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Time-aware Graph Embedding: A temporal
smoothness and task-oriented approach

Yonghui Xu, Shengjie Sun, Yuan Miao, Dong Yang, Xiaonan Meng,
Yi Hu, Ke Wang, Hengjie Song, and Chuanyan Miao*

Abstract—Knowledge graph embedding, which aims to learn the low-dimensional representations of entities and relationships, has
attracted considerable research efforts recently. However, most knowledge graph embedding methods focus on the structural
relationships in fixed triples while ignoring the temporal information. Currently, existing time-aware graph embedding methods only
focus on the factual plausibility, while ignoring the temporal smoothness which models the interactions between a fact and its contexts,
and thus can capture fine-granularity temporal relationships. This leads to the limited performance of embedding related applications.
To solve this problem, this paper presents a Robustly Time-aware Graph Embedding (RTGE) method by incorporating temporal
smoothness. Two major innovations of our paper are presented here. At first, RTGE integrates a measure of temporal smoothness in
the learning process of the time-aware graph embedding. Via the proposed additional smoothing factor, RTGE can preserve both
structural information and evolutionary patterns of a given graph. Secondly, RTGE provides a general task-oriented negative sampling
strategy associated with temporally-aware information, which further improves the adaptive ability of the proposed algorithm and plays
an essential role in obtaining superior performance in various tasks. Extensive experiments conducted on multiple benchmark tasks
show that RTGE can increase performance in entity/relationship/temporal scoping prediction tasks.

Index Terms—Knowledge Graph, Graph Embedding, Temporal Information, Temporal Smoothness
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1 INTRODUCTION

With the rapid growth of Knowledge Graph (KG) con-
struction, YAGO [1], Wiki [2], Freebase [3], DBpedia [4],
NELL [5] and many other Knowledge Bases (KB) have been
created for many real-world applications, i.e., semantic pars-
ing [6], named entity disambiguation [7], information ex-
traction [8], recommender systems [9] and question answer-
ing [10]. In order to provide an effective and efficient way to
solve the graph analytics problem in these applications, i.e.,
relation extraction [11], entity classification [12], link predic-
tion [13], entity resolution [14], and Graph Embedding (GE)
methods [15] have been proposed. The key idea of GE is to
map components (i.e., head entity, tail entity, and relation of
the triple < head− entity, relation, tail− entity >) or sub-
graph of a KG onto a low dimensional space in which the
graph information is preserved. By representing a sub-graph
(or head entity, tail entity, relation) as a low dimensional
space vector, graph analytics can be conducted accurately
and efficiently.

Current research on knowledge graph embedding [16,
17, 18, 19] has mainly concerned graphs with fixed
triples [20]. However, in real-life scenarios, graphs, like
social graphs in Twitter, citation graphs in DBLP [21], are
time-variant, and many relations are only valid for a certain
period of time. In these applications, the underlying graph
structure keeps on changing continuously over time. i.e.,
in social graphs [22], when a new user registers onto the
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graph or friendship is established between two users, a new
entity/relation appear in the graph. However, when a user
cancels the account or a friendship breaks down, previously
established entity/relation disappears. The entity/relation
representation of the users should be updated accordingly,
such that the learned entity/relation can reflect the temporal
evolution of their social relationship. Similarly, due to the
frequent publication of a new graph that cites existing
technology, the citation graph [23] of scientific papers is
continuously enriched. As a result, the influence of the
article, and sometimes even the classification, has changed
over time. The node embedding needs to be updated to
reflect this change. In financial networks [24], transactions
are naturally timestamped. If a user is a victim of credit
card fraud, or the user’s account is involved in money
laundering, the characteristics of the user’s account may
change due to the nature of the transaction involved. In
these cases, early detection of such changes is critical to im-
proving law enforcement efficiency and reducing financial
institution losses. These unique characteristics of the time-
aware graph make traditional graph embedding methods
fail to work since static graph embedding methods com-
pletely ignore the time-varying information of the graph
and cannot capture the evolutionary patterns of the given
time-aware graph. Therefore, how to design an embedding
method to models the interactions between a fact and its
contexts for a time-aware graph is critical.

To embed the temporal information [25] of the graph
in the learning model while maintaining the inherent struc-
tural information of the given time-aware graph, an obvious
way is to slice the graph into different time bins [26]. Then
the embeddings can be learned on these bins separately. Al-
though these kinds of models take into account the temporal
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information of the graph in the embedding process, they
cannot explicitly model the temporally-aware information.
This is because these kinds of models are fit on different time
bins independently, and cannot share statistical strength
between two adjacent time bins. What is worse, such a
model trained independently in a fixed time bin cannot
remain robust when the structure of the graph changes
drastically at a specific time. Suffering from the defects
explained above, the current research work on temporal
embedding is rather limited. It is necessary to design a
graph embedding algorithm that can fit the current graph
structure well, and simultaneously it does not deviate too
dramatically from recent history.

Previous studies [20, 26] about graph embedding always
use the same sampling strategy for different specific tasks,
i.e., head/tail entity prediction task, relationship prediction task.

• The (head/tail) entity prediction task: we observe
the relation and (tail/head) entity in the triple <
head− entity, relation, tail − entity >, and predict
the head/tail entity.

• The relationship prediction task: we observe the
head entity and tail entity in the triple < head −
entity, relation, tail − entity >, and predict the
relation according to the learned model.

The triples in the knowledge graph represent real facts
and can only be used as positive samples in the process
of training the model. To achieve better performance in
different specific tasks, we need to construct negative sam-
ples based on the triples in the knowledge graph. Most
existing sampling strategies obtain negative samples by
replacing the head or tail entities of the triples. This kind
of negative sampling strategy can obviously improve the
performance of the model in the (head/tail) entity predic-
tion task. However, these strategies would not explicitly
replace relationships in the triples. This may cause positive
and negative samples for the relationship to be unbalanced.
Potentially imbalanced data may cause the model learned
by the embedding algorithm to be unfavorable for relational
prediction tasks. Furthermore, errors introduced by rela-
tional embeddings may be passed on to head or tail entity
embeddings. This makes graph embedding suffer from the
limitations associated with a biased sampling strategy. As a
result, how to design a sampling strategy for specific tasks
is crucial for graph embedding.

To address the aforementioned issues, we propose a
robustly time-aware graph embedding algorithm to en-
code temporal information in the learned embeddings di-
rectly. Particularly, RTGE slices the temporally-scoped input
knowledge graph into multiple static subgraphs in which
each subgraph corresponds to a timestamp. And then RTGE
projects the entities and the relations of each subgraph
onto temporally aware hyperplanes. We define a temporal
smoothness between hyperplanes of adjacent time steps.
By maintaining the temporal smoothness, we expect RTGE
can avoid the hyperplanes deviate too dramatically from
recent history. Moreover, we propose a task-oriented nega-
tive sampling strategy. By performing negative sampling in
a balanced manner for both entities and relationships, we
hope to obtain training triples with balanced positive and
negative samples of entities and relationships. So that the

learned entity embedding and relationship embedding can
be applied to a variety of head entity/tail entity/relation
prediction tasks. We highlight our contributions as follows:

• Different from previous time-aware graph embed-
ding methods (i.e., t-TransE, HyTE), which learn
hyperplanes of adjacent time steps independently,
RTGE attempts to maintain the temporal smoothness
between hyperplanes of adjacent time steps. Thus,
RTGE can model the evolution of KGs more accu-
rately and obtain better performance in the applica-
tions.

• Unlike the existing graph embedding algorithms
which only perform negative sampling on entities in
different tasks, we designed a task-oriented negative
sampling strategy in time-aware graph embedding,
which can do negative sampling for both entities and
relationships in different tasks. The newly proposed
strategy can well avoid the problem of sampling data
imbalance caused by biased sampling.

We organized the rest of this paper as follows. In the next
section, we review the related work. Section 3 presents the
problem and our proposed method and how we format the
method into an optimization problem in detail. Experimen-
tal results on benchmark datasets are reported in Section 4.
Finally, Section 5 concludes this paper and discuss future
work.

2 RELATED WORKS

Knowledge graph embedding has been an active research
area for the past couple of years. Various graph embedding
methods [27] have been put forward. Among the exist-
ing GE methods, approaches related to our study can be
summarized into three categories: static graph embedding,
dynamic/incremental graph embedding, and time-aware graph
embedding.

2.1 Static Graph Embedding Methods
As a static graph embedding method, TransE [20] pro-
poses an energy-based model for entities embeddings, by
requiring the tail entity embedding to be close to the head
entity embedding plus a vector corresponding to the rela-
tionship. Despite TransE is efficient and straightforward, it
has flaws in dealing with reflexive / one-to-many/many-to-
one / many-to-many relations. Different from TransE [28],
TransH models a relation as a hyperplane together with a
translation operation on it. By utilizing the relation-specific
hyperplanes, TransH overcomes the flaws of TransE in
dealing with reflexive / one-to-many/many-to-one / many-
to-many relations. Unlike TransE and TransH which put
both entities and relations within the same semantic space,
TransR [29] build entity and relation embeddings in separate
entity space and relation spaces. In this way, TransR can
avoid the problem of insufficient common space in model-
ing. TransD [30] as an improvement of TransR proposes rep-
resenting a named symbol object (entity and relation) by two
vectors. The first vector represents an entity (or relation), the
other vector is used to construct a mapping matrix for each
entity-relation pair. By considering the diversity of entities
and relations in the process of the construction mapping
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matrix, TransD encodes more discriminative information
and obtains better results than TransR.

Recently, much effort has been invested in neural em-
bedding for a static graph. For instance, DistMult [31]
presents a general neural network framework for multi-
relational representation learning. In particular, By utiliz-
ing bilinear objective for relation representations, DistMult
captures compositional semantics of relations. Besides, Dist-
Mult successfully extracts Horn rules that involve compo-
sitional reasoning. Instead of using embeddings contain-
ing real numbers as DistMult, ComplEx [32] discuss and
demonstrate the capabilities of complex embeddings. In this
way, ComplEx well avoids overfitting problems caused by
the explosion of parameters in existing embedded mod-
els when dealing with symmetrical/antisymmetric relation-
ships. DistMult and ComplEx learn less powerful features
than deep, multi-layer models since they only focus on
shallow, fast models that can scale to large graphs. To solve
the problem of shallow architectures, and the overfitting
problem of fully connected deep architectures, ConvE [33]
proposes to use parameter efficient, fast operators which can
be composed into deep networks. Recently, more and more
TransE-based or neural network-based graph embedding
algorithms (i.e.,TranSparse [34], TransF [35]) are proposed
for static graph embedding, and they generate effective
results on static graph data sets. However, none of the above
methods try to combine the temporal information to explore
the evolutionary pattern of the knowledge graph.

2.2 Dynamic / Incremental Graph Embedding Methods

Dynamic/incremental KG embedding aims to learn em-
bedding in an online fashion when the KG is frequently
updated. For instance, [36] proposes puTransE (Parallel Uni-
verse TransE), an online and robust adaptation of TransE.
To capture the temporal information for each edge in the
knowledge graphs, [37] presents a novel deep evolutionary
knowledge network, Know-Evolve which learns nonlin-
early evolving entity representations over time. Based on
Generalized SVD Decomposition and matrix perturbation
theory, [38] dynamically updates the node representation of
the dynamic network while retaining high-order similarity.
When the network structure changes at the next moment,
[38] can quickly and effectively update the representation
of the node. Recently, [39] extends graph convolutional
network, GCN [40] to the dynamic setting by utilizing
a recurrent mechanism to update the parameters. In this
way, [39] expects to capture the dynamism of the graphs.
Unlike the dynamic graph neural network algorithms which
require to retrain a model or wait for convergence, [41] de-
velops new approaches to the problems of streaming graph
embedding, by only updating the representations of a small
proportion of vertices. In this way, [41] has low space and
time complexity to generate latent representations for new
vertices under specified iteration rounds. [42] proposes to
initialize node embeddings with respect to the static graph.
Then the initial node embeddings are aligned at different
time points and eventually adapted for the specific task
with a joint optimization. To model complex and nonlin-
early evolving dynamic processes of the dynamic graph,
[43] proposes a deep temporal point process model based

on specially designed temporally attentive representation
network. By this method, [43] learn to encode structural-
temporal information over the graph into low dimensional
representations.

2.3 Time-aware graph Embedding Methods
The method proposed in this paper, RTGE, is a typical
time-aware graph embedding method. Different from dy-
namic/incremental graph embedding, time-aware graph
embedding, which tries to learn the evolving patterns of
a graph and incorporate time information into embedding
learning and learns embedding in an offline fashion. For
instance, based on TransE, t-TransE [44] provides a link
prediction method by using temporal order constraints to
model transformation between time-sensitive relations. In
the embedding process, t-TransE enforces the embeddings
to be temporally consistent. Similarly, HolE [45] earlier
attempts to consider such temporal information for graph
embedding. To incorporate the valid time of facts, [46] pro-
poses a time-aware graph embedding approach with a joint
time-aware inference model using temporal consistency in-
formation as constraints. In this way, [46] expects to be more
accurate concerning various temporal constraints. Unlike
translation based embedding methods, for example, TransE,
TransH, and TransR, which ignores the time information
of the graph and learns the embedding representation by
defining a global margin-based loss function over the data.
[47] proposes to encode temporal information of the graph
by adaptively adjusting the optimal margin over time.

The most related work to our study is the hyperplane-
based temporally aware knowledge graph embedding
method (HyTE) proposed by [26]. By investigating different
hyperplanes to represent different time (i.e., segregate the
embedding space into different time zones by these hy-
perplanes), HyTE attempts to encode temporal information
directly in the learned embeddings. Note that, although
the basic ideas behind HyTE and our proposed RTGE are
similar, i.e., to learn hyperplanes for different time bins,
RTGE differs from HyTE in two aspects: 1) In HyTE, the
hyperplanes of adjacent time intervals are independent of
each other. On the contrary, in RTGE, we introduce the
concept of timing smoothing to optimize and learn the
hyperplanes of adjacent time intervals jointly. In this way,
RTGE can avoid the problem of missing timing associations
between embedded spaces caused by independent learning
of hyperplanes of adjacent time intervals. 2) HyTE only uses
a negative sampling strategy based on randomly replacing
the head or tail entities in the negative sampling process.
RTGE adds relation-based negative sampling on the basis
of HyTE. In this way, RTGE can avoid the problem of an
imbalance of positive and negative samples due to the lack
of relationship-based negative sampling.

3 TIME-AWARE GRAPH EMBEDDING MODEL

3.1 Problem Statement
Let G = {< ĥi, ̂̀i, ζ̂i, tis, tie > |1 ≤ i ≤ N} denotes a time-
aware graph, where < ĥi, ̂̀i, ζ̂i > indicates the triple of the
graph. ĥi denotes a head entity, ̂̀i denotes a tail entity and
ζ̂i denotes a relation. tis and tie indicate the start and end
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timestamps of the fact represented by triplet < ĥi, ̂̀i, ζ̂i >,
respectively. tis is the start timestamps of the fact, and
tie is the end timestamps of the fact. For series of given
timestamp, t ∈ 1, 2, . . . , T , the time-aware graph G can be
split into multiple static graphs G1...GT , and each graph
consists of several triples that are valid in the corresponding
timestamp, e.g., knowledge graph G can be denoted by,

G = G1 ∪ G2 ∪ . . .Gt · · · ∪ GT (1)

where t ∈ [1, T ]. Here, we denote the embeddings of head
entity ĥi, tail entity ζ̂i and relation ̂̀

i by hi, ζi and `i,
respectively. Time-aware graph embedding aims to learn
hi ∈ Rd×1, ζi ∈ Rd×1 and `i ∈ Rd×1 for each entity and re-
lation, and the appropriate mapping functions Γt, t ∈ [1, T ]
to meet the requirements of the following three tasks.

• Head prediction task: for an incomplete fact <
?, ̂̀i, ζ̂i > at t, Γt can predict the head entity ĥi.

• Relation prediction task: for an incomplete fact <
ĥi, ?, ζ̂i > at t, Γt can predict the relation ̂̀

i.
• Tail prediction task: for an incomplete fact <

ĥi, ̂̀i, ? > at t, Γt can predict the tail entity ζ̂i.
• Temporal scoping prediction task: for a fact <

ĥi, ̂̀i, ζ̂i > , Γt can predict the temporal scoping of
this fact.

3.2 Modeling Embeddings Over Time
This section deduces how temporal information can be
integrated into graph embedding based on TransE. The basic
idea of TransE is that it models relationships as translations
in the embedding space, and enfores the embedding of the
tail entity ζ̂i to be close to the embedding of the head entity
ĥi plus some vector that depends on the relationship ̂̀

i, (i.e.,
hi+`i ≈ ζi) when the triplet < ĥi, ̂̀i, ζ̂i > holds. Obviously,
if the triplet < ĥi, ̂̀i, ζ̂i > does not hold, TransE enfores
hi + `i to be far away from ζi. Based on this idea, TransE
can obtain the embeddings by minimizing a margin-based
ranking loss over the whole training set [20].

TransE provides a basic framework to embed entity and
relation in the semantic space. Though it works well on
irreflexive and one-to-one relations for a static graph, it
has problems to deal with reflexive or many-to-one/one-to-
many/many-to-many relations for a time-aware graph. For
instance, fact: ”Jone lives in Beijing in 2018”, can be described
with a triple as (2).

< ĥi : John, ̂̀i : lives−in, ζ̂i : Beijing, tis : 2018, tie : 2018 >
(2)

< ĥj : John, ̂̀j : lives−in, ζ̂j : Singapore, tjs : 2019, tje : 2019 >
(3)

For another fact: ”Jone lives in Singapore in 2019”, we can
describe it as (3). Since: ”Jone moved from Beijing to Singapore
in 2019”, the triple (2) and the triple (3) have the same head
entity and relationship but has different tail entities. If the
time information is not considered, TransE mandates hi +
`i = ζi and hj + `j = ζj . Since hi = hj and `i = `j , TransE
will deduce a wrong conclusion ζi = ζj .

In order to avoid the above problem, temporal aware
hyperplane can be utilized to segregate the embedding
space into different time zones. With the help of temporal

aware hyperplane at time t, the representation of the triple
valid at time t will be projected onto hyperplane wt ∈ Rd×1
as follows,

Qt(hi) = hi − (w>t hi)wt (4)

Qt(`i) = `i − (w>t `i)wt (5)

Qt(ζi) = ζi − (w>t ζi)wt (6)

where Qt(hi), Qt(`i) and Qt(ζi) denote the projection of
the head entity ĥi, the relationship ̂̀

i, and the tail entity
ζ̂i on the hyperplane wt, respectively. With this approach,
triples with the same head entity and the same relationship
at different times will be projected into different subspaces,
and the tail entities of these triples will be represented
as different embeddings in different subspaces. Thus, the
many-to-one problem caused by time is avoided.

Following the strategy adopted in previous method,
HyTE, we learn the embeddings in (4), (5) and (6) by
minimizing a margin-based ranking loss over the training
set,

arg min
W,h,`,ζ

g(W,h, `, ζ) = (7)

T∑
t=1

S+
t∑
s+i

S−t∑
s−j

max (L(s+i ) + γ − L(s−j ), 0)

where W = [w1, w2, . . . , wT ]. s+i indicates the fact <
ĥi, ̂̀i, ζ̂i > which is valid during timestamp t. s+i can be
denoted as,

s+i =< hi, `i, ζi >∈ S+
t . (8)

s−j indicates the negative fact which is not valid during
timestamp t. s−j can be generated by replacing the head
entity or the tail entity of a valid fact < ĥj , ̂̀j , ζ̂j >. If we
use a negative head entity, s−j can be defined as,

s−j =< h
′

j , `j , ζj >∈ S−t . (9)

For a negative tail entity, s−j can be defined as,

s−j =< hj , `j , ζ
′

j >∈ S−t . (10)

L in (7) indicates the loss corresponding to the projection of
triples on wt. For instance,

L(s+i ) = L(hi, `i, ζi) = ‖Qt(hi) +Qt(`i)−Qt(ζi)‖ (11)

3.3 Temporal Smoothness
According to the introduction in the previous section, the
optimal W , h, `, ζ can be solved by minimizing (7). How-
ever, as can be seen from (8), the model (7) is only the
total sum of the margin-based ranking criterion on each
subgraph. For the fixed h, `, ζ , the wt learning process
corresponding to each timestamp is independent of other
timestamps. This result in the model learned by minimizing
(7) only containing subgraph structure information at dif-
ferent timestamps, but not the evolutionary pattern of the
global graph.

To explain this problem more clearly, Fig. 1 shows an
illustration of a time-aware graph and its relevant em-
bedding evolution over time. As the figure shows, h0, ζ0,
and `0 indicates the embedding of node 1, node 2, and
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Fig. 1: Illustration of time-aware graph and its relevant embedding evolution over time.

the associated relationship at time 0, respectively. ωt, ωt+1

and ωt+2 represent the optimal hyperplane at time t, t + 1
and t + 2, respectively. From the figure, we can see that
there are differences in the optimal hyperplanes at different
times, and there is a close relationship between the optimal
hyperplanes at adjacent times. This example validates the
necessity of introducing temporal smoothness in the time-
aware graph embedding model.

Actually, a graph may not change much in a short
period of time, so the embedded space should not change
too much. Inspired by this factor, we propose constraining
the variation between hyperplanes at adjacent timestamps
while accumulating the margin-based ranking criterion of
each subgraph. Therefore, we define the temporal smooth-
ness by minimizing the Euclidean distance between hyper-
planes in adjacent timestamps. Formally, the corresponding
loss function is,

g(W )smooth =
T−1∑
t=1

‖wt+1 − wt‖2 (12)

The smoothness for RTGE defined in (12) aims to request
the coordinates of an entity or a relationship to be very close
to the average coordinates of its neighbors over adjacent
time. For example, a person may experience the following
four events at different moments,

Born (t1)−→ Go to school (t2)−→ Graduate from a
school (t3)−→ Go to a company to work (t4)−→ Death
(t5)

The four events mentioned above naturally have a time
sequence. For example, ”Go to school” cannot occur before
”Born”. ”Go to a company to work” cannot happen after
”Death”. When learning the representation of t1 . . . t5, if the
constraints of temporal smoothness are lacking, t1 may be
farther away from t2 and t3, but closer to t5. This may
cause the model to observe ”Go to a company to work” at the
previous moment and predict ”Born” at the next moment.
This prediction is clearly contrary to the facts. Therefore,

it is necessary to keep the timing smooth constraint in the
process of learning time embedding.

3.4 Task-Oriented Negative Sampling

Another problem with the model (7) occurs during the
negative sampling process. This section analyzes the ad-
vantages and disadvantages of existing negative sampling
strategies in different tasks, and proposes a task-oriented
negative sampling strategy based on this analysis. Note
that (7) can obtain a large number of negative sample
triples by randomly replacing the head or tail entities in
the training triples. By introducing a negative sample into
the loss function in (7), the discriminating ability of the
model concerning the head or tail entity can be significantly
improved, thereby improving the predicted performance of
the learned embeddings for head or tail entity prediction
task.

By comparing (8), (9) and (10), we can find that the
negative sampling of the relationship is not shown in the
negative sampling strategy of (7). Although some negative
samples about relationships can be obtained in negative
entity sampling, in the absence of independent relationship
negative sampling, the balance of positive and negative
samples is difficult to guarantee. In this case, the perfor-
mance of the model (7) in relational prediction tasks is lim-
ited. This problem is even more serious when the number of
relationships is large, or the relationship has a high degree
of similarity.

Based on the above analysis, the existing negative sam-
pling strategy is more suitable for entity prediction tasks,
but not suitable for relational prediction tasks. To improve
the robustness and adaptability of graph embedding algo-
rithms in different tasks, we propose a task-oriented nega-
tive sampling strategy that considers the negative sampling
of the relationship while considering the negative sampling



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2020 6

of the head and tail entities. The specific loss function and
the sampling method are as follows,

gtask(W,h, `, ζ) = (13)

T∑
t=1

S+
t∑
s+i

S−t,e,S
−
t,r∑

s−j,e,s
−
k,r

max [2L(s+i ) + γ − L(s−j,e)− βL(s−k,r), 0]

where gtask(W,h, `, ζ) is the loss function corresponding to
specific task. S+

t indicates the positive triple set for training,

S+
t = {< hi, `i, ζi > |
< hi, `i, ζi >∈ Gt, i ∈ [1, |Gt|]} (14)

S−t,e indicates the sampled negative triple set for training
which is generated by replacing the head or tail entity in
S+
t ,

S−t,e = {< h
′

i, `i, ζi >,< hi, `i, ζ
′

i > |
< hi, `i, ζi >∈ Gt, < h

′

i, `i, ζi >∈ Gt,
< hi, `i, ζ

′

i >∈ Gt} (15)

S−t,r indicates the sampled negative triple set for training
which is generated by replacing the relation in S+

t ,

S−t,r = {< hi, `
′

i, ζi > |
< hi, `i, ζi >∈ Gt, < hi, `

′

i, ζi >∈ Gt} (16)

|Gt| indicates the size of Gt. Gt denotes the complement of
Gt, Gt ∪ Gt = G and Gt ∩ Gt = ∅.
L(s−j,e) in (13) represents the loss function associated

with the entity negative triple, and L(s−k,r) represents
the loss function associated with the relationship negative
triple. Compared to (8), (13) replaces the loss L(s−j ) associ-
ated with the head entity and the tail entity negative triple in
(8) with a linear combination of L(s−j,e) and L(s−k,r). Follow-
ing consideration of the difference between the magnitude
of the entity and the relationship, excessive use of negative
triples about relationships may affect the ability of the
model to discriminate on the entity. To avoid this problem,
we add a parameter β for L(s−k,r) to adjust its weight. In
this way, we introduce the discriminant characteristics of
the relationship in the model (13), so that the model can
be applied to both the prediction task of the entity and the
prediction task of relationship.

3.5 Model Learning

By combining (12) and (13), we derive an overall opti-
mization approach for the following unified optimization
problem, which is constructed by using J (W,h, `, ζ) as a
general loss function,

arg min
W,h,`,ζ

J (W,h, `, ζ) = (17)

α ∗ gsmooth(W ) + gtask(W,h, `, ζ)

s.t. ‖hi‖2 = 1, ‖`i‖2 = 1, ‖ζi‖2 = 1, i ∈ [1, N ].

‖wt‖2 = 1, t ∈ [1, T ].

where α is a tradeoff parameter. In this section, we derive
approaches to solve the optimization problems constructed

in (17). Firstly, we convert the optimization problem to an
unconstrained one,

arg min
W,h,`,ζ

J (W,h, `, ζ) = (18)

α ∗ gsmooth(W ) + gtask(W,h, `, ζ) +

ξ
T∑
t=1

(‖wt‖2 − 1)2 + ξ
N∑
i=1

[(‖hi‖2 − 1)2

+(‖`i‖2 − 1)2 + (‖ζi‖2 − 1)2],

where ξ is a tradeoff parameter. Then, we propose an
alternating optimization algorithm to learn W , h, ` and
ζ alternatively and iteratively. To be specific, at the ρ-th
iteration, we first fix the matrix h, ` and ζ and update the
value of each wt in W using gradient descent based on the
following rule,

(wt)ρ+1 = (wt)ρ − ψ
∂J (W,h, `, ζ)

∂wt
(19)

where ψ indicates the learning rate, and

∂J
∂wt

= α(
wt − wt+1

‖wt+1 − wt‖2
+

wt − wt−1
‖wt − wt−1‖2

)

+

S+
t∑
s+i

S−t,e,S
−
t,r∑

s−j,e,s
−
k,r

[2∇wtL(s+i )−∇wtL(s−j,e)

−β∇wt
L(s−k,r)]† + 2ξ(‖wt‖2 − 1)wt,

where [. . . ]† in (20) is an indication function. If 2L(s+i ) −
L(s−j,e)− βL(s−k,r) > 0 then [x]† = x, otherwise [x]† = 0.

After updating the value of W , we then alternatively
fix W and update h, ` and ζ respectively, based on the
following rule,

(hu)ρ+1 = (hu)ρ − ψ
∂J (W,h, `, ζ)

∂hu
(20)

(`u)ρ+1 = (`u)ρ − ψ
∂J (W,h, `, ζ)

∂`u
(21)

(ζu)ρ+1 = (ζu)ρ − ψ
∂J (W,h, `, ζ)

∂ζu
(22)

where

∂J
∂hu

=
T∑
t=1

S+
t∑
s+i

S−t,e,S
−
t,r∑

s−j,e,s
−
k,r

[2∇hu
L(s+i )−∇hu

L(s−j,e)

−β∇hu
L(s−k,r)]† + 2ξ(‖hu‖2 − 1)hu,

∂J
∂`u

=
T∑
t=1

S+
t∑
s+i

S−t,e,S
−
t,r∑

s−j,e,s
−
k,r

[2∇`uL(s+i )−∇`uL(s−j,e)

−β∇`uL(s−k,r)]† + 2ξ(‖`u‖2 − 1)`u,

∂J
∂ζu

=
T∑
t=1

S+
t∑
s+i

S−t,e,S
−
t,r∑

s−j,e,s
−
k,r

[2∇ζuL(s+i )−∇ζuL(s−j,e)

−β∇ζuL(s−k,r)]† + 2ξ(‖ζu‖2 − 1)ζu.
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Algorithm 1 RTGE
Result: Output W , h, ` and ζ
Initialization W , h, ` and ζ , maximum number of iterations
κ, threshold ε.

while t ≤ T do
Sampling entity negative tripe set S+

t based on (15).
Sampling relation negative tripe set S+

r based on (16).
end
while the number of iteration ≤ κ or J (W,h, `, ζ) in (17) does
not converge do

if W does not converge then
Update the value of each wt in W by ( 19).

end
if h, ` or ζ do not converge then

Update head entity embedding h by (20).
Update relation embedding ` by (21).
Update tail entity embedding ζ by (22).

end
end

TABLE 1: Characteristic information of the Wikidata12K
Data set and YAGO11K Data set.

Datasets #Entity #Relations Train Valid Test Period (year)

Wikidata12K 12,554 24 32.5k 4k 4k 1320 - 2019
YAGO11K 10,623 10 16.4k 2k 2k 1900 - 2017

We alternatingly and iteratively update W , h, ` and
ζ until the change in values of the objective function J
is less than a threshold ε. Considering that the possible
combination of negative triples is enormous, we sample
several negative triples for each training triplet. The nega-
tive triples are randomly sampled and include three groups,
(M negative head entity samples, M negative relationship
samples, and M negative tail entity samples).

3.6 Computational Complexity

In this section, we analyze the computational complexity
of our proposed RTGE. The total time spent is mainly
determined by the time complexity of computing J ’s gra-
dients concerning W , h, ` and ζ . The computational cost
for computing the gradient of J with respect W , h, ` and
ζ is O(CTκd), where C indicates the number of constraint
pairs consisting of positive and negative sample triples, and
d is the dimensionality of each embedding. Moreover, the
computational cost caused by other operations, in Algo-
rithm 1 is not more than O(CTκd). Therefore, the overall
computational complexity of Algorithm 1 is O(CTκd).

4 EXPERIMENTAL RESULTS

This section conducts experiments to evaluate RTGE 1 and
demonstrate its advantages through comparative study.

1. We will open-source code and data sets upon the publishing of this
paper.

4.1 Data Sets with Time-aware Information

We conduct extensive experiments on two famous bench-
mark datasets, the Wikidata12k data set and the YAGO11k
data set. YAGO11k is drawn from YAGO3 [48] in which
some temporally associated facts have meta-facts as (factID,
occurSince, start-time), (factID, occurSince, end-time). The
total number of time annotated facts in YAGO3 containing
both occursSince and occursUntil is 722,494. We choose the
top 10 most frequent temporally rich relations of YAGO3
according to the preprocessing method proposed by [48].
To handle sparsity and ensures healthy connectivity within
the graph, we recursively delete the edges in the subgraph
that contain only one mention containing the entity. Finally,
we obtain a purely time-aware graph. We process the Wiki-
data [2] dataset according to a similar method of processing
YAGO3, and obtain Wikidata12k. Different from YAGO11k,
we select the top 24 frequent temporally rich relations for
Wikidata12k.

The time annotations in YAGO11k and Wikidata12k in-
cludes the year, month, and day information. Following the
setting in HyTE, we drop the month and data information.
To distribute the time annotations in the KG uniformly, we
club the less frequent year mentions into the same time
interval by applying a minimum threshold of 300 triples
per interval during construction. For the years with high
frequency, we club them into individual intervals. Then we
treat timestamps as 61 and 78 different intervals for YAGO
and Wikidata, respectively. Statistics of the Wikidata12k and
the YAGO11k are summarized in Table 1.

Although WordNet [49] and Freebase [3] are accessi-
ble knowledge graph datasets for static knowledge graph
research, we do not test on these two datasets. This is
because the algorithm proposed in this paper is aimed at
the problem of knowledge graph embedding with time
information, and the current version of these data sets lacks
time information.

4.2 Entity, Relation, and Temporal Scoping Prediction
Tasks

To verify the performance of RTGE, we conduct four types
of tasks on each time-aware dataset (including head entity
prediction, tail entity prediction, relationship prediction,
and temporal scoping prediction). The settings for these
tasks are as described in the problem statement section. For
a given test triplet with missing entities or relationships, we
use formula (1) to calculate the loss of all potential entities
or relationships with the test triplet under this formula.
We sort the potential entities or relationships in ascending
order according to the loss value. For evaluation, we select
the ranking of real entities or relationships corresponding
to the triples. For a given test triple with missing time,
we project the entities and relationships in the triple to
all potential time hyperplanes. We calculate the loss of all
potential time and test triples under this formula according
to formula (1), and sort the potential time according to the
loss value. For evaluation, we select the real-time ranking
corresponding to the triple. In these tasks, we follow a time
agnostic negative sampling procedure to generate negative
samples. For instance, with a given tail and head query
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TABLE 2: Experimental results on Wikidata12K data set. ↓ means the lower the better. ↑ means the higher the better.

Metric Mean Rank ↓ Mean Rank ↓ Mean Rank ↓ Hits@10(%) ↑ Hits@10(%) ↑ Hits@1(%) ↑
Task head tail relation head tail relation
Trans-E [20] 740 520 1.35 6 11 88.4
TransH [28] 648 423 1.4 11.8 23.7 88.1
DistMult [31] 635 531 - 19.6 26.6 -
ComplEx [32] 706 551 - 11.8 23.7 -
ConvE [33] 355 241 - 25.5 33.4 -
HolE [45] 808 734 2.23 12.3 25 83.96
t-TransE [44] 413 283 1.97 14.5 24.5 74.2
HyTE [26] 237 179 1.13 25 41.6 92.6
RTGE-n (d = 128) 201 141 1.13 29.7 44.6 92.6
RTGE-s (d = 128) 210 148 1.11 29.5 43.4 92.6
RTGE (d = 128) 183 127 1.09 29.9 44.6 92.8
RTGE (d = 256) 153 91 1.08 32.6 49.7 93.5

TABLE 3: Experimental results on YAGO11K data set. ↓ means the lower the better. ↑ means the higher the better.

Metric Mean Rank ↓ Mean Rank ↓ Mean Rank ↓ Hits@10(%) ↑ Hits@10(%) ↑ Hits@1(%) ↑
Task head tail relation head tail relation
Trans-E [20] 2020 504 1.7 1.2 4.4 78.4
TransH [28] 1808 354 1.53 1.5 5.8 76.1
DistMult [31] 1550 616 - 17.3 31.4 -
ComplEx [32] 1758 603 - 19.2 35.3 -
ConvE [33] 1464 702 - 19.2 33.5 -
HolE [45] 1953 1828 2.57 13.7 29.4 69.3
t-TransE [44] 1692 292 1.66 1.3 6.2 75.5
HyTE [26] 1069 107 1.23 16 38.4 81.2
RTGE-n (d = 128) 854 113 1.22 20.52 40.9 83.9
RTGE-s (d = 128) 891 118 1.24 20.1 39.1 82.8
RTGE (d = 128) 799 110 1.15 20.1 40.9 88.2
RTGE (d = 256) 725 105 1.11 21.4 41.5 88.9

term, we randomly replace a tail or head entity such that
newly generated triple is not observed.

4.3 Baselines

We compare RTGE with a set of state-of-the-art graph em-
bedding algorithms.

• Firstly, considering that our RTGE is a kind of
translation-style approach, we compare with Trans-E
and TransH, which are two translation-based graph
embedding algorithm.

• Secondly, noting that the outstanding performance
of graph neural network algorithms in graph em-
bedding has received increasing attention from re-
searchers in recent years, we include DistMult, Com-
plEx, and ConvE as baselines for comparison.

• Thirdly, considering that we have motivated the
study by using time-aware information, whereas
HolE, t-TransE, and HyTE are known as an effective
time-aware graph embedding algorithm for entity or
relation prediction tasks, we include they as baselines
for comparison.

• Regarding our proposed RTGE, to further investigate
the impact of the negative relation sampling and the
temporal smoothness to the overall performance, we
denote by RTGE-s a reduction of RTGE only using
temporal smoothness and randomly selecting the
negative entity sampling. We denote by RTGE-n a
reduction of RTGE only using the negative relation

sampling and learning all the hyperplanes indepen-
dently.

We use similar evaluation metrics as traditional knowl-
edge graph embedding methods for time-aware knowledge
graph embedding methods. RTGE utilizes equation (11)
to calculate the loss corresponding to triples formed by
each potential head entity and the observed tail entity and
relationship. We calculate and record the ranking of the
loss for the real head entity after sorting all losses. Then,
we report the mean rank, Hits@1, Hits@2,. . . , and Hits@10.
Other prediction tasks use the same method to evaluate the
performance of the algorithms.

4.4 Qualitative Results

Table 2 and Table 3 reports the experimental results on
Wikidata12K and YAGO11K data sets. We compare and ana-
lyze the performance differences of the proposed RTGE and
benchmark algorithms from the following five aspects. In
order to show the performance of RTGE on two benchmark
datasets in more detail, we report the experimental results of
RTGE on Wikidata12K and YAGO11K data sets concerning
different Hits@X in Figure. 2. It can be seen from the figure
that when X is smaller, the algorithm is less effective in
the entity prediction task. In the entity prediction task, the
smallerX is not enough to reflect the overall performance of
the algorithm. As X gradually increases to 10, the effect of
the algorithm in the entity prediction task is significantly
improved. A larger X can better reflect the effect of the
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Fig. 2: Experimental results of RTGE on Wikidata12K and YAGO11K data sets with respect to different Hits@X.
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temporal scoping.

algorithm. In contrast, in the relationship prediction task,
when X is larger, the accuracy of the algorithm always
approaches 100%. This is not conducive to the performance
of the comparison algorithm. Therefore, a smaller X is more
suitable for the relationship prediction task.

4.4.1 Comparative Analysis with Translation-based algo-
rithms

From the Table 2 and Table 3, we can observe that the
average performances of Trans-E and TransH on all the
three tasks are worse than the performance of RTGE. This
is because Trans-E and TransH only learn one embedding
for each entity or relationship at different time intervals.
However, as time changes, new entities or relationships
are added to the knowledge graph, and old entities or
relationships disappear. This means that the structure of the
knowledge graph is constantly changing at different time
intervals. It is insufficient to rely on a fixed embedding to
express entities or relationships at different times in time.

4.4.2 Comparative Analysis with Graph Neural Network-
based algorithms
Table 2 and Table 3 show that the three graph-based neural
network algorithms DistMult, ComplEx, and ConvE have
significantly better execution results than the translation-
based algorithms Trans-E and TransH. However, due to
the lack of modeling of time information, even if DistMult,
ComplEx, and ConvE use more complex neural network
models, the effect is still no better than RTGE. These re-
sults indicate that the static knowledge graph embedding
algorithm has inherent flaws when processing time-aware
knowledge graphs.

4.4.3 Comparative Analysis with Time-aware Graph Em-
bedding algorithms
Despite t-TransE and HyTE both take into account the time
factor and try to use temporal information during model
transformation or projected-time translation, their perfor-
mance still does not exceed RTGE-s and RTGE. This is be-
cause RTGE not only considers the graph structure informa-
tion at different timestamps but also consider the association
between graph structures between adjacent timestamps.
Due to this advantage, RTGE learns the evolution of time-
aware graphs over time more accurately, thus predicting
entities or relationships more accurately at a future moment.

4.4.4 Verification on Temporal Smoothness and Task-
Oriented Negative Sampling
By comparing RTGE-s and HyTE in Table 2 and Table 3, we
can verify the effectiveness of temporal smoothness. From
the experimental results in the two tables, it can be seen
that compared to HyTE, RTGE-s achieved a better result in
most test groups. This is because, compared to HyTE, RTGE-
s introduces temporal smoothness terms in the embedding
model by constraining the variation between hyperplanes
at adjacent timestamps. In this way, RTGE-s avoids the
challenge of the anomaly data to the model and indirectly
improves the robustness of the graph embedding algorithm.
Therefore, RTGE-s achieve better performance than HyTE.
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Fig. 4: Statistics of wt based on time embeddings obtained
after training RTGE with / without equation (12).

By comparing RTGE-n and HyTE in Table 2 and Table 3,
we can verify the effectiveness of task-oriented negative
sampling. From the figues, we can find that RTGE-n not
only outperforms HyTE in relational prediction tasks but
also outperforms HyTE in entity prediction tasks. This is
because, compared to HyTE, RTGE-n introduces negative
sampling triplets for the relationship in the embedding
model, which significantly improves the discriminative abil-
ity of the model for different relationships, and it further
enhances the performance of the embedding model in the
entity prediction task.

4.4.5 Temporal Scoping Prediction Result

Fig. 3 shows the experimental results of temporal scoping
prediction. It can be seen from the figure that the predicted
mean rank for temporal scoping of RTGE is lower than in
HyTE. This is because HyTE does not use a timing smooth-
ing mechanism, which is not conducive to learning time
embedding to maintain timing information. Hence, HyTE
is not conducive to temporal scoping for accurately predict-
ing events. On the contrary, RTGE introduces a temporal
smoothness mechanism, which can well avoid this problem
encountered in HyTE. Fig. 4 shows the ‖wt+1 − wt‖2 based
on time embeddings which are obtained after training RTGE
with or without equation (12). It can be seen from the
figure that in the wt’s learned by RTGE with equation (12),
the change of wt at the neighboring moment is relatively
smooth, and the change range is relatively small, which is
benefited from the timing smoothing mechanism of RTGE.
However, in the wt’s learned by RTGE without equation
(12), the variation range of wt at the neighboring moment is
large and irregular, which is not conducive to maintaining
the consistency of the embedded timing.

In order to show the time embedding learned by RTGE
and HyTE more intuitively, Fig. 5 shows the 2-d PCA
projection of time embeddings, which are obtained after
training RTGE for the temporal scoping task. We observe
that the time representation after training RTGE is form-
ing natural clusters in chronological order. However, the
time representation after training HyTE is more evenly

distributed in the figure. Only a small number of adjacent
time representations come together. This indirectly verifies
that the time embedding learned by the RTGE model can
effectively retain the time sequence information in the time-
aware knowledge graph.

4.5 Parameter Tuning
This section shows the results of RTGE’s parameter tuning
experiments, including the trade-off parameter β, the num-
ber of negative sampling triples m, the trade-off parameter
α, ξ, the learning rate ψ, the margin γ, embedding dimen-
sion d. In our experiments, ξ, and ψ are empirically set to 1
and 0.0001 on data sets. In order to shorten the parameter
tuning time, we set d = 128 in the adjustment experiment
of parameter m, α,β and γ.

4.5.1 Sensitivity Study on m
Fig. 6(a) shows the sensitivity study result of m. As can
be seen from the figure, when m is small, the performance
of RTGE is poor. For example, on Wikidata12K dataset,
when m = 1, the mean rank of RTGE on the head entity
prediction task is 400. As m increases, the performance
of RTGE continues to improve. When m = 5, the mean
rank of RTGE on the head entity prediction task is lower
than 200. This result indicates that the appropriate increase
in the number of negative sampling triples will help to
improve the discriminative ability of RTGE. Besides, it can
be observed that with the continuous increase of m, the im-
provement of RTGE performance is decreasing. This result
indicates that too large m cannot continue to significantly
improve the performance of RTGE. Too large m will bring
more training samples, which will significantly increase the
time required for training. Given these observations, we set
m = 5.

4.5.2 Sensitivity Study on α
Fig. 6(b) provides the sensitivity study result of α. It can be
seen from the figure that the sensitivity of α on different
data sets and different tasks varies greatly. For example, in
the test of the Wikidata12K dataset, a smaller α is beneficial
to improve the performance of RTGE in the entity predic-
tion task. In contrast, in relation prediction, RTGE tends
to choose a larger α. In view of these results, we choose
different α’s for RTGE on different datasets and different
tasks. For example, on the Wikidata12K dataset, we choose
α = 0.1 for the entity prediction task, and α = 100 for
the relation prediction task. On the YAGO11K dataset, we
choose α = 100 for all tasks.

4.5.3 Sensitivity Study on β
Fig. 6(c) reports the potential impacts imposed by different
numbers of trade-off parameter, β, to the mean rank of
RTGE. From Fig. 6(c), we can observe that when the epoch
is small, the mean rank of RTGE on the three tasks is more
significant. As epoch increases, the mean rank of RTGE
gradually decreased and stabilized in most test groups.
Moreover, when β is less than or equal to 0.01, the mean
rank of RTGE can get the smallest value at the maximum
epoch. These results indicate that an oversized β increases
the performance of RTGE on Wikidata12K, which is not
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Fig. 5: The figure illustrates 2-d PCA projection of time embeddings which are obtained after training RTGE and HyTE for
temporal scoping task. Dots of the same color indicate adjacent time embeddings.

conducive to prediction. Therefore, we set the number of
the trade-off parameter β to 0.01 for Wikidata12K.

4.5.4 Sensitivity Study on γ
To analyze the effect of different values of γ on the predic-
tion performance of RTGE, the sensitivity study experiment
is conducted on entity and relation prediction tasks where γ
is selected from 0.1 to 100. Fig. 6(d) shows the experimental
results. We observe that, on the Wikidata12K dataset, the
entity prediction task tends to choose γ = 10. And γ = 10
or γ = 0.1 is more suitable for the relation prediction
task. Different the result on Wikidata12K, γ = 100 is more
suitable for the head entity prediction task on YAGO11K.
Furthermore, γ = 0.1 is the best choice for the tail entity
and relation prediction tasks on YAGO11K.

4.5.5 Sensitivity Study on d
To find a suitable dimension of the embedding, we tested
the performance of RTGE on a benchmark dataset using
different dimensions of embeddings. The experimental re-
sults are shown in Fig. 7. From the figure, we can find an
obvious rule. As the epoch increases, the mean rank of the
RTGE embedded with different dimensions is decreasing.

Higher-dimensional embeddings can make RTGE’s mean
rank drop faster than lower-dimensional embeddings, and
they can always help to reach the lowest mean rank. In
particular, the performance of RTGE in multiple tasks of two
data sets is optimal when d = 256. This is because higher-
dimensional embeddings can describe more detailed graph
structure information than lower-dimensional embeddings.
Therefore, higher-dimensional embeddings can achieve the
best result. However, as the dimensions continue to increase,
the training and testing of the algorithm bring more time
loss, which can be verified from the section 3.

5 CONCLUSION

We propose a robustly time-aware graph embedding
method. In contrast with other state-of-the-art methods, the
main characteristics of our approach are two folds. Firstly,
RTGE proposes incorporating temporal smoothness into the
learning framework of embedding. By taking into account
the temporal smoothness between hyperplanes of adjacent
time steps, RTGE can more efficiently obtain the evolution
of KGs and avoid the interpretation of the wrong conclu-
sion. Secondly, RTGE proposes a task-oriented sampling
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Fig. 6: Sensitivity study of m, α, β and γ on Wikidata12K.

strategy for different tasks that can dynamically adjust the
negative sampling ratio of entities and relationships for
the characteristics of different tasks. The expanded negative
sampling strategy provides RTGE with a stronger adaptive
ability to separate tasks. Experiments on Wikidata12K data
set and YAGO11K data set verify the superiority of RTGE
over other state-of-the-art baseline methods. Although the
algorithm proposed in this paper has achieved good results
on the benchmark data set, RTGE still uses the TransH-
like embedding principle to learn time-based hyperplanes at
independent intervals. Compared to TransH, the embedding
principles mentioned in TransF and ConvE have better
performance. If the embedding principles like TransF and
ConvE are introduced into RTGE, it is possible to improve
the performance of the algorithm further. This is our future

work.
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