2, the ratio of time spent on the program to the time spent on the input statistically
significant decreased (paired-samples t-test, t (8) = 2.58,p = .03,d = .86; here and throughout
the rest of this section, we report effect sizes using Cohen’s d). Participants spent increasingly less
time on the program during the progression through the three tasks: The time to completion (in
seconds, shown as mean ± standard deviation) was 3.80 ± 1.50 (Task 1), 1.85 ± 2.00 (Task 2), and
.47 ± .51 (Task 3).

4For the remainder of this section, we only report outliers if any were detected. Also, we only discuss the normality

assumption in case of violations. All analyses were conducted using IBM SPSS™ version 27 using 95% confidence intervals.
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Fig. 4. Results related to hypotheses H1.1 and H1.2: Normalized time participants spend on different AOIs.

The index indicates whether the AOI describes a sequenced (S) or a merged (M) code section. Additionally,

SP denotes that the AOI comprises a (standard) plan, TP that it comprises a tailored plan, and UC that it

comprises unplan-like code. In each line, a color difference indicates a significant difference.

In summary, after the first input-to-output conversions all subsequent conversions were
executed significantly faster. The assumption HA: The ratio of time spent on the input to
time spent on the code is highest during the first task. does not need to be rejected.

H1.1: Within a program, participants spent more time on tailored plans than on plans. and H1.2:
Within a program, participants spent more time on non-planlike code sections than on tailored plans.
To investigate these hypotheses, we compared the time participants spent on the two AOIs defined
for each program (Section 3.6.1) during their first encounter with the program, i.e., during the first
input-to-output conversion. We used paired-samples t-tests to assess the mean differences. The
time participants spent on the AOIs is presented in Figure 4.

In Rainfall, participants spent significantly more time on the tailored plan that created a sub-
array until the first occurrence of “999” (20.35 ± 6.67 seconds) than on the (standard) plan com-
puting the sum (10.25 ± 3.14 seconds), t (11) = 4.069,p = 0.009,d = 1.17.

Results for Rainfall Partner were similar. We compensated for differences in lines of code
for the (standard) plan (three lines) and the tailored plan (four lines) by normalizing the dwelling
time. This increased the weight of the time spent on the (standard) plan and decreased the mean
difference. Participants spent more time on the tailored plan (40.24 ± 11.93 seconds effectively,
30.18 ± 8.95 seconds normalized) than on the (standard) plan (18.44 ± 9.1 seconds). We detected
three outliers that were more than 1.5 box lengths from the edge of the box in a box plot; these
were removed from the analysis. However, all of the participants whose data we removed had
focused more on the tailored plan; thus, the removal actually worked against confirming H1.1.
Even though normalization decreased differences, the mean difference was found to be significant,
t (8) = 11.56,p < 0.0005,d = 3.85. Thus, in both the sequenced Rainfall and themerged Rainfall
Partner program, participants spent significantly less time on (standard) plans, supporting H1.1.

For the Balanced Subset program, we considered the difference between plans, tailored plans,
and unplan-like code (upper AOI in the middle column, AOIs in the left and right column of
Figure 3). Each of these sections consisted of four lines of code, thus, no normalization was needed.
Participants spent less time on plans (9.76 ± 3.00 seconds) than on tailored plans (26.40 ± 13.81
seconds) and on unplan-like code (49.99 ± 20.71 seconds). The difference between the time spent
on plans and tailored plans was significant, t (9) = 4.52,p = .001,d = 1.43. The difference between
the time spent on tailored plans and unplan-like code was significant as well, t (9) = 4.86,p =
.001,d = 1.54.

The internal structure of the Balanced Subset program, however, warrants further investi-
gation. As discussed in Section 3.6.1, the (standard) plan and the tailored plan were presented on
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their own, while themiddle column of code contained both unplan-like code (upper AOI, four lines)
and another (standard) plan (lower AOI, three lines); see Figure 3. Considering these two blocks
of code, the time spent on the unplan-like code (49.99 ± 20.71 seconds effectively, 37.49 ± 15.53
seconds normalized) was statistically significant higher that the time spent on the (standard) plan
(23.86 ± 11.25 seconds), t (9) = 2.555,p = .031,d = .81, confirming H1.2 for this case. Interestingly
enough, we did not find a statistically significant difference between the time spent on the tailored
plan (26.40 ± 13.81 seconds) outside the second block (left column), i.e., presented in a sequenced
context, and the time spent on the (standard) plan (23.86 ± 11.25 seconds) inside the middle block
(lower AOI), i.e., presented in a merged context, t (9) = .959,p = .362. We claim that this missing
significance does not contradictH1.1. Instead, we attribute it to the complexity added by presenting
a (standard) plan in a merged context.

To further study H1.2, Omega was presented in a sequenced code composition. Even after nor-
malization, participants spent significantlymore time on the tailored plan (seven lines; 65.00±23.81
seconds effectively, 37.14 ± 16.61 seconds normalized) than on the (standard) plan (four lines;
18.37 ± 8.19 seconds), t (11) = 4.890,p < .0005,d = 1.41. However, after normalization the time
spent on unplan-like code (eight lines; 79.58 ± 23.870 seconds effectively, 69.63 ± 25.26 seconds
normalized) was not significantly higher than the time spent on the tailored plan (seven lines;
65.00 ± 23.81, seconds 37.14 ± 16.61 seconds normalized), t (10) = .407,p = .692.

In summary, our data suggests support for H1.1 across programs of varying difficulty. It
also suggests that the time spent on (standard) plans increases if the plan is presented in a
merged context. With respect toH1.2, the results are not as clear. The implications forH1.2

will be discussed in Section 5.

H2.1: The number of transitions between merged program sections is higher than the number
of transitions between sequenced program sections. To investigate this hypothesis, we analyzed
the differences in the number of transitions between relevant AOIs during the first task of each
experiment—see Section 3.6.1. The results are presented in Table 2. Differences were significant
for both programs in the first pair: Maximum Count (13.14± 5.40 transitions) and Minimum Sum
(5.14 ± 1.95 transitions), t (6) = 3.886,p = .008,d = 1.468.

For the comparison between the Rainfall Partner and the Rainfall (n = 6) and the
comparison within the Balanced Subset program (n = 6) the normality assumption was violated
after the removal of outliers. We thus used a Wilcoxon signed-rank test that confirmed the
differences to be significant for both comparisons (Rainfall Partner (mean: 12) / Rainfall
(mean: 21): z = 1.997,p = .046,d = .815; within Balanced Subset (means: 18.5 and 31):
z = 2.1,p = .036,d = .857).

For the (merged) Omega program, the number of transitions was highest between the two code
blocks using indirect array accesses to compare candidate values. However, we could not confirm
a statistically significant difference between the mean differences of transitions between the code
blocks in the (sequenced) Balanced Subset program (28.17±9.66 transitions) and in the (merged)
Omega program (27.50 ± 9.94 transitions), t (5) = .087,p = .934.

In summary, three out of four comparisons yielded significant differences for the compar-
ison of the number of transitions between merged and sequenced program sections. We
hence partially supported H2.1. Limitations are discussed in Section 5.
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Table 2. The Transition between AOIs Presented Either as Mean and Standard Deviation or

Median Depending on the Distribution of the Differences

Program Transitions Significance

Minimum Sum 5.14 ± 1.95
t (6) = 3.886,p = .008,d = 1.468

Maximum Count 13.14 ± 5.40
Rainfall 21

z = 1.997,p = .046,d = .815
Rainfall Partner 12

Balanced SubsetS 18.5
z = 2.1,p = .036,d = .857

Balanced SubsetM 31

Omega 27.50 ± 9.94
t (5) = .087,p = .934

Balanced SubsetM 28.17 ± 9.66
In the rightmost column, the difference in the number of transitions is tested for significance. For

Balanced Subset two code sections were considered; a merged code section (Balanced SubsetM )

consisting of two smaller code sections merged in a for-loop (two blocks in the middle column of

Figure 3) and a sequenced code section (Balanced SubsetS ) consisting of three smaller code sections

(left and right column and upper part of the middle column in Figure 3). As explained in Section 3.6.1,

we considered—if possible—more code sections for the sequenced than for the merged programs and

thus penalized H 2.2. Besides the comparison between Omega and Balanced SubsetM , all

comparisons indicated that the number of transitions is significantly higher for merged than for

sequenced programs.

H2.2: The ratio of time spent on the code relative to the input is higher for programs with a merged
code composition than for programs with a sequenced code composition. To investigate the effects
described in the previous section, we compared the ratio of the overall time dwelling on the input
and dwelling on the code during the first input-to-output conversion. We did not find any statisti-
cally significant difference between Minimum Sum (ratio: 3.58±1.35) and Maximum Count (ratio:
3.70 ± .84), t (5) = .205,p = .846. We confirmed a statistically significant difference between the
(merged) Rainfall Partner program (ratio: 13.43± 5.29) and the (sequenced) Rainfall program
(ratio: 4.74 ± 2.02), t (8) = 3.85,p = .005. The data for Omega and Balanced Subset shows an
effect opposite to what the hypothesis states; the relative time spent on code in Omega was higher
than in Balanced Subset (see Table 1).

The results with respect to H2.2 are mixed. We will discuss all findings in Section 5.

4.2 Qualitative Data

Using the methods described in Section 3.7, we analyzed the retrospective interviews. The results
including the inter-coder reliability between the two coders are presented below.

Category SOLO. The inter-coder reliability for this category system was κ = .746 after the first
iteration of coding. Disagreements could mostly be attributed to an ambiguous description of what
is considered a summary. After discussing these issues, the inter-coder reliability increased to
κ = .95, an indicator of a high inter-coder reliability [44].

The analysis revealed that, except for Omega, most participants commented on the programs at
a relational level, i.e., most participants were able to relate at least two sections of each program
(see Table 3). A closer analysis revealed that all relational answers forMinimum Sum andMaximum
Count covered the whole program, and all but one relational answer for Rainfall and all but two
answers for Rainfall Partner considered the whole program. In Balanced Subset and Omega,
only one relational answer considered the whole program. However, five answers in Balanced
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Table 3. The Highest Level of Abstraction Observed in Each Program

Program Prestructural Unistructural Multistructural Relational Ext.Abstract

Minimum Sum 0 0 1 9 0

Maximum Count 0 0 1 8 1

Rainfall 0 0 0 9 1

Rainfall Partner 1 1 2 6 0

Balanced Subset 0 2 1 7 0

Omega 2 2 4 2 0

The first two programs consisted both only of standard-plans and the middle two programs also contained tailored

plans. The last two programs consisted of (standard) plans, tailored plans, and unplan-like code sections.

Subset considered the whole program except for the last section, which ensures that either a
positive number or 0 is returned. A reason for these apparent difficulties with Omega may be the
indirect addressing in the code section we considered to be unplan-like:

[F:] At some point, it occurred to me that here somehow, um, values in list 2 and list 1 were com-
pared, but actually values were compared to the corresponding indices, then I had somehow deduced
from my wrong understanding that um values were stored there, so to speak.

Our analysis of the retrospective interviews shows that each participant was able to summarize
all programs, except for Omega, and to relate program sections to each other. Hence, we may
assume that they were also able to do so while working on the input-to-output conversions as
well. This further supports the model-building assumption (Section 3.4). With respect to Omega,
we found that the mental representation was incomplete; we attribute this to a code section using
indirect addressing, which should be reconsidered in future work.

Category Familiarity. The inter-coder reliability for this category system was κ = .63 after the
first iteration of coding. Disagreements could mostly be attributed to sections of the interviews
that commented on the input-to-output rather than on the program, e.g., that the “result was
often negative.” After discussing these issues, the inter-coder reliability increased to κ = .81, an
indicator of a strong inter-coder reliability [44].

The qualitative data revealed that tailored plans were recognized as such. For example, all com-
ments regarding the loop creating a monotonously increasing sub-array in Omega (three in total,
because not every section of Omega was covered, and we did not prompt the participants to com-
ment on each section) described it as an extension of a maximum (standard) plan.

[E:] In the first for-loop, entries are added to list2, um (. . . ) the indices are added to list2, that um
(. . . ) serve to find a new maximum.

An analysis of the program section coded with the familiarity section revealed that in seven
documents the 999-Filter in Rainfall was described as a tailored plan, where a loop-over-array
(standard) plan was extended by an additional condition.

In Rainfall Partner, three participants described the “guard-section” [65] as such but stressed
that they would have expected distinct parts, e.g., an else-branch to clarify the guard-off section
or a Boolean indicating the guard variable. However, two other participants mentioned severe
problems with understanding the guard section and did not recognize any familiar plan-schema.
The other half of the participants did not comment on the program in any meaningful way.

This identification of familiar plans was not used to describe unplan-like code sections. For
instance, when discussing Omega, participants did identify the concept of nested loops in the
problematic section but used this concept only to refer to that section instead of explaining it.
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5 DISCUSSION

Our analysis supports the model-building assumption, i.e., that participants developed a mental
model of the algorithm while working on the first input-to-output conversion and utilized it later.
This simplified the analysis of the two research questions. In addition, the short time frame for
which we analyzed the eye-tracking data made it unlikely that the data recorded showed partici-
pants engaging with other tasks than trying to comprehend the program.

Regarding the first research question, we were able to observe that standard plans are signif-
icantly faster to comprehend than tailored plans and unplan-like code sections. This effect was
more nuanced when comparing tailored plans and unplan-like code, since, in general, we could
observe differences in comprehension times, but not significant ones. Yet, the analysis of the quali-
tative data supported our assumption that plans are also used during the comprehension of tailored
plans.

The analysis of the second research question revealed that merged code sections increased the
number of transitions between code sections as opposed to comparable programs presenting se-
quenced code sections. However, only one comparison yielded a significant effect on the time to
comprehend such programs. Below, we discuss factors we assume to have overshadowed the effect
on time in these cases.

Amore detailed discussion of the research questions and eye-tracking as amethodology to study
program comprehension processes will be presented in detail in the following paragraphs. For a
more vivid discussion, we also present excerpts from the retrospective interviews.

Model-Building Assumption: While performing the first input-to-output conversion for a pro-
gram, readers build a mental model of the program and utilize it on the subsequent tasks. The quan-
titative analyses imply that the focus of attention shifts from the code to the input starting with
the second input-to-output conversion. Indeed, many participants did not look at the code at all
during later input-to-output conversions. Additionally, the qualitative analysis of the retrospective
interviews with respect to the SOLO categories revealed that most participants were able to build
an abstraction of at least parts of the program. Together with the eye-tracking data, this indicates
that participants developed and actually used the abstractions they developed to mentally simulate
the programs; the assumption was thus confirmed to hold.

In line with this interpretation, we quote a participant who stated that the purpose for looking
into the code after completing the first task was to re-validate the abstraction he had built:

[A:] I generally just simulated and calculated the first input again. And then I tried to generalize
again on the second input, or rather to see if what I had came up with as an abstraction of the
program would work, or if it was just that one single input.

During the eye-tracking session, one participant started to think aloud about her approach and
explicitly named plans she had identified. During the interview, she explained that this allowed
her to work on later tasks more effectively.

[B:] Then I look at the series of numbers and recognize the sum very quickly [. . . ]. Then I can also
change the order, which is, for instance, convenient for negative and positive numbers, which then
cancel each other out.

Participants working on Balanced Subset often focused on the number most frequently oc-
curring in the input and then on this number last occurrence. We interpret this as the use of an
abstraction of the actual program: A participant commented this behavior with filtering out num-
bers “unlikely to be relevant for the result”; of course, the program did not do this.

This behavior resembles observations that programmers spent the most time on the first oc-
currence of a repeatedly presented and slightly modified code section [32]. Our results suggest a
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rationale for this behavior: They build a mental model of the first code section they saw and then
recognized its modifications in the next lines. However, we observed another facet of flexibility
when students “modified” the program to more efficiently mentally simulate the program. This
flexibility is not unusual for mental models [14, 49].

RQ 1: How does the availability of plan-schemata affect program comprehension? Literature sug-
gests that summarizing code is an important process of program comprehension [10]. We thus
consider the time participants spent on certain areas of the code to be indicative of how difficult
it was to summarize this section. This is in line with the results of Chen et al. [9], who showed
that dwelling time significantly increased when tasks were more complex and more attention was
needed.

This rationale led to the hypothesis that plans are faster to comprehend than other code sec-
tions, which our eye-tracking data confirmed: For each program consisting of plans and tailored
plans, participants spent statistically significantly more time on tailored plans. Indeed, participants
mentioned that the sections they spent more time on were harder to understand and that it was
easier for them to summarize other code blocks. Our findings thus are in line with prior studies
that prior knowledge in the form of plans supports comprehension: It allows for faster chunking
and consumes fewer cognitive resources that otherwise would be needed for abstraction. Based
on this claim, we can further hypothesize that plans, similarly to sub-goal labels [46], can reduce
cognitive load.

The results for the comparison between tailored plans and unplan-like code sections is more
nuanced: While observing the expected difference comparing the tailored plan and unplan-like
code within Balanced Subset, an influencing factor may have been the code composition (see
Section 4.1). Hence, we treat those results with caution. Results from comparing the tailored plan
in Omega to unplan-like code did not confirm our hypothesis. We saw that participants were
struggling more with indirect addressing in the Omega program than could have been expected
based on our initial validation study (see Section 4.2). This intrinsic complexity may have increased
the time spent on this tailored plan and, consequently, confounded our results. However, from
interviews, we gathered evidence that tailored plans were perceived as plan modifications:

[C:] Well, you skim over the for-loop if it has the absolute standard form. And then–I think–I just
thought: ah yes, there is an extra condition built in.

The results from qualitative analysis using the Familiarity categories showed that all tailored
plans were indeed perceived as such (see Section 4.2). Hence, we suggest that the difference be-
tween tailored plans and unplan-like code sections exists, but may not be as prominent as between
plans and tailored plans. We suggest that future work could investigate this issue.

RQ 2: How does the composition of code sections affect program comprehension? In all programs,
except for Omega, merged code composition resulted in a significantly higher number of transi-
tions between the AOIs compared to sequenced code composition. For the Rainfall, Rainfall
Partner, and Balanced Subset programs, we deliberately consider more AOIs for the sequenced
version than for the merged ones. If participants had shown similar reading behavior regardless
of the composition, then this choice would have shown a higher number of transitions for the
sequenced versions. Conversely, our findings show that even under these conditions, merged com-
position increases the number of transitions.

When looking at the recording of her gazes for the (merged) Rainfall Partner program, one
participant commented that the initialization was “rather boring” and then commented on her
many transitions between the two code blocks inside the loop.
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[B:] Those are the two interesting areas. And then, yes. I just had the first one pretty quickly. And
then, um, the second one isn’t that difficult either. And then, I always checked both of them and
whether they interact somehow. But they don’t, they’re completely independent.

For her, not only the comprehension of code sections alone but also comprehending their inter-
action contributes to the overall comprehension process. Hence, we assume that the composition
of code sections affects the comprehension of the interaction between those.

Previous work from Cognitive Load Theory [8] suggests that some effects cannot be observed
when the cognitive load is too low or when the cognitive load is too high. Our results support
this notion. The evaluation of the programs designed to be the least complex ones (Minimum Sum
and Maximum Count) and the more complex ones (Omega and Balanced Subset) showed no
significant differences on times spent on code relative to the input. However, the comparison be-
tween Rainfall and Rainfall Partner, designed to be in the middle of the complexity spectrum,
showed significant differences. Given the participants’ expertise, we suggest that Rainfall and
Rainfall Partner did not overwhelm participants’ cognitive resources (and were able to be suf-
ficiently cognitively demanding) and enabled us to observe the effects of code composition [15].

Support for this suggestion comes from the qualitative analysis using the SOLO category: All
participants were able to fully abstract over the programs Minimum Sum and Maximum Count
and—to a lesser extent—over Rainfall and Rainfall Partner; see Table 3. In contrast, partici-
pants struggled when abstracting over Omega and Balanced Subset. One take-away from this
is that “just” tracking time-on-task may not be sufficient to assess the effect of code composition,
while eye-tracking data is nuanced enough to show such effects.

Complementing the results presented by Peitek et al. [53], we found that—similarly to the linear-
ity of program flow and scope—the perceived interaction of (tailored) plans impacts program com-
prehension. This adds to the body of knowledge of program comprehension, since Peitek et al.’s
metric for source code linearity works on the level of lines of code, therefore yielding similar values
for programs using either sequenced or merged code compositions. Hence, our work complements
theirs by considering similar concepts but on a rather different level of abstraction. A combination
of their work and ours, as well as a closer examination of their effects on element interactivity [72],
remains subject to further research.

Reflection on the study design and eye-tracking as a methodology. We found eye-tracking to be
a valuable approach to gain insights into a comprehension process while being less disruptive
than other methods, such as think-aloud interviews. Moreover, it provides rich data on processes
not observable through other methods. However, the experimental conditions must be controlled
strictly and the study design needs to be carefully tailored to the respective research domain [71].

Our design was based on the model-building assumption. This assumption allowed for tighter
control of several factors relevant for eye-tracking, including, but not limited to, attention spans.
In particular, the first task of each set of input-to-output conversions allowed for the collection
of high-quality data regarding the comprehension process. As per the model-building assump-
tion (which we verified through a comparison of the times spent on subsequent input-to-output
conversions and through the analysis of qualitative data), the data collected during the first task
represents most of the comprehension process. Due to its limited duration as compared to a “full”
set of tasks, this approach leads to data with less confounding factors.

6 THREATS TO VALIDITY

While our sample size is within the range of sample sizes of previous studies (Obaidellah et al.
[50] report an average sample size of around 18 participants), we are careful not to make claims
regarding generalizability; in particular, the effect sizes reported need to be interpreted carefully.
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We sought to provide insights into how rich eye-tracking data could support the investigation of
program comprehension in terms of students’ development of mental models and the impact of
program structure and difficulty on such development.

Even though we recruited participants meeting the inclusion criteria only, we could not control
which particular plan-schemata subjects had at their disposal. However, our assumptions of which
sections of code may correspond to plan-schemata were not contradicted by the qualitative data.
In addition, the low relative number of female participants, while representative of the underlying
target population, threatens the validity of the results for this subgroup. Finally, our study excluded
beginners by design: The goal was to investigate the effects of plans and their composition, and
therefore knowledge of certain plan-schemata was required. This design choice and the fact that
all participants successfully completed the tasks for all programs should be kept in mind. This
is another limiting factor for generalizability beyond the demographic context of this study, in
particular, when including novice programmers.

A final possible threat to validity stems from the material used in this study. The programs
used are not (and could not be) identical in all quantitative aspects, such as lines of code, size of
areas of interest, number or usage of programming structures, so latent factors may have played
an undetected role. To mitigate this threat as much as possible, we had piloted the material and
attempted to account for differences through normalization; also, we used retrospective interviews
to gather additional information regarding the nature and possible influences of these quantitative
differences in the material.

7 CONCLUSION

In this study, we explored a combination of eye-tracking and retrospective interviews to investigate
program comprehension on the level of plans.We distinguish ourselves from previous eye-tracking
studies used in program comprehension by moving away from text-surface features of the code
and instead, for the first time, focus on higher-level plans and their composition. We were able
to provide a detailed investigation of program comprehension behavior not presented in previous
studies using think-aloud interviews or observations of sketching only: when and how participants
were able to form amodel of the program andmove away from code, how the familiarity with code
impacted program comprehension, and how code composition affects participants’ behavior. We
consider think-aloud and eye-tracking data to be complementary methods that can be used to
illuminate the formation of mental models in program comprehension.

Summary. Concerning RQ 1: How does the availability of plan-schemata affect program compre-
hension? We found that plans were understood more quickly than tailored plans. We assume there-
fore that plan-schemata allowed for faster chunking and therefore accelerated the comprehension
process. Qualitative interview data supports that students perceived tailored plans to be similar to
plans, which, compared to unplan-like code sections, could help them to comprehend programs.
However, a statistically significant effect could not be observed here. Possible reasons for the in-
conclusive results are discussed below.

Concerning RQ 2: How does the composition of code sections affect program comprehension? We
observed that code presented in a merged version significantly increases the number of transitions
between different code blocks as compared to sequenced code. Interview data provided support
that such effect was due to an increased difficulty of identifying interactions between code blocks
in a merged composition: Merged code composition increases element interactivity. These effects
were found for code blocks on the same level of familiarity as well as for code blocks on different
levels of familiarity, indicating they appear regardless of familiarity. However, we did not observe
convincing evidence that this also affects the time to comprehend code.
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The material we used in this study was piloted (see Section 3.3), but some unwanted effects
still affected our study. When applying the setup we presented, we suggest keeping multiple as-
pects in mind: In Omega, we observed that a certain concept that was not present in the com-
panion program was unexpectedly difficult for the participants. We also observed that an ef-
fect of code composition on the time needed to complete the first input-to-output conversion
task was not observable for programs that were either too simple or too difficult. If one wants
to study the effect of a potential feature that increases its difficulty, then one should match
students’ cognitive resources with the task difficulty. Students should be challenged, but not
overwhelmed [59].

Overall, we observed positive effects of knowledge of plan-schemata on program comprehen-
sion. Therefore, this study underlines again the importance of fostering the development of such
plan-schemata in novice programmers. We also observed an effect of code composition and found
indicators that a merged code-composition strategy may complicate comprehension processes by
increasing element interactivity, because different code sections need to be processed in an inter-
leaved manner instead of separately. However, further investigation is required.

A methodological contribution of this article is our presented setup allows studying program
comprehension using eye-tracking data. By providing multiple time-critical input-to-output con-
version tasks, we observed evidence that participants indeed developed a mental model dur-
ing the first task and utilized this later. Using the setup we presented, we suggest that this as-
sumption can be used in future works to provide high-quality data in program comprehension
studies.

APPENDIX

To support the review process, we added screenshots of the programs used and highlighted the
relevant AOIs used in this study. Note that the AOIs were not visible to the participants and were
added to the figures below afterwards to increase the transparency of our experiment.

Fig. 5. Example for relevant areas of interest (AOIs). The figure shows AOIs for the sequenced version of

Minimum Sum and the merged version of Maximum Count.
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Fig. 6. Example for relevant areas of interest (AOIs). The figure shows AOIs for the sequenced version of

Rainfall and the merged version of Rainfall Partner.

Fig. 7. Example for relevant areas of interest (AOIs). The figure shows AOIs for the sequenced version of

Balanced Subset and the merged version of Omega.
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