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In this paper we present a timing-driven router for symmetrical array-based FPGAs. The
routing resources in the FPGAs consist of segments of various lengths. Researchers have
shown that the number of segments, instead of wirelength, used by a net is the most critical
factor in controlling routing delay in an FPGA. Thus, the traditional measure of routing delay
on the basis of geometric distance of a signal is not accurate. To consider wirelength and delay
simultaneously, we study a model of timing-driven routing trees, arising from the special
properties of FPGA routing architectures. Based on the solutions to the routing-tree problem,
we present a routing algorithm that is able to utilize various routing segments with global
considerations to meet timing constraints. Experimental results show that our approach is
very effective in reducing timing violations.
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1. INTRODUCTION

Symmetrical array architecture is used in several popular commercially
available FPGAs [Lucent Technologies 1996; Xilinx 1996]. A symmetrical
array-based FPGA consists of two-dimensional array logic modules inter-
connected by vertical and horizontal routing channels [Brown et al. 1992]
(see Figure 1 for a typical FPGA model). The logic modules, denoted by L in
Figure 1, can be customized to realize logic functions. The routing channels
comprise general routing resources used to connect logic-module pins. An
intersection area of horizontal and vertical routing channels is referred to
as a switch module, denoted by S in Figure 1. The switch modules house
programmable switches. FPGA routing uses programmable switches (inside
S) to make connections. The switches usually have high resistance and
capacitance, and thus incur significant delays. To improve circuit perfor-
mance and maintain reasonable routability simultaneously, the routing
channels are usually segmented, and thus routing tracks consist of wires
with a versatile set of lengths [Xilinx 1996] (see Figure 2). Longer segments
are intended for high fan-out, time-critical signal nets. On the other hand,
shorter segments are intended for short connections so as to avoid wasting
routing resources. To achieve the goal of improving circuit performance
without much sacrifice on routability, it is essential for a routing algorithm
to utilize these various routing segments effectively.

Many routing algorithms for symmetrical array-based FPGAs are re-
ported in the literature [Alexander et al. 1995; Alexander and Robins 1995;
Brown et al. 1992; Chang et al. 1994; Chen et al. 1995; Frankle 1992; Lee
and Wu 1995; Lemieux and Brown 1993; Lemieux et al. 1997; McMurchie
and Ebeling 1995; Palczewiski 1992]. Most of these algorithms, however,
either aim at routability only, without considering timing constraints
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Fig. 1. The symmetrical array-based FPGA model.

434 • Y.-W. Chang et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.



[Brown et al. 1992; Chang 1994; Palczewiski 1992], or consider only one
type of wire segment [Alexander 1995; Alexander and Robins 1995; Brown
et al. 1992; Chang et al. 1994; Chen 1995; Lee and Wu 1995; Lemieux et al.
1997]. Research on timing-driven routing for symmetrical array-based
FPGAs with multilength segments is very limited. An FPGA routing
algorithm that considers routability, delay, and multilength segments is
described in Lemieux and Brown [1993]. The algorithm is an extension of
the detailed routing algorithm of Brown et al. [1992] to handle the selection
of different segments for detailed routing. However, a drawback to the
approach in Lemieux and Brown [1993] is that the choice of segments is
restricted to the routing paths defined by a conventional global router, and
thus it is hard for the router to utilize the segments efficiently.

Researchers have shown that, due to the segmented architectures of
FPGA routing channels, the number of segments, instead of wirelength,
used by a net is the most critical factor in controlling routing delay in an
FPGA [Fallah and Rose 1992; Khellah et al. 1993]. Thus, the traditional
measure of routing delay on the basis of the geometric distance of a signal
is not accurate for the FPGA with multiple segment lengths. For example,
in Figure 3, both nets 1 and 2 have the same geometric distance. However,
the signal delay of net 2 is significantly larger than that of net 1 because
net 2 uses more switches to make the connection.

To consider wirelength and delay simultaneously, we study a model of a
timing-driven routing-tree problem, arising from the special properties of
FPGA routing architectures. Based on the solution to the routing-tree
problem, we present a timing-driven routing algorithm for symmetrical
array-based FPGAs. The routing algorithm has the following distinct
features, when compared to previous work:

—Utilization of routing resources is considered from a global viewpoint.
The routing algorithm uses a hierarchical top-down approach and consid-
ers all available routing resources in assigning routing paths to nets.

—The algorithm explicitly includes timing constraints as its inputs and
aims at routing all the nets to meet the constraints. To perform timing-
driven routing, the timing constraints are transferred into the delay
bounds on the source-to-sink paths of nets. Further, the routing algo-

L L L L

L L L L

switch 
modules

logic modules

S S S S S

S S S S S

 singleline subchannel

doubleline subchannel

longline subchannel 

Fig. 2. Detailed structure of a routing channel..
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rithm can be used as a direct follow-up to timing-driven placement
[Hauge et al. 1987; Marek-Sadowska 1993].

—Detailed routing is performed simultaneously with global routing. All
nets are routed at the same time, and thus the net-ordering problem can
be avoided during both global and detailed routing stages.

Experimental results show that our timing-driven router substantially
reduces the number of connections violating timing constraints.

The rest of the paper is organized as follows. Section 2 gives the
formulation of FPGA routing architectures and the timing-driven routing.
Section 3 describes all ingredients in the timing-driven routing. Finally,
experimental results are presented in Section 4.

2. PROBLEM FORMULATION

A horizontal (vertical) channel is the routing space between two adjacent
rows (columns) of logic modules. A routing channel is divided into a set of
subchannels. Subchannels are distinguished by the relative lengths of their
segments, and each subchannel consists of a set of equal-length routing
segments. Figure 2 shows an example of a horizontal channel with three
subchannels, namely single-line subchannel, double-line subchannel, and
long-line subchannel. The single-line subchannel consists of single-length
segments that form a grid of horizontal and vertical lines that intersect at
switch modules. The double-line subchannel contains double-length seg-
ments composed of a grid of segments twice as long as the single-length
ones. The long-line subchannel contains segments that run the entire
vertical or horizontal channels. This model of channel segmentation is used
in popular commercial FPGAs [Lucent Technologies 1996; Xilinx 1996].

In timing-driven physical layout, the timing constraints can be trans-
ferred into the delay bounds on nets [Frankle 1992; Hauge et al. 1987].
Every net consists of a source pin and a set of sink pins. The timing
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Fig. 3. Routing on different types of segments. Net 2 has larger signal delay than Net 1
because it uses more switches.
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constraints on a net are specified as the delay bound from the source to
each sink. The goal of timing-driven routing is thus to route the nets so
that delay constraints are satisfied.

It is shown in Khellah et al. [1993] that the number of segments (and
thus the number of switches) a net has to pass through is the most critical
factor in controlling routing delay in an FPGA. The delay model based on
the number of switches used by a net is sufficiently accurate for the
purpose of timing-driven routing for FPGAs (see Zhu and Wong [1998] for
examples of transferring timing constraints into the upper bounds on the
numbers of switches used by source-to-sink paths of nets based on the
Elmore delay model [Elmore 1948]). Note that the number of switches
along the routing paths of the net is known if the global routing paths of a
net are specified in terms of subchannels.

We formulate the timing-driven routing problem for the symmetrical
array-based FPGAs as follows.

—The FPGA timing-driven routing problem (FPGA-TRP)
Instance: Given an FPGA architecture, a netlist of the circuit, and timing
constraints specified as the upper bounds on the number of switches used
along all source-sink pairs of nets.
Objective: Determine the sequence of wire segments and switches for
each net so that the net delay bound is satisfied.

3. TIMING-DRIVEN ROUTING ALGORITHM

3.1 Overview

The routing algorithm is based on the hierarchical top-down strategy for
traditional ASICs [Lauther 1987; Marek-Sadowska 1986; Suaris and
Kedem 1989], with several distinctive features to deal with the special
properties of FPGA routing architectures. We first review the generic
hierarchical approach and then present the unique features of our router.
The generic hierarchical approach proceeds as follows. Starting with the
entire circuit, a cut line is chosen in some way (such as min-cut [Breuer
1977; Suaris and Kedem 1989]) to divide the circuit into two parts. Across
the cut line there are routing sections that represent routing spaces on the
chip. (See Figure 4 for a clarification of the terminology.) A routing section
is usually a channel with a routing capacity specified by the channel width.
Each connection crossing the routing section is assigned a cost defined by
total wire length and channel densities. The routing at each hierarchical
level assigns connections to routing sections based on a particular algo-
rithm, such as the linear assignment method [Papadimitriou and Steiglitz
1982]. After finishing routing at this hierarchical level, both subcircuits
separated by the cut line are routed by the same method recursively. The
algorithm terminates when the subcircuits are small enough so that they
can be solved easily.
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To deal with the timing-driven routing for symmetrical array-based
FPGAs, we add the following distinctive features to the aforementioned
generic hierarchical approach:

(1) A routing section on a cut line is a subchannel instead of a channel. So
the router will automatically choose appropriate subchannels (and thus
segments) for nets at each hierarchical level.

(2) A routing tree is constructed for each net. Here, a routing tree of a net
is a spanning tree connecting all pins of the net, subject to the
constraints that all paths from the source to sinks must satisfy their
delay bounds. In Section 3.2 we formulate a timing-driven routing-tree
problem to consider the constraints.

(3) After constructing a routing tree, the net delay bounds need to be
distributed among the edges of the routing tree in order to perform
hierarchical routing. The algorithm for distributing delay bounds is
described in Section 3.3.

(4) A new cost function for linear assignment should be defined to consider
timing constraints. We define the cost function in Section 3.4.

(5) At each hierarchical level, the delay bound for a connection crossing a
cut line needs to be redistributed among subconnections (i.e., each
subconnection gets its own delay bound) for the next level of hierarchi-
cal routing. The redistribution of delay bounds should facilitate routing
at subsequent hierarchical routing levels. Delay-bound redistribution is
discussed in Section 3.5.

(6) Detailed routing is performed simultaneously with global routing, and
is discussed in Section 3.6.

3.2 Timing-Driven Routing Trees

The goal of timing-driven routing is to construct a routing tree for each net
such that all timing constraints are satisfied and the routing cost is
minimized (to save routing resources and reduce capacitance). Routing
costs usually include wire lengths and routing congestion. As in conven-
tional technology, geometric distance is a suitable measurement for routing
cost. Due to the segmented structure of routing resources in FPGAs,

cut line

pin

pin

routing sections

connection

Fig. 4. Illustration of terminology in the hierarchical routing.
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however, routing delay is generally not proportional to the geometric
distance. Thus, the traditional measure of routing delay that is based on
the geometric distance of a signal is not accurate for an FPGA with
multiple segment lengths. To perform timing-driven routing, we formulate
the following routing-tree problem with two independent weights, one for
routing cost and the other for routing delay.

—The bounded-delay minimum-cost spanning-tree problem (BDMCSTP)
Instance: Given a graph G 5 ~V, E!, V 5 $s, t1, . . . , t ?V?21%, a routing
cost function r~e! [ Z1, a delay cost function d~e! [ Z1 for each e [ E,
and a delay bound B~ti! [ Z1 for each simple path from s to ti.
Objective: Find a spanning tree T for G satisfying (

e[p~s, ti!
d~e! # B~ti!

for every simple path p from s to ti in T such that (
e[T

r~e! is minimized.

The decision version of the BDMCSTP is described below:

—The bounded-delay bounded-cost spanning-tree problem (BDBCSTP)
Instance: The instance of the BDMCSTP, with an additional routing cost
bound C [ Z1.
Question: Is there a spanning tree T for G satisfying (

e[p~s, ti!
d~e! #

B~ti! for every simple path p from s to ti in T such that (
e[T

r~e! # c?

3.2.1 Complexity of the Routing-Tree Problem. In this section we dis-
cuss the complexity of the above problems. Work on spanning-tree con-
struction with simultaneous multiple objective optimization (e.g., delay and
wire length) is reported in Awerbuch et al. [1990]; Cong et al. [1992]; Ho et
al. [1991]; and Khuller et al. [1993]. While the literature deals with the
case where the objectives are mutually dependent (e.g., delay and wire
length are both measured by geometric distance), our formulation considers
the case where the objectives are independent, which, as mentioned earlier,
is essential for timing-driven routing on the FPGA architecture with
multiple segment lengths.

We show that the satisfiability problem of boolean formulas in the
3-conjunctive normal form, 3SAT, is polynomially reduciable to the BDBC-
STP, i.e., 3SAT #p BDBCSTP. Since 3SAT is NP-complete [Garey and
Johnson 1979], the BDBCSTP in general is NP-hard. More specifically, we
have the following theorem.

THEOREM 1. BDBCSTP is NP-complete.

The BDMCSTP is NP-hard. Since the general BDMCSTP is NP-hard,
whether there exists a polynomial-time algorithm for the problem is an
open question. Hence, we are interested in finding an approximation
algorithm with a guaranteed performance bound. However, we can show
that if there exists a polynomial-time algorithm ! for the BDMCSTP
without triangle inequality, then ! can be used to solve the 3SAT problem,
which is a contradiction if P Þ NP. Specifically, the following theorem
holds.
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THEOREM 2. If P Þ NP and r $ 1, there is no polynomial-time approxi-
mation algorithm with performance bound r for the general BDMCSTP.

The triangle inequality for the routing cost usually holds in practical
applications. Given a graph G 5 ~V, E!, let the routing costs of its mini-
mum spanning tree measured on r, MSTr, and an optimal tree, TBDMCST, to
the BDMCSTP on G be FMSTr and FBDMCST, respectively. We have the
following theorem.

THEOREM 3. FMSTr # FBDMCST # ~V 2 1!FMSTr # ~V 2 1!FBDMCST,
if the routing cost satisfies the triangle inequality.

To save space, see Chang [1996] for the proofs of Theorems 1–3.

3.2.2 The Timing-Driven Routing-Tree Heuristic. Since the general BD-
MCSTP is NP-hard, we resort to a heuristic to obtain efficient solutions.
For timing-driven routing, we use the following cost functions. The routing
cost of an edge e 5 ~u, v! is defined as the Manhattan distance

r~e! 5 ?xu 2 xv? 1 ?yu 2 yv?, (1)

where ~xu, yu! and ~xv, yv! are the coordinates of the pins u and v,
respectively. The delay measurement (number of switches used) is given by

d~e! 5 max$dmin, ar~e!%, (2)

where dmin is the minimum number of switches required to connect u and v
(we discuss dmin in detail later), and 0 , a # 1 is a constant that satisfies
the following inequality:

DG, d~s, ti! # B~ti!, @ti [ V, (3)

and at the same time maximizes the left-hand side of the above inequality;
here DG, d~s, ti! is the delay cost of the shortest path from s to ti on G.
Recall that the minimum length of routing segment is the span of one logic
module, thus the routing cost function r~e! in the delay function d~e! in Eq.
(2) represents the maximum possible delay between two pins u and v. The
constant a is used to capture the usage of longer routing segments for
satisfying stringent delay bounds. Smaller a gives smaller delay cost d~e!,
implying that the routing between u and v needs to use longer segments.
The value of a is computed by Inequality (3) on all source-sink pairs of the
net. Thus, for the source-sink pairs for which Inequality (3) is strictly less
than the corresponding delay bound B~ti!, there will be more alternatives
for the routing to meet the delay bounds.

To compute dmin, we construct a graph H as follows. Represent each pin
and routing segment by a vertex. Connect two vertices by an edge with unit
weight if there is a switch between the two vertices. That is, the switch
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either connects a pin with a routing segment or connects a routing segment
to another segment through a switch module. Such a graph H is referred to
as a connectivity graph. The delay bound dmin is the length of the shortest
path between u and v on H, and can be computed by a shortest-path
algorithm [Papadimitriou and Steiglitz 1982]. The connectivity graph is
used again in defining the cost function for linear assignment in Section
3.4.

With cost functions (1) and (2), we use the following heuristic to construct
bounded-delay routing trees. The heuristic, PrimBDRT, follows the ap-
proach of Prim’s minimum spanning-tree construction [Prim 1957], and is a
variant of the tree construction used in Awerbuch et al. [1990]; Cong et al.
[1992]; Ho et al. [1991]; and Khuller et al. [1993], which measure both
routing and delay costs based on geometric distance. We grow a tree T 5
~VT, ET! incrementally, starting from the source s. At each step, we choose
an edge e 5 ~u, v!, where u [ VT and v [ V\VT such that the routing
cost of the edge is minimum and the delay constraint from s to v is
satisfied. If no such edge exists, we add the shortest path from s to v on G
measured on delay cost d, STPG, d~s, v! to the routing tree. Since adding
the path could violate the tree property, we compute the shortest-path tree
of T measured on delay. Figure 5 summarizes the algorithm. The time
complexity of PrimBDRT is O~?V?3!. In particular, the heuristic enjoys the
performance bound listed in Theorem 3, since the triangle inequality holds
for the routing cost.

3.3 Delay-Bound Distribution

In this section we discuss the distribution of delay bounds on source-sink
pairs to the edges of a routing tree. We first introduce a few terms. In a
routing tree T, there is only one edge between any sink and its parent. Let

Fig. 5. Algorithm for constructing bounded-delay routing trees.
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the edge between the sink ti and its parent be eti. For any sink ti, there is a
unique path from the source s to ti in T. Let b~eti! be the delay bound
allocated to the edge eti. The slack of a sink ti, denoted by Sti, is defined as
the difference between the delay bound B~ti! and the sum of delay bounds
of all edges along the path from s to ti, i.e., Sti 5 B~ti! 2 Oe[p~s, ti!b~e!,
where p~s, ti! is the path from s to ti in T. The slack for the source s is
defined as zero. Figure 6(a) shows a routing tree with delay bounds on the
sinks, a distribution of delay bounds on the edges and the corresponding
slacks.

The delay-bound distribution is to allocate the delay bounds on the edges
of the routing tree T such that for every sink ti in T, the slack Sti $ 0. The
algorithm for delay-bound distribution is listed in Figure 7. First, the
algorithm allocates to every edge eti in T an initial delay bound b~eti! 5

d~eti!, i.e., the associated edge delay cost (line 1). Note that with such
initial delay bound allocation, the slacks of all sinks in the routing tree T
constructed by the Prim BDRT algorithm in Section 3.2 are guaranteed to
be non-negative. After the initial allocation, it is possible that the delay
bounds on the edges can be relaxed further under certain conditions. Let Tti

be the subtree of T rooted at sink ti. A sink ti is a relaxable sink if the slack
of every sink in Tti is greater than zero. The following theorem gives the
necessary and sufficient condition for further relaxing edge delay bounds.

THEOREM 4. The delay bound on an edge eti can be relaxed further if and
only if the sink ti is a relaxable sink.

PROOF. (If). Suppose that the sink ti is relaxable. By definition, all sinks
in the subtree Tti must also be relaxable. Let t9 i be the sink in Tti with the
minimum slack among all the sinks in Tti. The delay bound of edge eti can
be increased by St9 i and no sink in T will have negative slacks. Thus the
delay bound of edge eti can be relaxed. Notice that the existence of sinks
with positive slacks is not sufficient to relax the delay bounds on edges. For
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Fig. 6. (a) Slack computation; (b) delay-bound distribution.
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example, the sink t4 in Figure 6(a) has slack 1, but t4 is not a relaxable
sink. The reason is that one of t4’s children, sink t5, has zero slack.

(Only If). Suppose a sink ti is not relaxable. By definition, either Sti 5
0 or there is at least one sink in the subtree Tti which has zero slack. If the
delay bound for eti is increased, there must be at least one sink in Tti which
will have negative slack. Thus the delay bound for eti cannot be relaxed. e

All the relaxable sinks in T can be easily identified in O~?V?! time. After
allocating the initial delay bounds on edges, the algorithm picks a relaxable
sink ti, if any, with the minimum slack, and relaxes the the delay bound on
eti by the amount of Sti (lines 3-5). The process repeats until there is no
relaxable sink in T. Figure 6(b) shows the routing tree after applying the
algorithm on the tree shown in Figure 6(a). Notice that the slack of t4 does
not change, since t4 is not a relaxable sink.

Each of steps 3 and 4 can be done in one traversal of the routing tree T.
In each iteration, the number of relaxable sinks is reduced at least by one.
Thus there are at most ?V?21 iterations in the while loop, and the running
time of the algorithm is O~?V?2!.

3.4 Cost Function for Linear Assignment

A cut line at a routing hierarchical level cuts through a set of subchannels.
A routing section on the cut line is a subchannel. Let Cij be the cost of
routing connection i through subchannel j. The cost Cij consists of three
terms:

Cij 5 Cij
~1! 1 Cij

~2! 1 Cij
~3!. (4)

The first term Cij
~1! depends on whether the connection i can reach subchan-

nel j:

Cij
~1! 5 H 0 if connection i can reach subchannel j,

` otherwise.

Reachability can be determined by a breadth-first search on the connectiv-
ity graph as defined in Section 3.2.

Fig. 7. Algorithm for delay bound distribution.
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The second term intends to utilize the routing segments evenly according
to the connection length and its delay bound:

Cij
~2! 5 aU li

Ui

2 LjU,
where li is the Manhattan distance of the connection i; Ui is the delay
bound of connection i; Lj is the length of routing segments in the subchan-
nel j; and a . 0 is a constant. Note that li / Ui is the average Manhattan
distance in routing the connection using at most one switch. Thus the
closer li / Ui is to the length of segments in a subchannel, the lower the cost.

A bend in routing a net requires at least one switch. So it is preferable for
routing a net with fewer bends to meet delay bounds. The third term Cij

~3! of
the cost function is defined on the basis of this consideration and is
illustrated in Figure 8(a). There are two subchannels (s1 and s5 in Figure
8) on the cut line through which the connection will have the minimum
possible number of bends. Thus Cij has the minimum value at these two
subchannels. The cost of routing through the subchannels within the
bounding box of the connection is a constant greater than the minimum
cost. The costs for routing through subchannels outside the bounding box of
the connection are proportional to the Manhattan distances between the
subchannels and the bounding box. Note that the cost function illustrated
in Figure 8(b) corresponds to those used in Lauther [1987]; Marek-Sad-
owska [1993]; and Suaris and Kedem [1989].

pin

cut line

subchannels

pin

coordinate projection of the used subchannels

(a)

(b)

cost

cost

(3)
ijC

(3)
ijC

s2 s3 s4 s5s1

Fig. 8. The third term Cij
~3! of the cost function for linear assignment. (a) Case for our

timing-driven routing; (b) case for nontiming-driven routing.
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3.5 Delay-Bound Redistribution

After assigning connections to the subchannels on the cut line, the delay
upper bounds for the connections need to be redistributed among the new
connections created by the cut line.

We first consider a simple case where the connection crossing the cut line
does not share pins with any other connection crossing the cut line (see
Figure 9). Assume the connection i is assigned to the subchannel j. Let i1
and i2 be the new connections created on the two sides of the cut line. Let
li1 (li2) be the Manhattan distance between pin 1 (pin 2) and the subchan-
nel j. The delay bound Ui of the connection i is redistributed among the
new connections i1 and i2 proportional to their distances to the assigned
subchannel, i.e.,

Ui1 5
li1

li1 1 li2

Ui,

and

Ui2 5
li2

li1 1 li2

Ui,

where Ui1 and Ui2 are the delay bounds for the new connections i1 and i2,
respectively.

In general, connections of the same net crossing the cut line may share
pins. If connections that share pins are not assigned to the same subchan-
nel, delay bounds are redistributed for every connection independently, as
discussed in the above simple case. If several connections that share pins
are assigned to the same subchannel, the delay bound redistribution will be
performed as illustrated in Figure 10. In Figure 10, three connections i, j,
and k belong to the same net. Connections i and j share a pin on side 1, and
connections i and k share another pin on side 2. All three connections are
assigned to the same subchannel. Thus the new connections i1 and j1 (i2
and k2) are the same. The delay bound for a new connection created on the
side where the connections share a pin is chosen to be the minimum of the
delay bounds. In Figure 10, the delay bounds for new connections i1 (j1)
and i2 (j2) are

pin 1

pin2 

pin 1

pin2 

l i1 l i2
after assignment

1 2

connection i

subchannel j

Fig. 9. Delay bound redistribution: simple case.
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Ui1 5 Uj1 5 minH li1

li1 1 li2

Ui,
lj1

lj1 1 lj2

UjJ
and

Ui2 5 Uk2 5 minH li2

li1 1 li2

Ui,
lk2

lk1 1 lk2

UkJ,

where Ui1, Ui2, Uj1, and Uk2 are the delay bounds for the new connections
i1, i2, j1, and k2, respectively. For a new connection on the side that does
not share pins with other connections, the delay bound is the difference
between the delay bound for the original connection and that allocated to
the new connection on the other side of the cut line. In Figure 10, the delay
bounds for the new connections j2 and k1 are Uj2 5 Uj 2 Uj1, and Uk1 5
Uk 2 Uk2, respectively.

3.6 Detailed Routing

Detailed routing can be easily incorporated into global routing at every
hierarchical level. After global routing, the connections assigned to every
subchannel are known. For each subchannel, construct a bipartite graph
G 5 ~V1 ø V2, E!. A connection or a set of connections belonging to the
same net and assigned to the subchannel is represented by a node u [ V1.
A routing segment in the subchannel is represented by a node v [ V2.
There is an edge between a node u [ V1 and a node v [ V2 if and only if
all the pins of the connection(s) represented by u can reach the routing
segment represented by v. Detailed routing is then solved optimally in
polynomial time using a bipartite matching algorithm [Papadimitriou and
Steiglitz 1982]. If detailed routing cannot route all the connections as-
signed to a subchannel, the capacity of the subchannel is reduced appropri-
ately and the global routing at this hierarchical level is routed again. The
iterative procedure continues until either all connections are routed or a
predefined routing completion rate is achieved.

One of the advantages of performing detailed routing and global routing
simultaneously is that any overestimate in global routing can be corrected
immediately and accordingly.

i

k

1 2

k j

1 2

after assignment

j

21

1ji 1= i =2 k2

Fig. 10. Delay bound redistribution: general case.
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4. EXPERIMENTAL RESULTS

The proposed timing-driven routing algorithm was implemented in C on a
SUN SPARC Ultra I workstation. Table I gives the names of the circuits,
the numbers of connections (the numbers of source-sink pairs) in each
circuit, and the sizes of the circuits in terms of the number of logic modules
in the FPGA. Note that this set of circuits is used in Fallah and Rose
[1992].

There are 20 tracks per channel. Each horizontal and vertical channel
consists of three subchannels that contain 8, 4, and 4 tracks of single lines,
medium lines with a length of 4 units, and long lines, respectively. These
parameters of routing segmentation are close to the LUT-based architec-
ture used in the Lucent Technologies FPGAs [Lucent Technologies 1996].
All three types of subchannels can be connected with each other via switch
modules.

We randomly picked a source from the pins of a net and made the other
sinks. Let l~s, ti! be the Manhattan distance between the source s and a
sink ti. The delay bound B~ti! was chosen randomly from the three
intervals @0.3l~s, ti!, 0.8l~s, ti!#, @0.4l~s, ti!, 0.9l~s, ti!#, and @0.5l~s, ti!,
1.0l~s, ti!#, representing the, respectively, tight, medium, and loose cases
for timing constraints. If the delay bound B~ti! is less than dmin,1 then set
B~ti! 5 dmin. Each circuit is routed by the algorithm and the percentage of
source-sink pairs violating the delay bounds is computed. The results are
shown in the column “Timing-driven” in Table II. For comparison, we also
routed the circuits by the same routing algorithm, with the cost function
Cij

~3! in Eq. (4) being set according to the cost function illustrated in Figure
8(b); this leads to a nontiming-driven routing approach [Lauther 1987;
Marek-Sadowska 1993; Suaris and Kedem 1989]. The results are given in
the column “Nontiming-driven” of Table II. For all the circuits, the timing-
driven routing algorithm substantially reduces the percentage of connec-
tions violating the delay bounds. The percentage of reduction in timing
violations is listed in the column “Improv.” in Table II. The results show
that averages of 70%, 80%, and 86% reductions were obtained for the tight,
medium, and loose cases, respectively. The results show that the percent-
age of timing constraints that are satisfied depends on the given delay
bounds. The tighter the delay bounds, the harder it is for both routers to
satisfy specified timing constraints. Our router is quite efficient; runtime
ranged from seconds for the smallest circuit (BUSC) to about 10 minutes
for the largest circuit (K2).

Note that we do not compare our results with the work of Alexander and
Robins [1995]; Brown et al. [1992]; Chen et al. [1995]; Lee and Wu [1995];
and Lemieux et al. [1997] because it considers only one type of wire
segment while ours is based on multilength segments (which is the case in
most commercial architectures).

1 Recall that, in Section 3.2, dmin is the minimum number of switches required to connect two
pins.
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5. CONCLUSIONS

We have presented a timing-driven router for FPGAs with segments of
various lengths. The router is based on a hierarchical strategy and is suited
for the special properties of FPGA routing architectures. Experimental
results show that our router is very effective in reducing the number of
connections violating timing constraints.
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